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Abstract 
In the post-industrial world, data science and analytics have gained paramount importance            
regarding digital data privacy. Improper methods of establishing privacy for accessible datasets can             
compromise large amounts of user data even if the adversary has a small amount of preliminary                
knowledge of a user. Many researchers have been developing high-level privacy-preserving           
mechanisms that also retain the statistical integrity of the data to apply to machine learning. Recent                
developments of differential privacy, such as those in [11], [16], [17], [25], [34], and [35], drastically                
decrease the probability that an adversary can distinguish the elements in a data set and thus                
extract user information. In this paper, we develop three privacy-preserving mechanisms with the             

discrete M-band wavelet transform that embed noise into data. The first two methods (​LS and ​LS​+​)                

add noise through a “Laplace-Sigmoid” distribution that multiplies Laplace- distributed values with            
the sigmoid function, and the third method utilizes pseudo-quantum steganography to embed noise             
into the data. We then show that our mechanisms successfully retain both differential privacy and               
learnability through statistical analysis in various machine learning environments. 
 
Key Words: Differential Privacy, Discrete M-band Wavelet Transform, Laplace-Sigmoid Distribution,          
Pseudo-Quantum Steganography, Statistical Analysis, Machine Learning Environments 
 

Highlights 
In this paper, we create three different input perturbation stochastic mechanisms that add or              
embed noise to sensitive datasets. Our mechanisms improve upon traditional noise addition            
methods, such as the Laplace mechanism and exponential mechanism mentioned in [11], by using              
the discrete M-band wavelet transform (DMWT) to convert the dataset into a wavelet domain              
before adding noise. For the first two mechanisms, we combine the Laplace distribution and the               
sigmoid function to create a complex stochastic function, and we optimize the mechanisms based              
on the size of the dataset. In the third mechanism, we propose the use of pseudo-quantum                
steganography to embed noise into a dataset. Due to the nature of the quantum signal, the noisy                 
dataset has an extremely low probability of being correctly denoised by an adversary. While our               
proposed mechanisms preserve ε-differential privacy, they also maintain the statistical integrity of            
the datasets. Using five different supervised machine learning environments—logistic regression,          
support vector machine, support vector regression, classical artificial neural networks, and deep            
learning—the mechanisms achieve high accuracies in binary classification across multiple datasets.           
Moreover, our (pseudo-) quantum mechanism is one of the first to use higher computational power               
to add noise to private data. As data privacy becomes an extremely important issue in our world,                 
and as quantum computing emerges as a major field, our research can link the two branches and                 
shine a light on what data privacy could potentially look like in the future.  
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1   Introduction 
More in today’s world than ever, there is extreme tension between the mass collection of people’s                
data by corporations and the people’s rights to privacy for their personal data. Especially on social                
media, user data is constantly being collected, and a single mishandling of the data pool can lead to                  
the compromisation of millions of people’s data. Recent examples are the Facebook $5 billion FTC               
fine [14] and the Equifax data breach settlement [12]. 

There is an important tradeoff between data privacy and statistical analysis. Companies and             
their research units often rely on user-submitted data for making their products better suited for               
the market. Users not only wish to preserve anonymity when submitting data but also to be                
reassured that their individual data cannot be easily identified from a data pool. 

If a person has submitted sensitive information in a study whose data has been leaked, an                
adversary with prior knowledge of the person can use the data to learn something new about the                 
person, and the person’s privacy is effectively compromised. For example, a smoker who             
participates in a survey that requires her to state whether she smokes or not can be harmed if the                   
data is not private. If the study concludes that smoking leads to higher rates of cancer, her                 
insurance rates may be raised if the insurance company finds out she is a smoker from the survey                  
data. 

Unfortunately, anonymizing a dataset is not enough to guarantee that someone’s           
information is safely hidden from adversaries. One famous example of a so-called “re-identification             
attack” is the discovery of Massachusetts governor William Held’s medical records in 1997 by a               
correlation between multiple released datasets [33]: the health database and voter registry. If even              
anonymization does not protect an individual in a dataset, then what method does? 
 

1.1   Prior Works 
Differential privacy is a term coined by Dwork ​et al​. in [8], and further explained in [9], which sets a                    
privacy budget that quantifies data loss for a mechanism during data release. Over the last decade                
and a half, researchers have been developing different mechanisms that achieve differential privacy             
by minimizing the effect of each individual in the dataset. They do this by adding randomly                
distributed noise to the dataset or a query that slightly obscures the results, enough to ensure                
privacy but not too much to significantly alter the statistical outcomes. 

There are three main ways to add noise to ensure differential privacy, which are input               
perturbation, which is adding noise to the dataset before a query; objective perturbation, which is               
adding noise to the objective function in the machine learning model; and output perturbation,              
which is adding noise to the results after the machine learning model is used. 

One well-known differentially private mechanism is the Laplace mechanism [8], which adds            
Laplace noise with a continuous distribution to a statistical query (output perturbation). However,             
although it preserves differential privacy, the Laplace mechanism requires the addition of a large              
amount of noise to both small and large datasets, which hinders the statistical use of the noisy data                  
[30]. Additionally, [30] shows that not adding enough Laplace noise can make the dataset              
unprotected from a tracker attack. 

Another basic mechanism is the exponential mechanism [25], which provides a utilitarian            
insight into differential privacy by utilizing a quality function to improve upon the usefulness of the                
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Laplace mechanism. The exponential mechanism is also able to apply to non-numeric queries.             
However, [3] shows that the noise added through the exponential mechanism is asymptotically             
non-negligible. 

Similar to the exponential mechanism, posterior sampling [7] provides a Bayesian approach            
to differential privacy, and it uses problem-dependent distributions. 

Other mechanisms stated in [36], [18], [13], [5], [34], and [2] use composition theorems and               
the post-processing invariance property stated in [10] to derive mechanisms based on the basic              
Laplace and exponential mechanisms. Some mechanisms also use alternative definitions of privacy            
that may relax or tighten its stipulations, such as [28]. 
 

1.2   New Ideas 
In this research, we use input perturbation to add noise to the dataset directly. We propose three                 
newly derived mechanisms that preserve differential privacy—the first two use a doubly stochastic             
process that adds Laplace-Sigmoid distributed noise to data, and the third uses pseudo-quantum             
signals to embed the noise into the data. For all three of our mechanisms, we use discrete 3-band                  
wavelets to transform the data set into the wavelet domain before embedding noise, making the               
processes impossible to completely reverse without access to the randomized noise. 

When first reading our work, one may ask, “What are the benefits of using the discrete                
M-band wavelet transform?” For one, adding noise to only the approximation part of the              
transformed matrix, in the case of the first Laplace-Sigmoid mechanism (​LS​), allows the resulting              
matrix to retain its detailed parts, which are essential for statistical analysis. As a result, we have a                  
transformed matrix that is differentially private yet preserves statistical integrity. Moreover,           
wavelets effectively scale non-stationary data, which has changing variance and a short-term mean.             
But, why specifically the M-Band wavelet transform? 

Xiao ​et al. in [35] introduces a method of preserving -differential privacy via ​Privelet and          ε      

Privelet​+​, which transform the original dataset via the Haar Wavelet Transform (HWT) and add              
Laplace noise based on calculated weights. ​Privelet performs well with range-count queries, which             
solves the inability to produce meaningful results from large aggregate queries using Dwork ​et al.​’s               
mechanism. 

However, Privelet’s use of the Haar wavelet, the simplest wavelet, can result in easier              
de-noising of the data by an adversary. Additionally, the Haar wavelet’s design is static, unlike               
M-band wavelets. Most M-band wavelets with ​M > 2 have real values and finite support and are                 
orthogonal, which is a property that is hard to obtain with simpler types of wavelets. M-Band                
wavelets are also smoother and perform well with image analysis. 

Using the discrete M-band wavelet transform, we create two mechanisms that use a             
combination of Laplace noise and the sigmoid function, and one mechanism that utilizes             
pseudo-quantum signals to input noise into data (pseudo-quantum steganography). 

For the first two mechanisms, the combination of the Laplace distribution and the sigmoid              
function allows the added noise to be dependent on the dataset, not just a single distribution,                
similar to the Report Noisy Max mechanism in [17]. The addition of the sigmoid function also adds                 
another degree of randomization that does not add to the privacy budget, since the function is                
bounded. 
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For the third mechanism, we propose a new method of treating the noise as a watermark, or                 
secret information, to the data instead of a simple additive distribution. Steganography is the              
technique of masking information behind seemingly innocent text or images. Following principles            
of steganography, we develop a mechanism that transforms data into pseudo-quantum signals,            
which are highly difficult to detect by adversaries. Although we do not have access to true quantum                 
computers, we are able to use pseudo-quantum methods that mimic qubits. As a result, the               
mechanism is able to encrypt the noise into an indistinguishable signal, then embed the signal in the                 
discrete wavelet domain. Because the mechanism includes stochastic elements and does not store             
any values, the key to decrypt the noise is impossible to be retrieved from an adversary. 

One such paper that uses a similar model, especially with the use of quantum computing, is                
[31]. However, [31] only adds Laplace noise in mechanism, which has the same disadvantages as               
the Laplace mechanism proposed in [8]: the noise is too large in magnitude for small datasets. The                 
magnitude of the noise in our pseudo-quantum mechanism is able to be controlled by a noise                
embedding factor. 
 

2   Background 
2.1   Discrete M-band Wavelet Transform (DMWT) 
In numerical and function analysis, wavelet transforms decompose an input signal into different             
frequency levels. The wavelets are discretely sampled and capture both frequency and location             
information. 

Discrete M-band wavelet transforms (DMWT) use M filter banks, where M ≥ 2, to break a                
K-dimensional signal into M frequency levels. In our paper, we use a slightly modified version of                
DMWT, choosing to use the signal in multiple column vectors after it is transformed once. In other                 
words, we use the product ​WX​, where ​W is the M-band wavelet transform matrix and ​X is the input                   
dataset. The resulting frequency levels include the low-pass approximation (scaling) matrix and            
M - 1 high-pass detail matrices. 

One application of wavelets is in Multiresolution Analysis, shown in [23]. The low-pass filter              
bank forms linearly independent vectors that span the approximation spaces , while the          V i    

high-pass filter banks form the detail spaces . As transformation continues, the approximation       W i       

spaces are decomposed as the direct sum of higher-level approximation and detail subspaces:             
.V i = V i + 1 ⊕W i + 1  

For instance, the Daubechies 4 wavelet approximation space can be decomposed as ℝ​16            
. When ​i = 3, the subspaces have dimension 2; when ​i = 2, the subspace= V 0 = V 2 ⊕W 1 ⊕W 2 ⊕W 3                 

has dimension 4; and when ​i = 1, the subspace has dimension 8. In the case a 3-band wavelet                   
transform, and the space can be decomposed as ℝ​9 ⊕ ,V i = V i + 1 ⊕W i + 1,1 W i + 1,2         

.V=  0 = V 2 ⊕W 2,1 ⊕W 2,2 ⊕W 1,1 ⊕W 1,2  

Each M-band orthonormal wavelet has M filter banks. Let an M-band wavelet have filter              
banks α​(1)​, β​(1)​, … , β​(M-1)​. Then the filter banks have the properties for ​m​ = 1, … , ​M​ - 1: 
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where ​N is the length of each filter bank. Additionally, if the M-band wavelet is also k-regular, it has                   
a fourth property: 
 

 
 
for ​j​ = 0, … , ​K​ - 1. 

For both of our mechanisms, we use a 2-regular 3-band (k = 2, M = 3) orthonormal wavelet                  
transform to break down our input data into the frequency levels. We obtain the 3-band filter banks                 
from [19]. 
 

α β​(1) β​(2) 

α​1​ = 0.33838609728386 = -0.11737701613483β1
(1)  = 0.40363686892892β1

(2)  

α​2​ = 0.53083618701374 = 0.54433105395181β2
(1)  = -0.62853936105471β2

(2)  

α​3​ = 0.72328627674361 = -0.01870574735313β3
(1)  = 0.46060475252131β3

(2)  

α​4​ = 0.23896417190576 = -0.69911956479289β4
(1)  = -0.40363686892892β4

(2)  

α​5​ = 0.04651408217589 = -0.13608276348796β5
(1)  = -0.07856742013185β5

(2)  

α​6​ = -0.14593600755399 = 0.42695403781698β6
(1)  = 0.24650202866523β6

(2)  

Table 1.1: Filter banks for our paper 
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Figure 1.1: Example of a 2-regular 3-band 27 x 27 wavelet transform matrix 

 

2.2   Quantum Computing and Pseudo-Quantum Signals 
Normal computers store information in classical bits, which exist in one of two states: 0 or 1. In                  
contrast, quantum computers use quantum bits, or qubits, which can be in any linear combinations               

of and​ as states. Qubit states can be expressed as0⟩ [1, ]  | =  0 T 1⟩ [1, ]  | =  0 T  

 

 
 

where ​a and ​b are complex numbers and . Qubits also represent points on a 3-D unit        a| b| | 2 + | 2 = 1          

sphere. As there are infinite points on a unit sphere, there are infinite states for a qubit. 
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   Figure 2.3: The qubit 

 
Another way to write the state of the qubit is 
 

   

 
where  and  are real numbers.θ φ  

As shown in [21], signal ​S = ​[​s​1 s​2 ... s​n​]​
T can be transformed into a pseudo-quantum signal                   

with a transformation ​F​, where ​F is called a pseudo quantum signal converter. Let ​F be a linear                  
transformation where 
 

 
 

 
 

Then, ​F transforms signal ​S into the interval with for ​i = ​1, 2, . . . , ​n​. (In        , ][ 6
mπ

3
nπ   (s )θi = F i             

our paper, we use the case were ​m = 1 and ​n = 1.) The transformed signal values are changed into                     
angles , and  can be used to redefine a pseudo qubit asθi θi  

 

 
 

In the case of a pseudo qubit, φ = 0 and the signal can take on values from a circle instead of                      
the sphere shown in Figure 2.3. ​The transformation result, while not a real quantum signal, is a                 
pseudo-quantum angle that can be computed by classical computers. Thus, pseudo-quantum signals            
are important for situations when only classical computers can be used to simulate quantum              
signals. In this research, we propose a new privacy-preserving pseudo-quantum steganography           
mechanism. 
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3   Privacy-Preserving Mechanisms 
3.1   ε-differential privacy 
In 2006, Dwork, McSherry, Nissim, and Smith’s article [8] introduced the concept of ε-differential              
privacy, a mathematical definition for the privacy loss associated with any data release drawn from               
a statistical database.  
 
Definition 1 ​Let D and D’ be neighboring datasets, i.e. that they differ in only one element. A                  
randomized mechanism M satisfies -differential privacy if, for any outputs t,ε  

 

 
 

For small values of , expε ε) .( ≈ ε + 1  

-differential privacy guarantees that there is low probability for an adversary to discoverε              

new information about a unique individual in the dataset, despite having known prior outside              
knowledge. This fact means the dataset is robust to post-processing. In other words, the adversary               
is no more likely to pick the true values than if they were to guess randomly. 

 
A privacy-preserving mechanism also ensures that the inclusion or removal of one data             

sample will not alter the overall data set significantly. Individuals who are reluctant to submit data                
in fear that an adversary will identify their information will be assured that their participation has a                 
marginal effect on the output. It is guaranteed that an -differentially private result would not be          ε       

significantly affected regardless of any one individual’s truthful participation. However, in order for             
the overall data to be useful for statistical analysis, needs to be scaled accordingly, i.e. each        ε         

individual data sample needs to have a non-zero impact. 
 
Definition 2 ​Let f : ​ℝ​k​, and let D and D’ be neighboring datasets. The sensitivity S(f) of f is     Dn →                 

defined to be 
 

 
 
where is the L​1​ norm.·|| ||1  

 
For randomized mechanisms ​A​, the sensitivity is at most 1, since the neighboring datasets              

differ in at most 1 element. Dwork ​et al. show in [8] that for any function in a query               f (x)  x = Σi i     
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where is a random variable from the Laplace distribution with mean 0 and scale(x) ,q = f + Y   Y              

/ , this mechanism is -differentially private. However, Dwork ​et al.​’s output perturbation1 ε     ε         

Laplace mechanism adds too much noise to even small datasets. 
 

3.2   LS Mechanism 
3.2.1   Steps to Embed LS Noise 
Step 1: Discrete M-band Wavelet Transform 
Perform the discrete M-band wavelet transform on ​D to obtain the respective approximation and              
detail parts of the signal. Although the approximation and detail parts are actually composed of               
individual column vectors representing each sample, we combine the vectors into the            

corresponding approximation matrix ​A​ and detail matrices ​ for d i
(1) , .., .i = 1 . k  

 

 
 
where ​k​ = ​M​ - 1. In the case of 3-Band wavelets, ​k​ = 2. 
 
Step 2: Data-Sensitive Bound Creation 
Define µ to be the maximum value of all elements in ​A​, and 𝑣 to be the minimum value of all                     
elements in ​A​. Then, define a new matrix ​A​* by transforming each element of ​A to a value bound in                    
the interval [-𝛾, 𝛾] through a linear function Hence, ​A​* has the property of being sensitive to the        .g            

values of the original dataset ​D​, and the noise added later is, therefore, fitting for ​D​. For 𝛾 > 0, we                     
create ​A​* by the following procedure: 
 

 
 

 
 
Step 3: Laplace-Sigmoid Distribution 
Definition 3​   ​A variable from the Laplace-Sigmoid distribution is defined to be(y) N ij  

 

 
 
where X ~ Lap /  for some  and  is the sigmoid function.0, 1(  )ε ,ε > 0 (y)S = 1

1 + e −y  
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Like ​X​, the noise ​N​ has mean 0. 
We can create a final noise matrix by using the Laplace-Sigmoid distribution. This       (A )N *        

hybrid noise-generating mechanism uses the shrunken data values obtained in Step 2 and the              
values from the Laplace-Sigmoid distribution. We can achieve a roughly equal distribution of             
positive and negative noise values, as the mean of ​N is 0. The new noise matrix ​N is sensitive to the                     
values of the original dataset. 
 
Step 4: Insert New Approximation Matrix 

We construct a new approximation matrix and insert it back into the wavelet      (A )A
︿

= A + N *         

transformed data. Because the wavelet matrix ​W is orthogonal, it is easy to transform the               
transformed data back to its original domain since . We obtain the “noisy” dataset.W T = W −1  

 

 
 

Notice that is now differentially private, yet it can still be used with relatively little error   D
︿

              

in machine learning environments. Experiments in various machine learning environments are           
covered in Section 4. Note also that because we use binary classification in our statistical analysis,                
we set a threshold for the last column (labels) in the transformed data such that if the label                  .5,yi ≥ 0  

then and if then The threshold is specific to the transformed dataset and is ,yi = 1    .5,yi < 0   . yi = 0           

set based on which threshold effectuates the highest accuracy value. The threshold “rounding” can              
be thought of as a post-processing mechanism and does not change -differential privacy. The           ε    

following Lemma 1 and Theorem 1 prove that ​LS​ is -differentially private.ε  

 
Lemma 1 ​Let and where Lap / . Let be a randomized   (D)f = D  (D) (D) ,F = f + Y   Y ~  0, 1(  )ε   (X)A     

mechanism. Then,  satisfies -differential privacy.(F (D))A ε  

 
Proof: 
Dwork ​et al. prove in [8] that for any randomized function such that where           F    (D) (D) ,F = f + Y   

 Lap / ,  is -differentially private. For emphasis, we restate their proof here.Y ~ S(F )( )ε (D)F ε  

 
Let a randomized mechanism ​F : ​D​n → ​ℝ​k and an arbitrary point ​t ∈ℝ​k​. Then, we can take the ratio                      
of the probability density functions of the Laplace noise added to neighboring datasets ​D​ and ​D​’: 
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Thus, by the rules of composability stated in [11],  satisfies -differential privacy. ∎(F (D))A ε  

 
Theorem 1 ​Let be the LS mechanism with original dataset D of size m ​x n and let W be the   S(D)L                    

M-band wavelet transform matrix. Then,  preserves -differential privacy.S(D)L ε  

 
Proof: 
We can write the ​LS​ mechanism as 
 

 
 

 
 
Because the sigmoid function  is bounded by we know that  where is aS ,0 < S < 1 N | X |,| ij < | ij X ij  

random variable given by Lap /  Since is an orthonormal M-band wavelet, it preserves0, 1(  ).ε W T  

the norm of ​N​’: 
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So, N​’ adds less noise than ​X​. By Lemma 1, a randomized mechanism where W T            (F (D)) (D) ,A = f + Y   

Lap / satisfies -differential privacy. Therefore, must satisfy -differentialY ~ 0, S(F )(  ),ε   ε    S(D)L    ε  

privacy. ∎ 
 
3.2.2   De-Noising the LS Dataset 
As our mechanism is a function, one should expect that an original dataset would be obtainable by                 

simply applying the inverse transformation on the noisy dataset, which we call :D
︿

 

 

 
 

However, since the noise matrix is randomized based on a Laplace-Sigmoid distribution, it is              
impossible to regain the exact original data without having access to ​N​, which is not stored in the                  
first place. Nevertheless, it is possible to regain an approximation of the original dataset, though not                
very accurate, by having stored the logical values of Laplace-distributed ​X from the mechanism. In               
order words, we can define matrix the same size as the noise matrix that stores 1 if the noise in that                     
position is positive and -1 if the noise in that position is negative. We call this logical matrix                  
trace(​X​). An adversary should not have direct access to trace(​X​), but instead can create a matrix of                 
random logical values of the same size. 

Since we use Laplace noise with mean 0 and scale / we can construct an approximation          1 ,ε       

of the noise matrix by multiplying trace(​X​) by a factor, then using it in the inverse transformation                 
function to obtain ​D​. However, the factor does not directly correspond to ​X​, as the random noise                 
used to transform the data is not accessible. So, one way to approach de-noising is to test a new                   
factor ​r​ that brings us close to the true values of the noise in the original mechanism: 
 

 
 

How close of an estimate to the original dataset we can obtain is dependent on the values of                  
𝛾 and ε (in the case of denoising, ​r​), though the former does not affect the noise as much as the                     
latter. Of course, an adversary would not know both of the values used in the mechanism. 

To test this de-noising method, we use a 243 x 10 training set from Dataset A, mentioned in                  
Section 4.1. To justify our point that obtaining the original dataset is nearly impossible without               
knowing the mechanism’s variables, we take the mean of the absolute difference between the              
original dataset and the dataset obtained by varing ​r​. We do this for values of ​r ranging from 0.001                   
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to 1 with an increment of 0.001, then we take the minimum of the trials. Finally, we do the entire                    
process for 100 trials, corresponding to the value of ε. We keep 𝛾 = 1 constant. Let ​H = the average                     
minimum absolute difference between the original ​D​ and the de-noised ​D​. 
 

ε 4 2 4/3 1 2/3 0.5 

H 0.0363 0.0724 0.1088 0.1448 0.2177 0.2895 

 
As is shown, ​H approximately directly varies with / i.e. ​H ∝ / Therefore, unless the        1 ,ε     1 .ε     

value of ε is large and trace(​X​) is somehow released to the public, an adversary would not be able                   
to retrieve a close form of the original dataset by using a de-noising method. 
 

3.3   The LS​+​ Mechanism 
3.3.1   Versus the LS Mechanism 
At times, it is not adequate to apply the ​LS ​mechanism on an entire dataset. One such case is if the                     
dataset is too large, then the wavelet matrix may take too long to generate. We encountered this                 
problem by generating wavelets of dimension 3​11 and upwards, as our computers did not have               
sufficient memory. 

The second such case is if the individual wants to disperse the approximation and detail               
portions of individual blocks in the database rather than add noise to only one of the whole                 
dataset’s approximation or details. 

Another case in which the ​LS​+ mechanism is the better option is if the number of rows of the                   
dataset is not numerically close to the wavelet’s size. Additionally, using the ​LS​+ mechanism allows               
new entries to be incorporated quicker without having to wait for large amounts of samples. 
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3.3.2   Steps to Embed LS​+​ Noise 
To utilize the ​LS​+ mechanism with 3-band wavelets, as in this paper, the dataset’s number of rows                 
must be divisible by the size of the wavelet matrix. We apply the Laplace-Sigmoid distributed noise                
and add it to the full matrix. 
 

 

 
 

 

 

 
 

In this case, has the same number of rows as ​D​. We can write the   N  N  ... ]N = [ 1 2
T             

mechanism as a function (D) N .f = D +W T  

The ​LS​+ mechanism can be proved to be differentially private by Lemma 1 and Theorem 1. It                 
is mathematically similar to the ​LS ​mechanism, but it is a more complete method of adding noise.                 
We use this mechanism for bigger datasets. For example, since Dataset B described in Section 4.1 is                 
size 3190032 x 9, we can split the dataset into 354448 blocks, each of which is transformed by                  
DMWT. 

15 
 



 

3.33   De-Noising the LS​+​ Dataset 

Similar to the ​LS ​mechanism, we are able, to an extent, to de-noise the transformed dataset by                D
︿

  

varying ​r​ to optimize the function 
 

 
 

For this example, we use Dataset B of size 3190032 x 9, mentioned in Section 4.1. For 3                  
trials, we take the minimum of the average absolute difference between the original dataset and the                
dataset obtained by varying ​r​. This time, we test for values of ​r ranging from 0.1 to 1 with an                    
increment of 0.1. 𝛾 = 1 stays constant. Let the average of 3 trials of the mean of the minimum                    
absolute difference between the original  and the de-noised  be represented by ​H​.D D  

 

ε 4 2 4/3 1 2/3 0.5 

H 23.4855 23.4855 23.4855 23.4855 23.4855 23.4855 

 
The average minimum absolute difference between the original and the de-noised        D     D  

does not change as ε changes. Since ​H > 0, the ​LS​+ mechanism ensures that the ε-differentially                 
private dataset cannot be reversed without much deviation from the original dataset. 
 

3.4   Pseudo-Quantum Steganography 
3.4.1   Quantum Steganography 
When using a quantum computer, one can generate a true random qubit that satisfiesSij  

 

 
 
to be used in the quantum embedding of the noise into the approximation coefficients. So, each                
index can be embedded with qubits instead of a pseudo-quantum simulation: 
 

 
 

However, if one does not have access to a quantum computer, the following             
pseudo-quantum algorithm must be used. 
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3.4.2   Steps to Embed Pseudo-Quantum Noise 
Step 1: Discrete M-band Wavelet Transform 
We perform DMWT on the dataset ​D of size ​m x ​n with wavelet matrix ​W​. Instead of keeping the                    
approximation part of the dataset in the wavelet domain as a matrix, we split it up into column                  
vectors representing each sample. This mechanism shows the case of a discrete 3-band wavelet              
transform, which we use in our experiments. 
 

 
 
Step 2: Transform Approximation Coefficients into Angles 
In order to embed the noise into the approximation signal, we must transform the approximation               
coefficients into pseudo-quantum signals, or angles. For , .., ,k = 1 . n  

 

  
 

  
 

This procedure ensures that the new approximation coefficients are bounded in . Let        θi
k     , ][ 6

π
3
π   

matrix θ  θ  ·· θ ].θ = [ 1 2 ·  n  

 
Step 3: Generate Laplace Noise and Transform into Pseudo-Quantum Signals 
To make our mechanism stochastic, we randomly generate Laplace-distributed noise with mean 0             
and standard deviation /4 .ε  

 

 
 
Then, we transform ​X​ into the same angle bounds as the approximation coefficients. The noise 
matrix is created to be the same size as the combined approximation matrix, whose number of 
columns is just ​n​. To be added, it must be transformed into pseudo-quantum signals :xij  
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Step 4: Pseudo-Quantum Embedding 
We embed the Laplace noise into the transformed approximation coefficients by mimicking a             
quantum computer’s random generation. Using a classical computer, we randomly generate values 
 

 
 
and use the values to embed the noise into a new matrix  such thatθE   

 

 
 

where 𝛿 is the embedding intensity and η is the embedding bias, 0 < η < 1. We use 𝛿 = 0.1 in our                        
trials. 
 
Step 5: Inverse Transformation 
In order to obtain the new approximation matrix ​A​* with the embedded noise, we do the inverse                 
transformation of the linear transformation before: 
 

 
 
where  and , ..,i = 1 . mA , .., .j = 1 . n  

 
Step 6: Inverse DMWT 
Finally, we perform the inverse wavelet transform after inserting the new approximation matrix ​A​*. 
 

 
 

Because the dataset is binary, we must have two outputs: 0 and 1. Like in the ​LS and ​LS​+                   
mechanisms, we test different values of “rounding” for the specific dataset we use, and we set the                 
threshold for the labels: if  then  and  then yi ≥ .5,− 1 ,yi = 1 yi < .5,− 1 .yi = 0  

 
Lemma 2 ​Let ~ Lap ​and let be the angle bound between corresponding to   X ij   0, )( σ    xij      , ][ 6

π
3
π    .X ij

Then, the resulting probability density function of any signal z embedded with through            x   

pseudo-quantum steganography is equal to 
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where δ is the embedding intensity. 
 
Proof: 

Let be the resulting signal of ​z embedded with We can write the steganography the same way θij
E         x.         

as in Step 4 of the pseudo-quantum mechanism. 
 
Then, the probability density function  of  ​δ​cos  can be written as(y)f x )( ij  

 

 
 
where ​y​ Hence, the probability density function  of cos​-1 δ​cos  is given by, ].∈ [ 2

1
2
√3 (z)p1 ( x ))( ij  

 

 
 
where ​z​ , ].∈ [ 6

π
3
π  

 
Similarly, assuming sin​-1 > 0, the probability density function of ​δ​sin  isy (y)g x )( ij  

 

 
 
where ​y​ and the probability density function  of sin​-1 δ​sin  as, ],∈ [ 2

1
2
√3 (z)p2 ( x ))( ij  
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where ​z Since ​z > 0, ​z = |​z​|. Thus, taking the weighted sum of and the  , ]. ∈ [ 6

π
3
π              (z)p1   (z),p2  

probability distribution function  of  can be written as(z)h θij
E  

 

∎ 
 
Theorem 2​   ​The pseudo-quantum mechanism with ~ Lap /  is ε-differentially private.X ij 0,( 4 )ε  

 
Proof: 
The pseudo-quantum mechanism can be written as a function ​f of ​D​, where ​A is the original                 
approximation matrix and ​A​* is the approximation matrix with embedded noise: 
 

 
 

Using Lemma 2, we can obtain the probability density function  of . Then, we see that for(z)h θij
E  

neighboring datasets ​D​ and ​D​’ and for a query ​q​, 
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Therefore, by Definition 1, the pseudo-quantum mechanism is ε-differentially private. ∎ 
 
3.4.3   De-Noising the Pseudo-Quantum Dataset 
Data encrypted with noise from quantum steganography is impossible to de-noise completely. By             
the Heisenberg Uncertainty Principle and no-cloning mentioned, the noise simply cannot be            
retrieved without knowing the original dataset, the embedding intensity 𝛿, and the embedding bias              
η. 

The only way to extract the noise embedded in the data as pseudo-quantum signals is to       x           

use the following formula: 
 

 
 

However, extracting the noise is redundant because the adversary would need to have the              
original approximation coefficients in the first place. Therefore, the transformed dataset is resistant             
to harmful post-processing. 

Moreover, for η = 0.5, the probability for an adversary to correctly decode the noise added                
to the approximation coefficients by randomization in is only , where the data is size ​m​ x ​n​.kij 2−mn/3  

 

4   Machine Learning Environments and Experiment Results 
In our paper, we employ the three mechanisms in five machine learning environments. 
 

4.1   Datasets 
We utilize 2 different sets of data in our paper. The first dataset, which we name Dataset A,                  

is provided by the MATLAB Statistics and Machine Learning toolbox from MathWorks​® [24]. The              
dataset includes 699 instances of resultant benign or malignant breast cancer, based on 9              
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predictors: Clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion,             
single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitosis. 

We use this dataset for logistic regression, support vector machine (SVM), support vector             
regression (SVR), and classical artificial neural networks (classical ANN) because of its smaller             
scale. Traditional machine learning methods do not fare well with the larger dataset, which we               
reserve for Deep Learning using Google Colab. Additionally, the computers we have available for              
research are incapable of training and testing very large datasets with the three machine learning               
environments mentioned. 

Since we use a 3-band discrete wavelet in our mechanism, the dataset ​D must have 3​K rows                 
(in which K ϵ ℤ​+​). For the three machine learning environments, we use 243 samples as a training                  
set and use the other 456 samples to test the statistical integrity of our mechanism. 

The second dataset, which we call Dataset B, is obtained from IPUMS [29] and has 8                
predictors and 1 binary results column with 3190032 instances. (The original number of instances              
was 3190040, but we reduce the size by 8 samples to use our ​LS​+ mechanism.) We use this dataset                   
for the classical ANN and Deep Learning. The predictors are: number of generations, detailed              
information for number of generations, family size, race, detailed information for race, whether the              
participant is deaf, whether the participant has a cognitive disability, and whether the participant is               
blind. The binary resultant is whether the participant speaks English or not. 

In our paper, we label the dataset we use for a specific experiment as ​D​, and the                 
transformed dataset as ​D̑ . 
 

4.2   Logistic Regression 
Data analysis often requires tools and algorithms to predict future cases based on pre-existing              
datasets. Machine learning algorithms, such as logistic regression, take pre-existing datasets           
separated into predictor variables and label variables, analyze the relationship between the two,             
and create models that classify or predict future samples of data [27]. 

We use a logistic regression model as the first machine learning environment to test the ​LS                
mechanism with Database A. Logistic regression uses the logistic curve, which uses the sigmoid              
function. We chose not to use linear regression because our output data is binary; linear regression                
models would be unhelpful and would predict output values less than zero or greater than one. 

 
Figure 4.1: Logistic regression model vs. linear regression model 
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Logistic regression is a classification model represented by ​p​, a function of x that represents               
the probability that the respective label to x is 1. If ​p ≥ 0.5, then the model predicts that the x value                      
corresponds to a label value of 1; conversely, if ​p < 0.5, then the model predicts 0 for the label value.                     
The function ​p​ for a logistic regression model is defined to have the property: 
 

 
 

where is the data vector, β​0 is the bias constant, and β​1 is the coefficient vector to the predictor x                    

variables. The solution of this equation, , is called the decision boundary and divides the      β0 + β1 · x          

two label classes. If is one dimension, the decision boundary would be a point, and if x is two    x                 

dimensional, it would be a line [4]. 
The equation of a logistic regression model is the sigmoid function of the logit function of ​p​.                 

The logit function is the natural logarithm of the odds of ​p​. 
 

 

 
 
Substituting the logit function of ​p for the equation , we obtain the form of a         β0 + β1 · x        

logistic regression model to be 
 

 
 

A logistic regression model uses maximum likelihood estimation (MLE) to solve for the             
parameters β​0 and β​1​. Let be a probability function where the probability of the label variable     p             

is , and the probability of is . With predictor variable and1y =    p      y = 0   1 − p      {x , , .., }X =  1 x2 . xi   

binary label variable , the likelihood function is: {y , , .., }Y =  1 y2 . yi  

 

 
 
Solving for the maximum of the likelihood function requires finding the derivative, but since              

the likelihood function is difficult to differentiate, the log-likelihood function is used instead: 
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Simplifying the log-likelihood function gives: 
 

 
 

Then, we take the partial derivative of the log-likelihood function with respect to β​1​. The               
partial derivative cannot be set to zero, but can be solved approximately. 
 

 

                                                   
 

The Newton method is a numerical optimization method that minimizes β using Taylor             
polynomials [ ]. Let β* be the location of the global minimum, the first derivative of β* be zero,                   
and the second derivative of β* be positive. A Taylor expansion can be used to approximate the                 
minimum of with .(β)f (β )f *  

 

 
 

A Taylor expansion of the second order can be used to find the global minimum with initial 
guess β​(0)​, as in [4] and [27]. 

 

 
 

Let’s call  and . Then we differentiate with respect to β| (β )df
dw β=β(0) = f  ′ (0) |  (β )dw2

d f2

β=β(0) = f ′′ (0)  

and set the derivative to zero. The point at which the derivative is zero is called β​(1)​ . 
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Then β​(1)​ can be used to approximate another β value that is closer to the location of the 

global minimum (β​*​). This process is repeated until the lowest two β values are found. 
 

 
 

For logistic regression with Dataset A, before training and using a model, we use training               
dataset of size 243 x 10 in each mechanism, obtaining a new set of size 243 x 10. We separate  D              D

︿

       

into the 9 predictors and their resulting targets.D
︿

 

After that, we separate the 456 x 10 testing dataset into the 9 predictors and their                
respective targets. To test the statistical integrity of the transformed data, the previously             
constructed logistic regression model uses the testing inputs to predict their resulting targets. We              
then obtain the absolute difference between the real target values and the target values predicted               
by the constructed logistic regression model. We sum the number of correct predictions, divide the               
value by 456, and multiply by 100 to obtain the accuracy in a percentage value. This process makes                  
up one trial. We run 1000 trials for each pair of 𝛾 and ε values and record the average accuracy. 
 
Results for the ​LS ​mechanism with Dataset A: 
 

𝛾 0.5 1 1.5 2 1 0.5 1 1 

ε 1 1 1 1 4/3 2 2 4 

Accuracy 79.11% 77.01% 74.84% 73.83% 78.73% 81.14% 80.23% 81.94% 

 
Results for the pseudo-quantum mechanism with Dataset B: 
 

𝛾 0.5 1 1.5 2 1 0.5 1 1 

ε 1 1 1 1 4/3 2 2 4 

Accuracy 94.87% 94.87% 94.87% 94.87% 94.87% 94.87% 94.87% 94.87% 

 

4.3   Support Vector Machine and Regression 
4.3.1   Support Vector Machine (SVM) 
The support vector machine is a machine learning algorithm used for classifying data into binary               
classes. An SVM model takes a training data set consisting of predictors and their            {x , , .., }1 x2 . xn    

respective binary labels where , and constructs a hyperplane that   {y , , .., }1 y2 . yn   0, }y ∈ { 1       

separates the data based on the labels. 
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Figure 4.2: Support vector machine model with binary targets 

 
Labels y are classified from predictors ​x​ and parameters ​w​ and ​b​: 

 

 
 

SVM models achieve high classification accuracy by maximizing the width between the            
margins, or the distance between the hyperplane and the closest vectors on each side (the “support                
vectors”) [15]. With small margins, the hyperplane may overfit the training data on either side and                
make classification errors with actual testing data. 

For a linear SVM model, the margin width is maximized by solving the following primal               
problem: 
 

 

 
 

where is the slack variable that gives the model flexibility for some misclassifications while still ξi                

maintaining the largest possible margins. represents the trade-off between misclassification     C       

cases and large margins. The solution to this minimization problem is also the stationary point of                
Lagrange function: 
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where and are non-zero Lagrange multipliers [22]. This Lagrange equation is solved by αi   βi             

maximizing the following dual problem: 
 

 

 
 
Then, we obtain the weight vector :w  

 

 
 

When a linear hyperplane cannot accurately separate the dataset the SVM model uses a              
nonlinear function that maps the inputs in a higher dimension and allows the SVM model to  (x)φ                

separate data that are impossible to linearly separate in lower-dimensional spaces [​15​]. Then the              
corresponding kernel function is defined by The margin for an SVM model      (x , ) (x ) (x ).K i xj = φ i · φ j        

using a kernel function is maximized by solving the primal problem in the transformed    (x , )K i xj            

space: 

 

 
 

The margin can also be maximized by the corresponding dual problem in the transformed 
space: 

 

 
 

The weight vector for the kernel function optimization problem then becomes: 
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The dual problem in linear SVM and the kernel trick can look complicated, but note that                
most of the  values are equal to  For our paper, we use the Gaussian kernel function in the formαi .0  

 

 
 

 
Figure 4.3: Example of data mapped in 3-dimensional space with Gaussian kernel 

 

 
Figure 4.4: Nonlinear support vector machine classification of with the first two predictors D

︿

 

For testing with Dataset A, we transform the training dataset of size 243 x 10 with a           D        

3-band discrete wavelet of size 243 x 243 and add noise to the approximation portion. We separate                 
into the 9 predictors and their resulting targets. The two matrices are then used to train a D

︿

                 

Support Vector Machine model. 
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Like logistic regression testing, we separate the 456 x 10 testing dataset into the 9               
predictors and their results. The SVM model uses the testing inputs to predict their resulting               
targets. The accuracy is then calculated in the same manner as logistic regression. 
 
Results for the ​LS ​mechanism with Dataset A: 
 

𝛾 0.5 1 1.5 2 1 0.5 1 1 

ε 1 1 1 1 4/3 2 2 4 

Accuracy 94.71% 94.16% 93.52% 92.83% 94.78% 95.58% 95.33% 95.61% 

 
Results for the pseudo-quantum mechanism with Dataset B: 
 

η 0 0 0 0 0.5 0.5 0.5 0.5 

ε 1 4/3 2 4 1 4/3 2 4 

Accuracy 94.87% 94.87% 94.87% 94.87% 94.87% 94.87% 94.87% 94.87% 

 

 
Figure 4.5: 3-D model comparing 𝛾 and ε to the average percent accuracy of support vector 

machine classification for 20 trials for each increment after the​ LS ​mechanism 
 

4.3.2   Support Vector Regression (SVR) 
A support vector model can also be used for regression. Instead of classifying data into binary                
classes in SVM models, support vector regression uses a training set of predictors and             x , , .. , }{ 1 x2 . xn  

their respective label values , ​y ∈ℝ, to construct a model that attempts to output label   y , , .. , }{ 1 y2 . yn              
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values that are within an error bound of ϵ from the actual observed value (not to be confused with                   
ε in ε-differential privacy). 

 
Figure 4.6: Support vector regression model with real targets 

 
SVR differs from SVM by outputting values that are not limited to binary; instead, they range                

across all real numbers. Therefore, the output ​y​ is defined to be 
 

 
 

where is the Gaussian kernel function aforementioned in Section 4.3.1. Since it is (x , )K i xj              

impossible for the model to perfectly output points that fall within the ϵ error bound, slack variables                 

are used to allow errors up to the values of and [32]. The optimization problem for the          ξi   ξi*        

margin width for an SVR model, which is extremely similar to the optimization equation for SVM                
due to both using support vector models,  then becomes: 
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In order to find the optimal ϵ value for the ​LS mechanism, we run 100 trials for each of the ϵ                     
values ranging from 0.000 to 0.500 in intervals of 0.001. The accuracies from the 100 trials are                 
averaged for each ϵ value. For larger ϵ values, the error bounds at either side of the SVR model are                    
larger and the model predicts with more errors. Therefore, we pick the smallest ϵ value that                
corresponds with the highest average accuracy across the 100 trials to create SVR models for the                
1000 trials. 

For the pseudo-quantum mechanism, we run trials for each ϵ value ranging from 0.250 to               
0.500 in intervals of 0.005. The ϵ testing range for the pseudo-quantum mechanism is determined               
by 100 test trials that concludes that the optimal ϵ values are all greater than 0.300 and less than                   
0.500. The accuracy of the SVR model is then calculated in the same way as the accuracy of the SVM                    
model. 
 
Results for the ​LS ​mechanism with Dataset A: 
 

𝛾 0.5 1 1.5 2 1 0.5 1 1 

ε 1 1 1 1 4/3 2 2 4 

ϵ 0.392 0.392 0.392 0.392 0.392 0.341 0.363 0.423 

Accuracy 94.83% 94.25% 93.58% 92.87% 94.90% 95.60% 95.43% 95.88% 

 
Results for the pseudo-quantum mechanism with Dataset B: 
 

η 0 0 0 0 0.5 0.5 0.5 0.5 

ε 1 4/3 2 4 1 4/3 2 4 

ϵ 0.395 0.480 0.335 0.325 0.450 0.395 0.330 0.440 

Accuracy 95.30% 95.30% 93.80% 95.30% 95.33% 95.30% 93.33% 93.10% 

 
 

4.4   Classical Artificial Neural Networks 
Neural networks are an excellent tool for modeling and outperform many other traditional machine              
learning methods. They can also handle large amounts of data similar to Deep Learning, so after                
feature extraction, we can utilize the classical neural network to the fullest extent. 
 

 
Figure 4.7: Diagram of the classical artificial neural network we utilize 
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Neural networks consist of an input layer, hidden layers, and an output layer. We use a                
shallow two-layer feed-forward network with the activation as the sigmoid function, 
 

 
 
and softmax for the output neurons. To train the network through backpropagation, we use              
stochastic gradient descent (SGD) provided by the MATLAB Machine Learning toolbox. 
 
4.4.1   The Feed-Forward Pass 

Our network has parameters , where is the bias    w, ) (w , , .. , , )( b =  (1) b(1) . w(i) b(i)   bi
(l)     

associated with unit ​i later ​l + 1, and where denotes the parameter (weight) associated with          wij
(l)        

unit ​i​ in layer ​l​ and unit ​j​ in layer ​l​ + 1. 
Then, we can let 

 

 

 
So, 
 

 
 
 
 

Therefore, for input , the activation function iszi
(l + 1)  

 

 
 
4.4.2   Backpropagation 
To train a neural network, we use backpropagation. In our case, we use stochastic gradient descent                
to find the gradient quickly. 
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In LMS learning, the distance (LMS) is given by We must minimize(T ) .2
1 ∑

 

p
p − Op 2  

 

 
 
where  is the output from the neural network.(X)hw,b  

First, we perform a feed-forward pass, computing the activations for and up to          , a , ...a(2)  (3)      

the output layer  where  is the number of layers. For each output  in  set(z ),Lnl = K (n )l nl i ,Lnl  

 

 
 
Then, for all hidden layers  for each node  in layer  set, , .., ,l = nl − 1 nl − 2 . 2 i ,l  

 

 
 
and compute 
 

 
 

To implement stochastic gradient descent, set and for all The increment is 0, so      Δ(l)
(0) = 0   Δ(0)

(0) = 0    .l       

there is no change. Then, for  and  computel = 1 ,nl = 1  

 

 
 
 
 
To update the gradient, set 
 

 
 
Finally, we have 
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In our classical ANN experiments, we use original Dataset A of size 243 x 11, and apply the                  
privacy-preserving mechanism to obtain the new dataset of the same size. We separate into       D 

︿

      D 
︿

 

the 9 predictors and their resulting targets. The two matrices are then used to train a classical ANN                  
with 10 hidden neurons. Since the designated machine set is 243 instances, we split it into a                 
personal training set with 171 instances, a validation set with 36 instances, and a personal testing                
set with 36 instances). 

We now test the statistical integrity of the transformed data for the ​LS and pseudo-quantum               
mechanisms by using the predictors from the 729 instances of the original dataset as a testing set                 
for the classical ANN. We then obtain the rounded absolute difference between the real target               
values and the target values produced by the neural network. We collect the accuracy of               
classification using the transformed data itself. 

For ​LS​+​, we use Dataset B of size 3190032 x 10. The last two columns are formed by splitting                   
the binary responses from the original dataset into neural network targets. Similar to the first               
experiment, we apply the privacy-preserving mechanism to obtain the new dataset of the same           D 

︿

   

size. We then separate into the 8 predictors and their resulting targets, and 70% of the instances    D 
︿

             

are designated to the training set while the rest of the instances are split evenly between the                 
validation set and the testing set. Like the first experiment, we use SGD to train the neural network,                  
then we validate and test the neural network with D.

︿

 

 
Results for the ​LS ​mechanism with Dataset A: 
 

𝛾 0.5 1 1.5 2 1 0.5 1 1 

ε 1 1 1 1 4/3 2 2 4 

Accuracy 95.00% 94.70% 91.90% 90.40% 94.40% 94.90% 95.20% 95.60% 

 
Results for the ​LS​+ mechanism with Dataset B: 
 

𝛾 0.5 1 1.5 2 1 0.5 1 1 

ε 1 1 1 1 4/3 2 2 4 

Accuracy 83.74% 84.04% 84.97% 85.45% 90.54% 96.78% 96.84% 99.88% 

 
Results for the pseudo-quantum mechanism with Dataset B: 
 

η 0 0 0 0 0.5 0.5 0.5 0.5 

ε 1 4/3 2 4 1 4/3 2 4 

Accuracy 96.7% 96.7% 96.7% 96.8% 96.6% 96.7% 96.6% 96.6% 
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4.5   Deep Learning 
Deep Learning is by far one of the most important subsets of machine learning methods. Whereas                
classical artificial neural networks have two or three hidden layers, deep learning models, or deep               
neural networks, can contain hundreds of hidden layers. Deep learning models take large labeled              
training datasets and require high computer processing power. Applications for deep learning            
include self-driving cars, handwriting recognition, and object classification from images. 

We choose to use Deep Learning because of its many implications in modern research,              
including medical imaging and speech recognition in [6] and [20], and its connections with              
differential privacy [1]. Deep Learning enables automatic feature extraction during the process of             
learning, rather than the traditional pre-learning manual feature extraction. The result is a more              
accurate machine learning model and also a model that can handle vast amounts of data, contrary                
to methods such as logistic regression, SVM, and SVR. 

Deep Learning also performs well in classifying large amounts of complex data. Although             
our paper uses only binary classification with less than 10 features, our mechanism is able to                
extend much further when used with Deep Learning. 
 

Figure 4.8: A neural network with many hidden layers 
Since Deep Learning requires many predictors and instances to learn effectively, we use a              

Dataset B for ​LS​+ and the pseudo-quantum mechanism. (We use Dataset A for the ​LS mechanism,                
but since the dataset is small, the accuracy is limited.) We use Google Colab to generate a deep                  
neural network with 4 hidden layers with 16, 18, 20, and 24 neuron units in each layer,                 
respectively. We train the network with back-propagation. The activation function for the hidden             
layers is RELU: 
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and the activation function for the output layer is the sigmoid function: 
 

 
 
Results for the ​LS​ mechanism with Dataset B: 
 

𝛾 0.5 1 1.5 2 1 0.5 1 1 

ε 1 1 1 1 4/3 2 2 4 

Accuracy 76.00% 72.00% 76.00% 72.00% 76.00% 76.00% 76.00% 76.00% 

 
Results for the ​LS​+​ mechanism with Dataset B: 
 

𝛾 0.5 1 1.5 2 1 0.5 1 1 

ε 1 1 1 1 4/3 2 2 4 

Accuracy 83.74% 84.04% 84.97% 85.45% 90.54% 96.78% 96.84% 99.88% 

 
Results for the pseudo-quantum mechanism with Dataset B: 
 

η 0 0 0 0 0.5 0.5 0.5 0.5 

ε 1 4/3 2 4 1 4/3 2 4 

Accuracy 95.84% 96.34% 96.19% 96.19% 96.75% 97.16% 97.11% 97.00% 

 

4.6   Results 
1. The average accuracies for the five machine learning environments are all above 70%,              
demonstrating how all three mechanisms allow companies to add noise while maintaining the same              
statistical trends in the original data. Furthermore, the average accuracies for the mechanisms in              
SVM, SVR, and classical ANN are all above 93% for all values of ε. 
 
The accuracies for the five machine learning methods are largely influenced by the ε parameter.               
Our data shows that for the majority of the ​LS ​and ​LS​+ trials, 𝛾 = 1 and ε = 4 result in the highest                        
accuracies. However, larger values of ε provide less privacy for users according to Definition 1. In                
addition, companies should refrain from using the same 𝛾, η, and ε values repeatedly in order to                 
prevent adversaries from correcting guessing the values and obtaining the noise matrix, which             
would allow them to accurately denoise the data. Thus, companies should consider the trade-off              
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between higher differential privacy (smaller ε) and higher statistical integrity (larger ε) when             
choosing the parameter values. 
 

 
Figure 4.9: Percent accuracy of mechanisms in all machine learning environments for different 

values of ε. 𝛾 = 1 for ​LS​ and ​LS​+​, and 𝛿 = 0.1 and η = 0 for the Pseudo-Quantum (PQ) mechanism. 
 
2. When using the pseudo-quantum steganography to embed noise, the accuracy for SVM and              
logistic regression consistently remained at high accuracy. The pseudo-quantum mechanism          
consistently scores high accuracies across all four ε values for all five machine learning              
environments, with the lowest average accuracy being 94.87% and the highest being 96.80%. For              
low ε values (ε = 1 and ε = 4/3), the pseudo-quantum algorithm outperforms both the ​LS ​and                  
LS​+ mechanisms for all five environments. However, for larger ε values (ε = 2 and ε = 4), LS​+                   
noticeably outperforms the pseudo-quantum and ​LS ​mechanisms in most machine learning           
environments, especially for classical artificial neural networks and deep learning models.           
Companies may want to employ the pseudo-quantum mechanism for small ε values (ε < 2) but                
opt for LS​+ for larger ε values (ε ​≥ 2) in conjunction with artificial neural networks or deep                  
learning. Companies should also take into consideration that all three mechanisms work best with              
large datasets and that the results are more statistically error-prone if a small dataset is used. 
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Figure 4.10: Average percent accuracies of mechanisms separated by machine learning 

environments. 𝛾 = 1 for ​LS​ and ​LS​+​, and 𝛿 = 0.1 and η = 0 for the Pseudo-Quantum mechanism. 
 

5   Conclusions and Future Research 
Instead of spending time and resources attempting to develop encryption methods that do             

not necessarily guarantee ε-differential privacy or protection from adversary attacks, companies           
can use privacy-preserving mechanisms to protect personal data. Our three proposed mechanisms            
encrypt noise into data after DMWT, which presents many advantages over other methods.             
Removing the noise becomes practically impossible as long as the adversary does not know the               
exact noise function, which is unique to each scenario, as the function depends on the set of inputs                  
being changed. If put into use, companies will find our input perturbation mechanisms slightly              
more complicated but more effective. 

Our mechanisms add sufficient noise to achieve ε-differential privacy while still preserving            
overall statistical trends within the dataset. With our three mechanisms, we achieve the following              
average accuracies for all values of ε tested in the five machine learning environments: 
 

 Logistic Regression SVM SVR Classical ANN Deep Learning 

LS 79.48% 94.97% 95.12% 94.98% 75.00% 

LS​+ -- -- -- 92.85% 92.85% 

Pseudo-Quantum 94.87% 94.87% 94.93% 96.73% 96.14% 
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For all five machine learning methods, the models correctly predicted the label variables             
with average accuracies greater than 70%. The results show that companies can employ wavelet              
transformations and still be able to analyze the dataset for correlations and trends. 

In the future, more research and testing can go into improving the security of our first two                 
mechanisms. As our mechanisms require long processing times for large datasets, another priority             
would be to decrease the computation time by finding new ways to create and store large wavelets                 
and perform the processes.  
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7   Appendix 
7.1   Basic Scripts 
7.1.1   Wavelet Creation Function 
 
function​ A = wavsize(n) 
 
% First 1/3 of the wavelet 
 
A1 = zeros(1,3^n); 
A1(1,1)=0.33838609728386; 
A1(1,2)=0.53083618701374; 
A1(1,3)=0.72328627674361; 
A1(1,4)=0.23896417190576; 
A1(1,5)=0.04651408217589; 
A1(1,6)=-0.14593600755399; 
A = zeros(3^n); 
A(1,:) = A1; 
for​ i = 1:3^(n-1) 

B = A(i,:); 
C = circshift(B,3,2); 
A(i+1,:) = C; 

end 
 
% Second 1/3 of the wavelet 
 
A2 = zeros(1,3^n); 
A2(1,1)=-0.11737701613483; 
A2(1,2)=0.54433105395181; 
A2(1,3)=-0.01870574735313; 
A2(1,4)=-0.69911956479289; 
A2(1,5)=-0.13608276348796; 
A2(1,6)=0.42695403781698; 
A((3^(n-1)+1),:) = A2; 
for​ i = (3^(n-1)+1):(2*3^(n-1)) 

B = A(i,:); 
C = circshift(B,3,2); 
A(i+1,:) = C; 

end 
 
% Third 1/3 of the wavelet 
 
A3 = zeros(1,3^n); 
A3(1,1)=0.40363686892892; 
A3(1,2)=-0.62853936105471; 
A3(1,3)=0.46060475252131; 
A3(1,4)=-0.40363686892892; 
A3(1,5)=-0.07856742013185; 
A3(1,6)=0.24650202866523; 
A((2*3^(n-1)+1),:) = A3; 
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for​ i = (2*3^(n-1)+1):3^n 
B = A(i,:); 
C = circshift(B,3,2); 
A(i+1,:) = C; 

end 
A(3^n+1,:) = []; 

 
7.1.2   Laplace Noise Function 
function​ y  = laprnd(m, n, mu, sigma) 
%   LAPRND generate i.i.d. laplacian random number drawn from laplacian distribution 
%   with mean mu and standard deviation sigma. 
%   mu      : mean 
%   sigma   : standard deviation 
%   [m, n]  : the dimension of y. 
%   Default mu = 0, sigma = 1. 
%   For more information, refer to 
%   http://en.wikipedia.org./wiki/Laplace_distribution 
 
%   Author  : Elvis Chen (bee33@sjtu.edu.cn) 
%   Date    : 01/19/07 
 
%Check inputs 
if​ nargin < 2 
    error(​'At least two inputs are required'​); 
end 
 
if​ nargin == 2 
    mu = 0; sigma = 1; 
end 
 
if​ nargin == 3 
    sigma = 1; 
end 
 
% Generate Laplacian noise 
u = rand(m, n)-0.5; 
b = sigma / sqrt(2); 
y = mu - b * sign(u).* log(1- 2* abs(u)); 

7.2   Mechanism Scripts 
7.2.1   LS Mechanism 

function​ [datanew] = LS(data, gamma, vepsilon) 
W = wavsize(5); 
B = W * data; 
A = B(1:size(data)/3,:); 
mu = max(A,[],​'all'​); 
v = min(A,[],​'all'​); 
a = gamma.*((A - mu - v)/(mu - v)); 
X = laprnd(size(A,1),size(a,2),0,1/vepsilon); 
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astar = zeros(size(X)); 
[rowsize,colsize] = size(X); 
for​ ii=1:rowsize 
    ​for​ jj=1:colsize 
        ​if​ X(ii,jj) >= 0 || X(ii,jj) == 0 
            astar(ii,jj) = (1 - 1/(1 + exp(-a(ii,jj)))) * X(ii,jj); 
        ​else 
            astar(ii,jj) = (1/(1 + exp(-a(ii,jj)))) * X(ii,jj); 
        ​end 
    ​end 
end 
Ahat = A + astar; 
Bhat = [Ahat; B(size(data)/3 + 1:end,:)]; 
datanew = W' * Bhat; 
 
dataresp = datanew(:,size(datanew,2)); 
dataresp(dataresp >= 0.5)=1; 
dataresp(dataresp < 0.5) = 0; 
datanew = [datanew(:,1:size(datanew,2)-1) dataresp]; 
end 

7.2.2   LS​+​ Mechanism 

function​ [datanew] = LSplus(data, gamma, vepsilon) 
 
%Waveletblock 
W = wavsize(2); 
[m,n] = size(data); 
result = zeros(m,n); 
for​ i = 1:m/9 
    c = 1+9*(i-1); 
    d = data(c:9*i,:); 
    t = W*d; 
    result(c:9*i,:) = t; 
end 
 
%Algorithm 
[m,n] = size(result); 
A = result(1:m,:); 
mu = max(A,[],​'all'​); 
v = min(A,[],​'all'​); 
a = gamma.*((A - mu - v)/(mu - v)); ​%Multiply a by gamma to control noise (this is the gamma parameter) 
X = laprnd(m,n,0,1/vepsilon); 
[rowsize,colsize] = size(X); 
astar = zeros(size(X)); 
for​ ii=1:rowsize 
    ​for​ jj=1:colsize 
        ​if​ X(ii,jj) >= 0 || X(ii,jj) == 0 
            astar(ii,jj) = (1 - 1/(1 + exp(-a(ii,jj)))) * X(ii,jj); 
        ​else 
            astar(ii,jj) = (1/(1 + exp(-a(ii,jj)))) * X(ii,jj); 
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        ​end 
    ​end 
end 
Ahat = A + astar; ​%Multiply astar by delta to control noise (this is the delta parameter) 
Bhat = [Ahat; result(m + 1:end,:)]; 
 
%Waveletblockreverse 
[m,n] = size(Bhat); 
resulthat = zeros(m,n); 
for​ i = 1:m/9 
    c = 1+9*(i-1); 
    d = Bhat(c:9*i,:); 
    t = W' * d; 
    resulthat(c:9*i,:) = t; 
end 
 
[m,n] = size(resulthat); 
r = resulthat(:,n); 
r(r >= 0.5) = 1; 
r(r < 0.5) = 0; 
datanew = [resulthat(:,1:n-1) r]; 
end 

7.2.3   Pseudo-Quantum Mechanism 

function​ [datanew] = PQ(data,vepsilon,eta) 
W = wavsize(3); 
B = W * data; 
A = B(1:size(data,1)/3,:); 
 
mu1 = zeros(1,size(data,2)); 
v1 = zeros(1,size(data,2)); 
theta = zeros(size(A)); 
 
for​ k = 1:size(data,2) 
    ​for​ i = 1:size(data,1)/3 
        mu1(1,k) = max(A(:,k)); 
        v1(1,k) = min(A(:,k)); 
        theta(i,k) = pi.*((A(i,k) - max(A(:,k)) - min(A(:,k)))/(6*(max(A(:,k)) - min(A(:,k))))); 
    ​end 
end 
 
X = laprnd(size(data,1)/3,size(data,2),0,4/vepsilon); 
 
mu2 = max(X,[],​'all'​); 
v2 = min(X,[],​'all'​); 
alpha = pi.*((A - mu2 - v2)/(6*(mu2 - v2))); 
 
K = rand(size(data,1)/3,size(data,2)); 
 
thetae = zeros(size(X)); 
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for​ ii=1:size(data,1)/3 
    ​for​ jj=1:size(data,2) 
        ​if​ K(ii,jj) >= (1-eta)/2 
            thetae(ii,jj) = acos(cos(theta(ii,jj)+0.011*cos(alpha(ii,jj)))); 
        ​else 
            thetae(ii,jj) = asin(sin(theta(ii,jj))+0.011*sin(alpha(ii,jj))); 
        ​end 
    ​end 
end 
 
Astar = zeros(size(A)); 
for​ m = 1:size(data,1)/3 
    ​for​ n = 1:size(data,2) 
        Astar(m,n) = (6/pi)*(mu1(1,n)-v1(1,n))*thetae(m,n) - mu1(1,n) + 2*v1(1,n); 
    ​end 
end 
 
Bstar = [Astar; B(size(data,1)/3 + 1:end,:)]; 
datanew = W' * Bstar; 
dataresp = datanew(:,size(datanew,2)); 
dataresp(dataresp >= -1.5) = 1; 
dataresp(dataresp < -1.5) = 0; 
datanew = [datanew(:,1:size(datanew,2)-1) dataresp]; 
end 

7.3   Machine Learning Environments Scripts 
7.3.1   Logistic Regression 
function​ [averagepercentage] = logistic(datanew,testingset) 
Results = zeros(1000,1); 
for​ i = 1:1000 
    ​%Define & train the classifier 
    table = array2table(datanew); 

modelspec = ​'datanew9 ~ datanew1*datanew2*datanew3*datanew4*datanew5*datanew6*datanew7*datanew8 -             
datanew1:datanew2:datanew3:datanew4:datanew5:datanew6:datanew7:datanew8'​; 
    mdl = fitglm(table,modelspec,​'Distribution'​,​'binomial'​); 
    ​%Testing set 
    ptest = testingset(:,1:size(testingset,2)-1); 
    rtest = testingset(:,size(testingset,2)); 
    results = predict(mdl,ptest); 
    resultsround = round(results); 
    diff = rtest - resultsround; 
    right = sum(diff(:) == 0); 
    percentage = right/size(testingset,1); 
    Results(i,1) = percentage; 
end 
averagepercentage = 100*mean(Results); 
end 
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7.3.2   Support Vector Machine 
function​ [averagepercentage] = svm(datanew,testingset) 
Results = zeros(1000,1); 
for​ i = 1:1000 
    ​%Define & train the classifier 
    datanewinputs = datanew(:,1:size(datanew,2)-1); 
    datanewtargets = datanew(:,size(datanew,2)); 
    mdl = fitckernel(datanewinputs, datanewtargets); 
    ​%Testing set 
    ptest = testingset(:,1:size(testingset,2)-1); 
    rtest = testingset(:,size(testingset,2)); 
    results = predict(mdl,ptest); 
    resultsround = round(results); 
 
    diff = rtest - resultsround; 
    right = sum(diff(:) == 0); 
    percentage = right/size(testingset,1); 
    Results(i,1) = percentage; 
end 
averagepercentage = 100*mean(Results); 
end 

7.3.3   Support Vector Regression 
function​ [averagepercentage] = svr(datanew,testingset) 
%   100 trials for epsilon values (0:0.001:0.5 for LS and LS+, 0.250:0.005:0.500 for PQ), 
%   picks the SMALLEST epsilon value that results in highest average accuracy 
e_Results = zeros(100,1); 
e_compare = zeros(501,2); 
 
for​ d = 0:0.001:0.5 
count = round((d/0.001)+1); 
e_compare(count,1) = d; 
for​ b = 1:100 
    datanewinputs = datanew(:,1:size(datanew,2)-1); 
    datanewtargets = datanew(:,size(datanew,2)); 
    mdl = fitrkernel(datanewinputs, datanewtargets,’Epsilon’,d); 
    ​%Testing set 
    ptest = testingset(:,1:size(testingset,2)-1); 
    rtest = testingset(:,size(testingset,2)); 
    e_results = predict(mdl,ptest); 
    e_resultsround = round(results); 
 
    e_diff = rtest - e_resultsround; 
    e_right = sum(diff(:) == 0); 
    e_percentage = right/size(testingset,1); 
    e_Results(b,1) = e_percentage; 
end 
e_average = mean(e_Results); 
e_compare(count,2)=e_average; 
end 
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best_acc = max(e_compare(:,2)); 
best_acc = round(best_acc,4); 
for​ f = 1:501 
if​ round(e_compare(f,2),4) == best_acc 
best_e = e_compare(f,1); 
break 
end 
 
%   1000 trials 
Results = zeros(1000,1); 
for​ i = 1:1000 
    ​%Define & train the classifier 
    datanewinputs = datanew(:,1:size(datanew,2)-1); 
    datanewtargets = datanew(:,size(datanew,2)); 
    mdl = fitrkernel(datanewinputs, datanewtargets,’Epsilon’,best_e); 
    ​%Testing set 
    ptest = testingset(:,1:size(testingset,2)-1); 
    rtest = testingset(:,size(testingset,2)); 
    results = predict(mdl,ptest); 
    resultsround = round(results); 
 
    diff = rtest - resultsround; 
    right = sum(diff(:) == 0); 
    percentage = right/size(testingset,1); 
    Results(i,1) = percentage; 
end 
averagepercentage = 100*mean(Results); 
end  
 

7.3.4   Deep Learning 
from ​google.colab​ import drive 

drive.mount(​'/content/gdrive'​) 

# 
import ​pandas​ as ​pd 
from ​sklearn.preprocessing​ import StandardScaler 
from ​sklearn.model_selection​ import train_test_split 
import ​keras 
import ​io 
df = pd.read_csv(​'/content/gdrive/My Drive/datanew.csv'​) 
df.head(1) 
 
df[​'Class'​].unique() ​# 0 = no, 1 = yes 
 
X = df.iloc[:, :-1].values 
y = df.iloc[:, -1].values 
 
X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size=0.1, random_state=1) 
 
sc = StandardScaler() 
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X_train = sc.fit_transform(X_train) 
X_test = sc.transform(X_test) 
 
from ​keras.models​ import Sequential 
from ​keras.layers​ import Dense 
from ​keras.layers​ import Dropout 
 
clf = Sequential([ 
    Dense(units=16, kernel_initializer=​'uniform'​, input_dim=9, activation=​'relu'​), 
    Dense(units=18, kernel_initializer=​'uniform'​, activation=​'relu'​), 
    Dropout(0.25), 
    Dense(20, kernel_initializer=​'uniform'​, activation=​'relu'​), 
    Dense(24, kernel_initializer=​'uniform'​, activation=​'relu'​), 
    Dense(1, kernel_initializer=​'uniform'​, activation=​'sigmoid'​) 
]) 
 
clf.compile(optimizer=​'adam'​, loss=​'binary_crossentropy'​, metrics=[​'accuracy'​]) 
 
clf.fit(X_train, Y_train, batch_size=15, epochs=4) 
 
score = clf.evaluate(X_test, Y_test, batch_size=128) 

print​(​'\nScore: '​, score[1] * 100, ​'%'​) 

 

8   Acknowledgment 
We would like to acknowledge the contributions of each member of the team. Kenneth led and kept                 
the team on task, created and coded the three mechanisms, coded most of the machine learning                
environments in MATLAB and Python, and wrote the sections related to the mechanisms and their               
proofs. Tony worked extensively on writing about the machine learning environments, delving into             
their mathematical steps. He also coded a considerable number of scripts in MATLAB regarding the               
wavelet transform and support vector regression. Kenneth and Tony ran a significant amount of              
trials and collected their results. Both team members contributed substantial time and effort into              
the research. 
 
We would also like to extend our special thanks to our adviser, Dr. Wang, who has provided us with                   
class time to learn about wavelets and machine learning, innumerable hours of assistance, and              
many resources. We are also very grateful for our assistant, Meera Sharma, who helped us connect                
our research to the wavelet transform, and for our mentors Ralph Venezia and Hieu Nguyen, who                
generously introduced us to the basics of MATLAB and Python. We have come to learn many                
aspects of mathematics, computer science, and teamwork in a limited time. 

48 
 


