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In practice, with accurate algorithms, quantum computers are able to find the properties of

complex many-body systems that classical methods cannot examine. However, many quan-

tum algorithms that attempt to reconstruct ground state wave functions have low fidelity

and are not robust against noise. To this end, we introduce the projected cooling sensor algo-

rithm, which accurately reconstructs the ground state of any general Hamiltonian, to solve

the quantum ground state preparation problem. For low-dimension Hamiltonians, the pro-

jected cooling sensor algorithm reconstructs the ground state with a relative error of 0.0001

or less. For high-dimension Hamiltonians, multiple iterations of the projected cooling sensor

algorithm exponentially decrease the error of the reconstructed ground state. We find that

on a quantum computer, the reconstructed ground state has nearly 100% overlap with the

exact ground state. The projected cooling sensor algorithm can be applied to a wide range

of general many-body systems, including nuclei, bulk materials, superconductors, and Ising

models. When simulated on a quantum computer, the projected cooling sensor algorithm has

the potential to achieve quantum supremacy over classical computations for any quantum

Hamiltonian.

Keywords: Quantum Many-Body System, Hamiltonian, Ground State Preparation, Quantum

Supremacy
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I. INTRODUCTION

In recent years, physics and computer science

have unified at the exciting intersection of quan-

tum computing. Quantum computing makes use

of subatomic properties and would, in theory,

revolutionize modern electronics and materials.

Today, physicists and computer scientists have

successfully created algorithms and built small

quantum computers that can solve problems

faster than any classical computer. In their sem-

inal work, Arute et al. [1] introduced a quan-

tum processor that is able to perform algorithms

exponentially faster than a state-of-the-art clas-

sical computer. This processor is the first ever

to quantum supremacy. However, there is still a

need for quantum computers that can describe

large-scale systems and perform even more com-

plex computations, such as finding the properties

of many-body systems.

While a classical bit can store only one of

two definite states (0 or 1), a quantum qubit can

be in a superposition of the two states, allowing

for an infinite number of distinct qubit values.

In the computational setting, quantum superpo-

sition allows qubits to hold exponentially more

information than classical bits, leading to expo-

nentially faster quantum algorithms. Developing

quantum computing devices, however, is com-

plicated by environmental noise that interferes

with quantum processes. Due to short decoher-

ence times, gate errors, and readout errors, all

quantum computing algorithms currently have

difficulty addressing real problems of interest on

currently available devices. Although we simu-

late a quantum algorithm using classical com-

puting, we keep in mind the physical constraints

associated with quantum computers.

We direct our focus on the quantum many-

body problem, which arises when more than

two microscopic particles interact in a system.

While it is feasible to measure the static and dy-

namic properties of one- or two-particle systems,

most systems become too complicated to predict

when many particles are introduced. The quan-

tum Hamiltonian, which is the Hermitian oper-

ator that describes a quantum system, can be-

come too difficult for classical algorithms to de-
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scribe in many-body systems. We specifically de-

velop an algorithm to solve the quantum ground

state preparation problem, which occurs when we

try to reconstruct the ground state of the Hamil-

tonian of a quantum many-body system.

The quantum ground state preparation prob-

lem is one of the most significant subsets of

the quantum many-body problem. Ground state

reconstruction has numerous applications in

physics. Kitaev et al. [2] showed that all quantum

circuits can be modeled using only ground states.

Peng et al. [3] applied quantum adiabatic evo-

lution, a ground state reconstruction algorithm,

to Shor’s algorithm, which is a factoring algo-

rithm that has the potential to break 2048-bit

RSA cryptography if physically implemented.

Classical analytical methods of finding the

ground state of many-body systems such as

Schrödinger’s equation are computationally te-

dious and do not give accurate reconstructions.

To this end, several algorithms that reconstruct

the ground state of a Hamiltonian have emerged.

Most well-known are quantum phase estimation

[4, 5] and quantum adiabatic evolution [6]. Quan-

tum phase estimation estimates the phase, or

eigenvalues, of a unitary operator and is often

used in conjunction with other quantum algo-

rithms.

The quantum adiabatic evolution algorithm

is largely considered the standard ground state

reconstruction algorithm. The algorithm initial-

izes a system whose ground state is the solu-

tion, then slowly interpolates a simple Hamilto-

nian to the target system Hamiltonian. Quan-

tum adiabatic evolution has been regarded as

the most accurate quantum algorithm for recon-

structing a ground state, and it has been success-

fully applied to specific quantum problems. For

example, Farhi et al. [7] applied quantum adia-

batic evolution to small random examples of an

NP-complete problem. However, Childs et al. [8]

showed that the accuracy of the quantum adia-

batic evolution algorithm suffers when there are

extremely small gaps between the instantaneous

ground state and the rest of the spectrum, and

the algorithm time increases proportional to the

inverse of the square of the gap. In addition, in-

creasing the number of gaps increases the num-

ber of quantum gates required to complete the

algorithm. This decreases the algorithm’s over-

all fidelity, or the percentage of physical infor-

mation that retains coherence. Thus, while it

provides accurate results, the quantum adiabatic

evolution algorithm may not outperform classi-

cal computers in practical use.

Lee et al. [9] recently introduced the pro-

jected cooling algorithm, which also aims to solve

the quantum ground state preparation problem.

The projected cooling algorithm utilizes a lat-

tice Hamiltonian that acts on a one-dimensional

chain of qubits and conserves particle number.

The lattice Hamiltonian has a potential cen-

tered at the origin with a finite width. When

the ground state of the Hamiltonian is the only

bound state, all the excited states of the Hamil-

tonian are driven away from the origin as time

evolution occurs. When the algorithm termi-

nates, only the bound state remains near the ori-

gin. Figure 1 shows a physical representation of

the projected cooling algorithm, where over time,

the excited states leave the potential well while

the bound state remains.
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FIG. 1: Potential well in projected cooling.
The bound state of the Hamiltonian remains

centered at the origin while the states with kinetic
energy are driven away from the origin.

Figure 2 shows that in the same amount of

time, the projected cooling algorithm more ac-

curately reconstructs the ground state of the

Hamiltonian than does the standard adiabatic

evolution algorithm. Each algorithm in Figure 2

is applied to the two linked one-dimensional lat-

tice chains n1 and n2.

Although it provides accurate results, the

projected cooling algorithm has several limita-

tions. The projected cooling algorithm is most

accurate in a system with large volume because

it takes more time for the reflected wave to return

back to the interior region near the origin. How-

ever, real world systems have finite volume; thus,

to increase the volume is an unreliable method

to decrease noise interference.

In preliminary experiments, we find that de-

laying wave reflection is impractical because the

entropy of the returning wave cannot be scaled

down. See Appendix A for additional informa-

tion on wave delay in the projected cooling algo-

rithm.

The projected cooling algorithm also uses

two-qubit gates, which decrease the system’s fi-

delity. For every step of time evolution that oc-

curs in the projected cooling algorithm, a two-

qubit gate is applied. While single-qubit gates

have achieved greater than 99.9% fidelity using

isotopically enriched silicon, Huang et al. [10]

showed that two-qubit gates have yet to achieve

fidelities greater than 98%. Thus, a large num-

ber of two-qubit gates cannot be implemented

without substantial error. To decrease the noise,

the number of two-qubit gates in the algorithm

must be limited. This problem is universal in al-

most every quantum ground state reconstruction

algorithm.

We focus on the main problem that limits

the projected cooling algorithm’s applicability:

the algorithm provides accurate results only for

a Hamiltonian with a localized ground state. For

the ground state to be localized, its wave func-

tion must be limited in spatial size. To general-

ize the projected cooling algorithm, we develop

the projected cooling sensor algorithm, which ac-

curately calculates the ground state of any gen-

eral Hamiltonian Hobj by coupling Hobj to a cir-

cular lattice reservoir and performing projected

cooling on the reservoir. We find that the pro-

jected cooling sensor algorithm is able to accu-

rately reconstruct the ground state for a large

volume and sufficient time period. In addition,

we find that running the projected cooling al-

gorithm multiple times, taking each run’s initial

state to be equal to the previous run’s final state,

provides the same accuracy as running the pro-

jected cooling sensor algorithm once for a long

time period. The algorithm is able to achieve ex-

ponential convergence to the ground state. Fi-

nally, it acts as a quantum sensor that detects

the negative energies of an object Hamiltonian,

and the algorithm can be applied to many-body
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FIG. 2: Comparison between adiabatic evolution and projected cooling. Figure from Lee et al.
[9]. Graph A shows the exact ground state wave function. Graph B shows the reconstructed ground state
after 40 time steps of the adiabatic evolution algorithm. Graph C shows the reconstructed ground state
after 40 time steps of the projected cooling algorithm. Each lattice has 25 lattice sites, with the interior

region spanning 10 consecutive sites.

systems whose ground states are localized or uni-

form throughout space.

II. METHODS

We describe the projected cooling algorithm

and discuss its limitations in solving the quan-

tum ground state preparation problem. Then, we

introduce the projected cooling sensor algorithm,

which couples any Hamiltonian to a lattice reser-

voir and performs projected cooling on the reser-

voir to reconstruct the ground state of the Hamil-

tonian. We optimize the projected cooling sen-

sor algorithm for higher-dimension Hamiltonians

and describe its implementation as a quantum

circuit.

A. The Projected Cooling Algorithm

and its Limitations

In the projected cooling algorithm, we begin

with a one-dimensional circular lattice of 2L+ 1

qubits with sites at n = −L, . . . , L. We define

the vacuum as the tensor product state where

all qubits are |0〉, which means that if there are

no particles on the lattice, then all qubits are in

the state |0〉. If a qubit n is in the state |1〉, then

we are certain that there is a particle at site n.

We define a lattice Hamiltonian H that has

a translationally-invariant kinetic energy and

conserves particle number. By definition, H =

K + V , where K is the kinetic energy term

and V is the potential energy term. We define

〈[n′] |H| [n]〉 = Kn′,n + Vnδn′,n, where Kn′,n =

δn′,n − 1
2δn′,n+1 − 1

2δn′,n−1 and Vn is the single-

particle potential energy at site n. In the stan-

dard projected cooling model, Vn = −δ0,n, which

is an attractive Kronecker delta function at n =

0. Using the attractive function at the origin

causes the ground state to stay bound to the ini-

tial site as time evolution of the system occurs.

We define ρ to be the compact region over

qubits n = −R, . . . , R, where R � L, and we

define the projection operator P to project |[n]〉
onto the subspace where ρ contains all particle

excitations. Thus, P |[n]〉 = 0 for |n| > R, and

P |[n]〉 = |[n]〉 for |n| ≤ R.

By definition, H|ψ〉 = E|ψ〉, where the |ψ〉

5



vectors are the eigenstates of H and the E val-

ues are the energy eigenvalues that correspond

to each eigenstate. Let |ψ0〉 be the ground state

of H. |ψ0〉 must be a localized bound state and

the only bound state of H; i.e., |ψ0〉 must corre-

spond to the lowest energy eigenvalue, Emin, of

the Hamiltonian. We define U(t) = e−iHt as the

time evolution operator.

We use dimensionless units for all quantities

and set ~ = 1. As L → ∞, the projected time

evolution operator PU(t)P has a stable fixed

point that is proportional to P |ψ0〉. Therefore, as

we perform time evolution on P |ψI〉, where |ψI〉
is the initial state, all excited states are driven

out of ρ, and only the ground state |ψ0〉 remains.

We note that we assume |ψI〉 is not orthogonal

to |ψ0〉 so that the wave function at the origin

does not converge to zero.

Let O(t) to be the normalized overlap be-

tween the reconstructed ground state and the

exact ground state over ρ. Figure 3 tracks O(t)

over time for the projected cooling algorithm,

where each curve begins at a random initial

state. As t increases, O(t) approaches 1, which

demonstrates the fixed-point behavior of the

ground state. Throughout the algorithm, only

the ground state remains bound.

Figure 4 shows an example of the projected

cooling algorithm applied to the initial state

|ψI〉 = [1, 0, . . . , 0]T for lattice size L = 100 and

potential V0 = −1.

For a Hamiltonian with more than one bound

state, fixed-point behavior does not occur as the

lattice size increases. To solve this, we operate

a time-dependent Hamiltonian H(t) on the ini-

tial state. We also multiply the kinetic energy

FIG. 3: Stable fixed-point behavior in
projected cooling. Figure from Lee et al. [9]. As

time t increases, the normalized overlap O(t)
between the reconstructed ground state and the
exact ground state over ρ approaches 1, which

demonstrates the fixed-point behavior of the ground
state.

FIG. 4: Convergence to the ground state in
projected cooling. L = 100, V0 = −1, and

|ψI〉 = [1, 0, . . . , 0]
T

. As time evolution occurs, all
excited states are driven away from the localized

region, leaving only the bound state |ψ0〉.

operator by a factor greater than 1 to prevent

sinusoidal oscillations in the expectation values

of operators that do not commute with H. This

causes only the ground state to remain bound.

As time evolution occurs, the time-evolved state
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|ψ(t)〉 converges to the ground state |ψ0〉 of H(t).

Once |ψ(t)〉 and |ψ0〉 have a sufficient overlap,

we can use adiabatic evolution on the system to

evolve |ψ(t)〉 to |ψ0〉.
The projected cooling algorithm is most ap-

plicable in nuclear physics, namely self-bound

systems such as atomic nuclei. In atoms and

molecules, electrons are localized in orbitals, so

projected cooling can be used to find the ground

state of the system. However, the projected cool-

ing algorithm’s main limitation is its inability to

find the ground state of a general Hamiltonian

that does not conserve particle number and/or

whose ground state is uniform throughout space.

For example, projected cooling cannot be applied

to find the ground state of electrons in a conduc-

tor because the electrons are spread throughout

the conductor. In addition, gas and liquid par-

ticles have uniform ground states and are not

applicable to the projected cooling algorithm.

Thus, we introduce the projected cooling sen-

sor algorithm, which generalizes projected cool-

ing to find the ground state of any Hamilto-

nian, including those of Ising ferromagnets and

conductors. The projected cooling sensor algo-

rithm gives a generalized solution to the quan-

tum ground state preparation problem.

B. The Projected Cooling Sensor Algorithm

The projected cooling sensor algorithm con-

sists of two connected parts: the Hamiltonian of

interest and the one-dimensional projected cool-

ing reservoir. We define a D×D general Hamil-

tonian Hobj whose ground state is not necessar-

ily localized. Hobj is linked to a circular one-

dimensional lattice, called the reservoir, which

contains one particle. The reservoir in the pro-

jected cooling sensor algorithm is analogous to

the lattice in the projected cooling algorithm.

The original projected cooling algorithm in-

cludes only the lattice as part of its system.

This makes finding the uniform ground state of

a general Hamiltonian impossible because the

Hamiltonian cannot be scaled while maintaining

projected cooling. Instead of finding the ground

state of the lattice Hamiltonian, the projected

cooling sensor algorithm finds the ground state

of Hobj coupled to the reservoir. Thus, Hobj can

be scaled without disrupting projected cooling in

the lattice reservoir.

As in the projected cooling algorithm, we

use dimensionless units for all quantities and set

~ = 1 in our discussion of the projected cool-

ing sensor algorithm. Let the reservoir Hamilto-

nian be represented by Hres, and let the corre-

sponding reservoir eigenstates be represented by

|Eres〉. We define

P0,1 =
1

2
(|n = 0〉+ |n = 1〉) (〈n = 0|+ 〈n = 1|)

(1)

as the operator that projects onto the n = 0 and

n = 1 lattice sites. The projection operator in-

cludes the n = 1 site in addition to n = 0 to

prevent the formation of localized states above

the energy spectrum at momentum k = π. Af-

ter Hobj is coupled to the reservoir, the reservoir

potential Vres is equal to Hobj ⊗ P0,1. Figure 5

shows a representation of the coupling.

By definition, the Hamiltonian is the sum of

the kinetic and potential energies. Therefore, the
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FIG. 5: Coupling representation in projected
cooling sensor algorithm. Hobj is coupled to the
reservoir so that the potential on the reservoir Vres

is equal to the tensor product Eobj ⊗ P0,1.

total system Hamiltonian has the form

Htot = Kres +Hobj ⊗ P0,1, (2)

where Kres is the kinetic energy of the reservoir.

The eigenstates of the system are equal to

|Etot〉 = |Eobj〉 ⊗ |Eres〉Vres=Eobj⊗P0,1 . (3)

When Eobj < 0, we find that the reservoir ground

state,
∣∣E0

res

〉
Vres=Eobj⊗P0,1

, is localized. Thus, the

projected cooling sensor algorithm acts as a neg-

ative energy sensor: the excited states on the lat-

tice are driven away from the origin while the

bound state remains when a negative potential

is detected.

For the case where Hobj has one ground state,

we shift Hobj by a constant so that only the

ground state has a negative energy. However,

when running the projected cooling sensor algo-

rithm, localized states can form above the energy

spectrum if Eobj is too large and positive. Thus,

we rescale Hobj so that Emax ≤ 1, where Emax is

the greatest energy eigenvalue of Hobj. Shifting

and rescaling Hobj do not change its eigenstates.

Figure 6 depicts the energy spectrum of Hobj af-

ter we perform shifting and scaling.

FIG. 6: Energy spectrum in projected cooling
sensor. We shift Hobj so that its lowest energy

eigenvalue is negative. We also scale Hobj so that all
the other energy eigenvalues are positive.

To run the projected cooling sensor algo-

rithm, we initialize the reservoir with a random

state at n = 0 and n = 1. To achieve a faster

rate of convergence to the exact ground state,

variational methods can first be applied to ob-

tain an initial state corresponding to an energy

numerically close to the ground state energy.

C. Optimizing the Projected Cooling

Sensor Algorithm

Let O represent the measured overlap be-

tween the exact ground state |Emin〉 and the re-

sultant ground state |vPCS〉 from the projected

cooling sensor algorithm. Then,

O =
〈Emin|vPCS〉2

||Emin||||vPCS ||
. (4)

If the projected cooling sensor algorithm per-

fectly reconstructs the ground state, then O = 1.

We also define the log error of the resultant

ground state as ln(1−O).

As time evolution occurs, the continuum state

probability at the initial lattice sites is propor-
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FIG. 7: Continuum state decay in the
projected cooling sensor algorithm. The

continuum states leave the initial sites at a rate
proportional to 1

t . As t→∞, the continuum states
are driven away at a lesser rate.

tional to 1
t . As t→∞, the rate at which the ex-

cited states leave the initial sites decreases. Fig-

ure 7 shows graphically that the propagation of

the continuum states leaving the origin decreases

in amplitude over time. Thus, for high-dimension

Hamiltonians that require long run times, we in-

stead run the projected cooling sensor algorithm

multiple times for short time periods, using the

final state of each previous run as the initial state

of the next run. We find that this causes an expo-

nential increase in the convergence to the exact

ground state. For a random 30 × 30 Hermitian

matrix as Hobj, we calculate O = 0.2022 after

the first iteration, O = 0.6386 after the fifth it-

eration, and O = 0.8609 after the tenth iteration.

We also find that scaling Hobj to have multi-

ple negative energies then running the algorithm

multiple times causes the projected cooling sen-

sor algorithm to converge to the ground state

quicker than the case where Hobj has only one

FIG. 8: Multiple bound states in the
projected cooling sensor algorithm. Using
multiple bound states in the projected cooling
sensor algorithm amplifies the measurement

probability of the ground state in the interior region.

negative energy. Multiple negative energy states

are analogous to a booster seat; they increase the

potential strength at the initial sites, which, in

turn, amplifies the ground state of Hobj. This is

especially useful when simulating the projected

cooling sensor algorithm on a quantum computer

because the ground state probability must be

nontrivial to measure the particle at the initial

sites. Figure 8 shows multiple bound states in

the reservoir. Although including multiple bound

states increases the convergence rate, we use only

one bound state in our simulations. The case

where Hrmobj has multiple bound states should

be addressed in future works.

Setting m = 1 and Emax = 0.5, we perform

the projected cooling sensor algorithm once for

σz and once for an arbitrary 2×2 Hobj. Then, we

run the projected cooling sensor algorithm for 30

iterations for a 30× 30 arbitrary Hobj, a 50× 50

arbitrary Hobj, and a 100 × 100 arbitrary Hobj.
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We find that the projected cooling sensor algo-

rithm accurately reconstructs the ground state

of any general Hamiltonian. We also find that

running the projected cooling sensor algorithm

for multiple iterations decreases the ground state

reconstruction error, 1−O, exponentially.

D. Projected Cooling Sensor on a

Quantum Computer

Although we are limited to performing clas-

sical simulations of the projected cooling sensor

algorithm, we also examine the implementation

of the algorithm on a quantum computer. We

define the unitary gate

u0,1 = ei
π
8
(σxσy−σyσx) (5)

at sites n = 0 and n = 1 to rotate the qubits

at both sites to n = 0. Then, we couple Hobj to

n = 0. We finally apply the conjugate transpose

gate u†0,1 to rotate the qubits back to both sites

n = 0 and n = 1. This process removes the lo-

calized states above the energy spectrum because

the eigenstate at momentum k = π cancels out

with the projection operator. Figure 9 depicts

the projected cooling sensor algorithm repeated

twice on a quantum circuit.

III. RESULTS

We perform the projected cooling sensor algo-

rithm on object Hamiltonians of varying dimen-

sions. We set m = 1 and Emax = 0.5. Figures

10 and 11 show the convergence of ln
(
|vPCS |2

)
for each state vs. time for one run of the pro-

jected cooling sensor algorithm for σz and an

arbitrary 2 × 2 Hobj. For both simulations, we

find that O = 1.0000. Thus, the projected cool-

ing sensor algorithm accurately reconstructs the

ground state of any 2× 2 Hobj.

Figures 13, 14, and 15 show the log error,

ln(1−O), of the resultant ground state for mul-

tiple iterations of the projected cooling sensor al-

gorithm, where L = 100, for an arbitrary 30×30

Hobj, an arbitrary 50×50 Hobj, and an arbitrary

100×100 Hobj, respectively. We find that the log

error of the reconstructed ground state for any

arbitrary D×D Hobj decreases linearly every it-

eration. The log errors decrease at average rates

of −0.1203, −0.1259, and −0.0710 for an arbi-

trary 30 × 30 Hobj, an arbitrary 50 × 50 Hobj,

and an arbitrary 100 × 100 Hobj, respectively.

Thus, the error decreases exponentially.

Figure 16 shows the log error of the resultant

ground state for multiple iterations of the pro-

jected cooling sensor algorithm for an arbitrary

100× 100 Hobj, where L = 200. Again, the error

decreases exponentially.

IV. DISCUSSION

We successfully generalize the projected cool-

ing algorithm to any Hamiltonian in the pro-

jected cooling sensor algorithm. The projected

cooling sensor algorithm provides a solution to

the quantum ground state preparation prob-

lem. For low-dimensional arbitrary Hamiltoni-

ans, Figures 10 and 11 show that the projected

cooling sensor algorithm can reconstruct the

ground state of any general 2×2 Hobj, including

σz, in a short time period. In addition, because

an arbitrary 2 × 2 Hobj is a small-scale system,
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FIG. 9: Projected cooling sensor as a quantum circuit. The projected cooling sensor algorithm is
repeated twice on a quantum circuit. Gates u0,1 and u†0,1 remove localized states that form above the

energy spectrum.

FIG. 10: Projected cooling sensor for Pauli-Z.
We run one iteration of the projected cooling sensor
algorithm for σz. L = 400. O = 1.0000. State 2 (red)

corresponds to the spin-down state, which is the
ground state of σz.

the projected cooling sensor algorithm requires

only 3 iterations to reconstruct the ground state

of the Hamiltonian with a relative error of 0.0001

or less. Thus, multiple iterations of the projected

cooling sensor algorithm for an arbitrary 2 × 2

Hobj are unnecessary. This reduces the need to

apply a large number of two-qubit gates or run

FIG. 11: Projected cooling sensor for
arbitrary 2× 2 Hamiltonian. We run one

iteration of the projected cooling sensor algorithm
for an arbitrary 2× 2 Hobj. O = 1.0000. The ground
state is a linear combination of State 1 (blue) and

State 2 (red).

the algorithm for a long time period.

For higher-dimensional arbitrary Hamiltoni-

ans, we find in Figure 12 that running the pro-

jected cooling sensor algorithm only once for an

arbitrary 30× 30 Hamiltonian yields inaccuracy

in ground state reconstruction. We obtain a final
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FIG. 12: Projected cooling sensor for
arbitrary 30× 30 Hamiltonian. We run one

iteration of the projected cooling sensor algorithm
for an arbitrary 30× 30 Hobj. O = 0.5617. The

ground state is a linear combination of the 30 states
shown on the graph.

FIG. 13: Multiple iterations of projected
cooling sensor for arbitrary 30× 30

Hamiltonian. We show the log error of the ground
state after 30 iterations of the projected cooling
sensor algorithm for an arbitrary 30× 30 Hobj.

L = 100.

overlap of O = 0.5617. We solve this problem by

running the algorithm multiple times in a row.

Figures 13, 14, and 15 show that running the pro-

jected cooling algorithm for multiple iterations

decreases the calculated ground state error ex-

FIG. 14: Multiple iterations of projected
cooling sensor for arbitrary 50× 50

Hamiltonian. We show the log error of the ground
state calculated by 30 iterations of the projected
cooling sensor algorithm for an arbitrary 50× 50

Hobj. L = 100.

FIG. 15: Multiple iterations of projected
cooling sensor for arbitrary 100× 100

Hamiltonian. We show the log error of the ground
state calculated by 30 iterations of the projected

cooling sensor algorithm for an arbitrary 100× 100
Hobj. L = 100.

ponentially. In Figure 16, we find that doubling

the lattice size L from 100 to 200 for an arbitrary

100× 100 Hobj increases the rate of convergence

to the ground state. However, it is important to

note that an increase in the lattice size leads to
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FIG. 16: Multiple iterations of projected
cooling sensor for arbitrary 100× 100

Hamiltonian. We show the log error of the ground
state calculated by 30 iterations of the projected

cooling sensor algorithm for an arbitrary 100× 100
Hobj. L = 200.

an increase in the time complexity of the simu-

lation. In addition, on a quantum computer, it is

necessary to limit the number of two-qubit gates

in the algorithm to maintain the system coher-

ence; thus, running the projected cooling algo-

rithm many times in a row is not ideal.

The projected cooling sensor algorithm is the

first ground state reconstruction algorithm to ac-

curately improve an initial wave function sys-

tematically. We can start with any random ini-

tial state and converge to the ground state with-

out pre-optimization. However, large-scale sys-

tems that do not start with a reasonable initial

state either take too long to converge or never

converge. In practice, classical or quantum vari-

ational methods, such as the methods introduced

by Peruzzo et al. [11] and Dumitrescu et al. [12],

can be utilized to calculate an initial state guess

instead of starting with a random initial state.

The projected cooling sensor algorithm’s ex-

ponential convergence to the ground state is sim-

ilar to the Euclidean time projection e−Ht, which

is widely used in simulating quantum systems

with classical computers. However, in quantum

computing, the results of the projected cooling

sensor algorithm are probabilistic. Even though

we begin with multiple bound states to amplify

the potential magnitude at the initial sites, we

must still repeat the algorithms for many itera-

tions to achieve the desired nontrivial quantum

measurement.

The biggest issue with the projected cooling

sensor algorithm lies in the probabilistic nature

of its quantum simulation. When we calculate

the ground state of a Hamiltonian on a quantum

computer, we must perform a measurement on

the entire system. Before we start the algorithm,

all eigenstates are at the origin, so measuring the

system yields a 100% probability of finding a par-

ticle at the origin. However, after one iteration of

the projected cooling algorithm, most of the ex-

cited states leave the origin. When we measure

the system again, the probability of measuring

the particle at the origin is instead equal to the

squared norm of the final ground state, ||vPCS ||2,
which is less than 100%. Thus, for every iteration

of the projected cooling sensor algorithm, the

ground state is more accurately reconstructed at

the origin, but the probability of measuring the

ground state on a quantum computer decreases.

We find that after 30 iterations of any arbitrary

Hobj, the measurement probability decreases to

approximately 1%. Future research should focus

on developing methods to optimize the projected

cooling sensor algorithm so that there is a bal-

ance between the reconstruction accuracy and

the measurement probability. Future algorithms
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should improve the accuracy of the projected

cooling sensor algorithm so that there is no need

for multiple iterations. This would optimally in-

crease the measurement probability to at least

3%.

The potential applications of the projected

cooling sensor algorithm are very wide. The

ground state preparation problem is prevalent

in any many-body system. Because the pro-

jected cooling sensor algorithm is able to find

the ground state of any arbitrary many-body sys-

tem, it can be applied to finding the ground state

of electrons in superconductors, examining the

properties of electron orbitals such as spin, cal-

culating the ground state of an atomic nucleus,

finding the ground state of an Ising spin model,

and other ground state reconstruction situations.

From computer science to physical science, the

projected cooling sensor algorithm is successfully

able to determine the ground state properties of

any general system.

V. FUTURE WORK

In the future, we plan to employ multiple

bound states in the projected cooling sensor al-

gorithm. This would amplify the ground state

measurement probability at the initial sites,

which would increase the algorithm’s success rate

when run on a quantum computer. We plan to

choose the shift value for Hobj such that the bot-

tom quarter of the spectrum has negative energy.

In preliminary experiments, we achieve ten times

faster convergence.

We also consider applying the Trotter-Suzuki

approximation to the reservoir Hamiltonian to

increase the fidelity of the two-qubit gates. In-

troduced by Trotter [13], the Trotter-Suzuki

approximation decomposes a time-dependent

Hamiltonian into multiple parts. Letting HA

and HB be the Trotterized components of

the Hamiltonian, where H = HA + HB, the

time evolution operator of the projected cool-

ing sensor algorithm would be equal to U(t) =

e−iHAte−iHBte−iHobjt. Using the Trotter-Suzuki

approximation to improve the fidelity of two-

qubit gates would help to maintain the system

coherence when the projected cooling sensor al-

gorithm is run multiple times on a quantum com-

puter. In addition, exponentiating the overall

Hamiltonian can be costly on a quantum com-

puter. By Trotterizing the reservoir Hamiltonian,

the resultant computational complexity is less

than that if the Hamiltonian itself were expo-

nentiated.

We consider several open questions. With its

exponential convergence to the ground state,

the projected cooling sensor algorithm has the

potential to achieve quantum supremacy over

classical calculations for some general quantum

Hamiltonian. We plan to optimize the algorithm

more and investigate whether it can achieve

quantum supremacy.

We also ask whether we can achieve polyno-

mial computational scaling with the size of any

quantum many-body system. This would yield

a remarkable advancement in quantum com-

puting by solving NP problems in polynomial

time. Whether polynomial computational scal-

ing with the system is possible is less clear than

whether the projected cooling sensor algorithm

can achieve quantum supremacy, but we plan to
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investigate the time complexity and optimize the

algorithm further.

VI. CONCLUSION

We solve the quantum ground state prepara-

tion problem by developing the projected cool-

ing sensor algorithm, which accurately recon-

structs the ground state of any general Hamil-

tonian. The projected cooling sensor algorithm

is the first method to accurately improve a ran-

dom starting wave function systematically to re-

construct a ground state. The projected cool-

ing sensor algorithm generalizes the projected

cooling algorithm, which is already faster and

more accurate than the standard adiabatic evo-

lution algorithm, to quantum many-body sys-

tems that may not necessarily have localized

ground states. Furthermore, when the projected

cooling sensor algorithm is run for multiple it-

erations, the error in ground state reconstruc-

tion decreases at an exponential rate. The pro-

jected cooling sensor algorithm can be applied to

any general many-body system in physical and

computer science such as a superconductor or

an atomic nucleus, and it has the potential to

achieve quantum supremacy over classical com-

putations for any general quantum Hamiltonian.

Future research will investigate the potential for

the projected cooling sensor algorithm to achieve

quantum supremacy and will optimize the algo-

rithm to yield a higher ground state measure-

ment probability.

ACKNOWLEDGMENTS

I completed original research independently

under my mentor the past summer. I would like

to extend my deepest gratitude to my mentor,

Dr. Dean Lee, for proposing the research topic

and guiding me through the research process for

the past two months. I would also like to thank

Dr. John Rickert for teaching me the fundamen-

tals of scientific writing and providing me invalu-

able feedback throughout the research period.

My thanks also go to Dr. Jenny Sendova, Boris

Zbarsky, Emma Tan, and Laia Xiao Planas for

revising and providing feedback on my paper. I

would also like to thank my parents for provid-

ing me support and encouragement. I also thank

the Center for Excellence in Education as part

of the 2020 Research Science Institute for orga-

nizing the research period and providing me es-

sential resources and technology. Finally, I would

like to thank the U.S. Department of Defense for

making my research possible.

VII. APPENDIXES

Appendix A: Delaying Wave Reflection

For wave delay to be worth employing in the

projected cooling algorithm, it is not enough to

simply delay the return of the wave packet. We

must also scale the awve packet down so that it

des not return to the interior region after leaving.

In preliminary experiments, we find that delay-

ing wave reflection back into the lattice is possi-

ble by modifying the construction of the Hamil-
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FIG. 17: Time series for wave packet. The
time series is shown for a wave packet leaving the

origin. L = 100, m(0) = 0.5, ε = 0.1.

tonian. We define a new lattice Hamiltonian

Hnew
ij = Hij ∗

1

(m(0) + ε|x|)
, (A1)

where Hij is the original lattice Hamiltonian,

m(0) is the mass at the origin, ε is some arbi-

trarily small value, and x is the distance from the

point in between i and j to the origin. Scaling the

Hamiltonian in this way effectively increases the

mass as the wave reaches the outer peripheries of

the volume, which decreases the group velocity

of the wave packet.

We find the group velocity for each set of pa-

rameters by calculating the rate the edge of the

wave packet expands through its time series, as

in Figure 17. We find that as m(0) and ε increase,

the rate of edge expansion decreases. Thus, we

find that increasing the mass of the particles as

they are driven away from the interior region de-

creases the group velocity of the particles as they

approach the opposite side of the lattice.

In theory, this method will work if we are

also able to decrease the magnitude of the wave

packet as we slow it down. However, we find that

scaling down the wave reflection is ultimately im-

possible due to the high entropy of the wave. In-

stead of slowing down and completely stopping,

the delayed wave eventually reenters the interior

region with as much energy as it would have had

if it were not delayed. This makes delaying wave

reflection virtually useless.
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Appendix B: Code

Projected Cooling Sensor Algorithm

1 function [first_initial_overlap,overlaps] = projected_cooling_sensor(L,D, ...

2 maxeig,nrepeat,H_obj)

3 %% PROJECTED_COOLING_SENSOR performs the projected cooling sensor algorithm

4 %% multiple times on a DxD Hamiltonian over a lattice of size L. The outputs

5 %% are (1) the initial overlap with the randomized state and (2) the overlaps

6 %% after each iteration of the algorithm.

7 % L is the reservoir size.

8 % D is the dimension of the Hamiltonian.

9 % maxeig is the maximum energy eigenvalue.

10 % nrepeat is the number of iterations the algorithm is performed.

11 % H_obj is the Hamiltonian of interest. Set H_obj = 0 for arbitrary

12 % DxD Hamiltonians.

13

14 %% Set the run time proportional to L, and break each time step dt = 0.5 into

15 %% 10 subdivisions.

16 dt = 0.5;

17 Lt = floor(L/dt*0.8);

18 subdivisions = 10;

19

20 %% Define the reservoir Hamiltonian H_res.

21 r = [0:L-1];

22 H_res = - sparse(mod(r+1,L)+1,r+1,0.5) - sparse(mod(r-1,L)+1,r+1,0.5);

23

24 %% Create arbitrary Hamiltonian if H_obj is not previously defined.

25 if H_obj == 0

26 H_obj = rand(D,D) + i*rand(D,D);

27 H_obj = 0.5*(H_obj + H_obj’);

28 end

29

30 %% Shift and scale H_obj so that the maximum energy of H_obj_new is maxeig.

31 list = sort(eig(H_obj));

32 H_object_new = H_obj-(list(1)+list(2))/2*eye(D);

33 scale = max(eig(H_object_new));

34 H_object_new = H_object_new/scale*maxeig;

35

36 %% Define system Hamiltonian H as the tensor product between H_res and H_obj_new.

37 H = sparse(D*L,D*L);

38 for ii = 0:D-1

39 H(ii*L+[0:L-1]+1,ii*L+[0:L-1]+1) = H_res;

40 end

41 for jj = 0:D-1
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42 for ii = 0:D-1

43 H(ii*L+1,jj*L+1) = H(ii*L+1,jj*L+1) + H_object_new(ii+1,jj+1)/2.0;

44 H(ii*L+2,jj*L+1) = H(ii*L+2,jj*L+1) + H_object_new(ii+1,jj+1)/2.0;

45 H(ii*L+1,jj*L+2) = H(ii*L+1,jj*L+2) + H_object_new(ii+1,jj+1)/2.0;

46 H(ii*L+2,jj*L+2) = H(ii*L+2,jj*L+2) + H_object_new(ii+1,jj+1)/2.0;

47 end

48 end

49

50 %% Calculate the exact ground state to check for overlap later.

51 [vv,dd] = eig(H_obj);

52 [˜,ord] = sort(diag(dd));

53 index = find(abs(vv(:,ord(1))) == max(abs(vv(:,ord(1)))));

54 vv_exact = vv(:,ord(1))/vv(index,ord(1));

55

56 %% Define the random values of the initial state.

57 vobj_init = zeros(D,1);

58 for ii = 0:D-1

59 vobj_init(ii+1) = (rand-0.5) + i*(rand-0.5);

60 end

61 v_init = zeros(D*L,1);

62

63 %% Perform the projected cooling sensor algorithm nrepeat times.

64 for ntrial = 1:nrepeat

65

66 %Define initial state v_init using random values from vobj_init.

67 for ii = 0:D-1

68 v_init(ii*L+1) = vobj_init(ii+1,1);

69 v_init(ii*L+2) = vobj_init(ii+1,1);

70 end

71

72 %Perform time evolution for first time step dt.

73 psi1(:,1) = exponentiate(v_init,H,-i*dt,subdivisions);

74

75 %Perform time evolution for remaining time steps.

76 for nt = 1:Lt

77 psi1(:,nt+1) = exponentiate(psi1(:,nt),H,-i*dt,subdivisions);

78 end

79

80 %Graph the convergence of the state(s) vs. time.

81 figure(ntrial)

82 hold on

83 for ii = 0:D-1

84 plot(dt*[1:Lt],log(abs(psi1(ii*L+1,1:Lt)+psi1(ii*L+2,1:Lt)).ˆ2))

85 end

86 xlabel(’{\it t}’,’FontSize’,14)
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87 ylabel(’ln({\it|v_{PCS} |ˆ2})’,’FontSize’,14)

88 hold off

89

90 %Find the reconstructed ground state and display with trial number.

91 v_PC = zeros(D,1);

92 for ii = 0:D-1

93 v_PC(ii+1,1) = psi1(ii*L+1,Lt) + psi1(ii*L+2,Lt);

94 end

95 index = find(abs(v_PC) == max(abs(v_PC)));

96 v_PC = v_PC/v_PC(index);

97 disp(ntrial)

98 disp([v_PC vv_exact])

99

100 %Calculate initial and final overlap values and display for each trial.

101 initial_overlap(ntrial,1) = (abs(vv_exact’*vobj_init))ˆ2 ...

102 /((vv_exact’*vv_exact)*(vobj_init’*vobj_init));

103 final_overlap(ntrial,1) = (abs(v_PC’*vv_exact))ˆ2 ...

104 /((vv_exact’*vv_exact)*(v_PC’*v_PC));

105 disp(initial_overlap(ntrial,1))

106 disp(final_overlap(ntrial,1))

107

108 %Set initial state as reconstructed state for next iteration.

109 vobj_init = v_PC;

110 end

111

112 %% Define initial overlap for algorithm and final overlaps for each ntrial.

113 first_initial_overlap = initial_overlap(1);

114 overlaps = final_overlap;

115

116 %% Graph log error of overlap vs. iteration.

117 figure(nrepeat+1)

118 plot(log(1-final_overlap))

119 xlabel(’Iteration’,’FontSize’,14)

120 ylabel(’ln(1-{\it O})’,’FontSize’,14)

121 end

Time Evolution

1 function v_evolved = exponentiate(v_in,H_in,dt_in,subdivisions)

2 %% EXPONENTIATE performs time evolution on an inpute state using a Taylor

3 %% approximation of the input Hamiltonian.

4 % v_in is the input state.

5 % H_in is the input Hamiltonian.

6 % dt is the time step for which time evolution occurs. dt_in is defined

7 % as dt multiplied by a factor of -i when using EXPONENTIATE.
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8 % subdivisions is the number of times the Taylor approximation is

9 % used in the time step.

10

11 %% Split the time step based on the number of subdivisions.

12 ddt = dt_in/subdivisions;

13

14 %% Define v_evolved to be equal to the time evolution of v_in for the first

15 %% time subdivision.

16 v_evolved = v_in + ddt*H_in*v_in + ddtˆ2/2*H_in*(H_in*v_in) ...

17 + ddtˆ3/6*H_in*(H_in*(H_in*v_in));

18

19 %% Continue evolving v_evolved for each time subdivision in dt.

20 for nt = 1:subdivisions-1

21 v_evolved = v_evolved + ddt*H_in*v_evolved + ddtˆ2/2*H_in ...

22 *(H_in*v_evolved) + ddtˆ3/6*H_in*(H_in*(H_in*v_evolved));

23 end

Link to code: https://github.com/kenctrl/Projected-Cooling-Sensor
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