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Abstract

The notion of Ricci curvature of Riemannian manifolds in differential geometry has been ex-
tended to other metric spaces such as graphs. The Ollivier-Ricci curvature between two vertices
of a graph can be seen as a measure of how closely connected the neighbors of the vertices are
compared to the distance between them. A Ricci-flat graph is then a graph in which each edge
has curvature 0. There has been previous work in classifying Ricci-flat graphs under different def-
initions of Ricci curvature, notably graphs with large girth and small degrees under the definition
of Lin-Lu-Yau, which is a modification of Ollivier’s definition of Ricci curvature. In this paper,
we continue the effort of classifying Ricci-flat graphs and study specifically Ricci-flat 5-regular
graphs under the definition of Lin-Lu-Yau.
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1 Introduction
Ricci curvature is an important concept in differential geometry with wide applications in theoretical
physics, such as general relativity and superstring theory. Essentially, Ricci curvature measures the
amount of deviation in the volume of a section of a geodesic ball in a Riemannian manifold compared
to its counterpart in Euclidean space. Naturally, a Ricci-flat manifold is a Riemannian manifold in
which the Ricci curvature vanishes everywhere. They hold significance in physics as they represent
vacuum solutions to the analogues of Einstein’s equations generalized to Riemannian manifolds. One
special class of Ricci-flat manifolds is Calabi-Yau manifolds, whose existence was conjectured by
E. Calabi and proved by S.-T. Yau. There has been ongoing research in determining and analyzing
the structures of Ricci-flat manifolds. One branch of such studies attempt to generalize the notion of
Ricci curvature to other metric spaces, including discrete settings, such that analogues of important
results in Riemannian manifolds such as Bonnet-Myers theorem hold.

Bakry-Emery-Ricci curvature generalizes Ricci curvature by defining a diffusion process on the
manifold, and it has been studied on graphs in [3] and [9]. Y. Ollivier defines a sense of Ricci curvature
using transportation distance and Markov chains on metric spaces including graphs in [10] and [11].
Ollivier-Ricci curvature on graph captures the idea that curvature describes the average distance
between points inside small balls compared to the distance between their centers by distributing
masses on a vertex and its neighbors, transferring the mass to another vertex and its neighbors, and
calculating the transportation distance between the two vertices using an optimal transport plan.
Ollivier-Ricci curvature is parametrized by its idleness, the amount of mass placed on the vertex
themselves. The rest of the mass is distributed evenly among its neighbors. The Ollivier-Ricci
curvature that is most studied is when the idleness is 0. Y. Lin, L. Lu, and S.-T. Yau modified
Ollivier’s definition of Ricci curvature to be the negative derivative when the idleness approaches 1 in
Ollivier’s definition, thus eliminating the idleness parameter [8]. With the modified Lin-Lu-Yau-Ricci
curvature, they were able to study the Ricci curvature of Cartesian product graphs, random graphs,
and other special classes of graphs.

[2] studied the Ollivier-Ricci curvature of graphs as a function of the chosen idleness parameter
and showed that this idleness function is concave and piece-wise linear with at most 3 linear parts on
its domain [0,1], with at most 2 linear parts in the case of a regular graph. Therefore, the Lin-Lu-
Yau-Ricci curvature is equivalent to the negative of the slope of the last linear piece of the idleness
function.

The problem of classifying Ricci-flat graphs under Lin-Lu-Yau’s definition has been tackled through
different angles and additional constraints. [7] classified Ricci-flat graphs with girth at least 5. [4]
classified Ricci-flat cubic graphs of girth 5. [6] constructed an infinite family of distinct Ricci-flat
graphs of girth four with edge-disjoint 4-cycles and completely characterize all Ricci-flat graphs of
girth four with vertex-disjoint 4-cycles. [1] classified Ricci-flat graphs with maximum degree at most
4. The previous results on the classification of Ricci-flat regular graphs of small degree under Lin-Lu-
Yau’s definition is summarized below:

1. The Ricci flat 2-regular graphs are isomorphic to the infinite path and the cycle graph Cn with
n ≥ 6.

2. The Ricci flat 3-regular graphs are isomorphic to the Petersen graph, the Triplex graph and the
dodecahedral graph.
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Figure 1.1: Ricci-flat 3-regular graphs.

3. The Ricci flat 4-regular graphs are isomorphic to one of two finite graphs: the icosidodecahedral
graph and G20; or are isomorphic to infinitely many lattice-type graphs in the terms of [1] in
which each graph is locally a 4-regular grid.

(a) Icosidodecahedral graph (b) G20

Figure 1.2: Ricci-flat 4-regular graphs.

[7] showed that Cartesian products of Ricci-flat regular graphs are Ricci-flat with the following
theorem.

Theorem 1.1. [7] Suppose that G is dG-regular and H is dH-regular. Then the Ricci curvature of
G �H is given by

κG�H((u1, v), (u2, v)) =
dG

dG + dH
κG(u,u2),

κG�H((u, v1), (u, v2)) =
dH

dG + dH
κH(v,v2)

where u ∈ V (G), v ∈ V (H), u1u2 ∈ E(G), and v1v2 ∈ E(H).

Corollary 1.1.1. If both G and H are Ricci-flat regular graphs, so is the Cartesian product graph
G �H.

Therefore, one class of Ricci-flat 5-regular graphs is the Cartesian product of a Ricci-flat 3-regular
graph and a Ricci-flat 2-regular graph. As shown by [7] and [1], the Ricci-flat 3-regular graph has
girth 5 and is either the Petersen graph, the Triplex graph, or the dodecahedral graph. The Ricci-flat
2-regular graph is either the cycle of length at least six or the infinite path.
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1.1 Roadmap and main results
In this paper, we study Ricci-flat 5-regular graphs that are not of the Cartesian product type. Specif-
ically, we have obtained the following main results.

In Section 2, we formalize the definition of Ricci curvature on graphs outlined in the introduction
following the notations of Lin-Lu-Yau in [8].

In Section 3, we analyze the local structure of a 5-regular graph by proving a more general result
concerning regular graphs. Deferring the definition of local characteristics to Section 3, Lemma 3.1
essentially determines the Ricci curvature of an edge in a regular graph given its local environment.
As an easy corollary, the local structure of any Ricci-flat regular graph can be determined by letting
κ(x, y) = 0. There are five possible sets of local characteristics for a Ricci-flat 5-regular graph, and
refer to them by type-A to type-E. See Fig. 3.1 for a schematic representation of the local structure
of the edges.

Lemma 3.1. Let xy be an edge in a d-regular graph G with local characteristics (N0, N1, N2). Then
the Ricci-curvature of the edge xy is given by

κ(x, y) = −2 +
4 + 3N0 + 2N1 +N2

d
.

Corollary 3.1.1. Let xy be an edge in a Ricci-flat 5-regular graph G. Then the local characteristics
(N0, N1, N2) of edge xy must be one of the following five types listed in Table 3.1.

In Section 4, we restrict our attention to symmetric graphs and found that Ricci-flat 5-regular
symmetric graph must be isomorphic to a 5-regular symmetric graph of order 72, which we denote
RF 5

72. Fig. 1.3 shows the subgraph induced by 2-neighborhood and 3-neighborhood of a vertex in
RF 5

72, i.e. the subgraph induced by all vertices within a distance of 2 and 3, respectively, from the
central vertex. The type-E local structure of an edge is highlighted in (a) and the the 2-neighborhood
graph of RF 5

72 shown in (a) is highlighted in (b). An adjacency list for RF 5
72 can be found in the

appendix.

(a)

(b)

Figure 1.3: Ricci-flat 5-regular symmetric graph of order 72
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Theorem 4.1. If G is a Ricci-flat 5-regular symmetric graph, then G is isomorphic to RF 5
72.

In Section 5, we turn our attention to the structure of more general Ricci-flat 5-regular graphs
that are not and necessarily symmetric. When the symmetry condition is not imposed, the possible
cases for the construction of the graph grow enormously. The main difficulty of such a classification
lies in the lack of leverageable symmetries. We attack the problem by proving the nonexistence of
certain substructures of a Ricci-flat 5-regular graph.

Lemma 5.6. If G is a Ricci-flat 5-regular graph, then it does not contain three adjacent triangles,
i.e., the subgraph shown in Fig. 1.4.

Figure 1.4

The following lemma asserts that there does not exist a Ricci-flat 5-regular graph that consists of
only type-A, type-B, and type-C edges.

Lemma 5.9. If G is a Ricci-flat 5-regular graph, then it contains edges that are not in any triangle.

In Section 6, we give some conjectures on the classification of general Ricci-flat 5-regular graphs.

2 Notations and definitions
Let G = (V,E) represent an undirected connected graph with vertex set V and edge set E without
multiple edges or self loops. A vertex y is a neighbor of x if xy ∈ E. For a vertex x ∈ V , we denote
the neighbors of x as Γ(x) and the degree of x, i.e. the number of its neighbors, as dx. If two vertices
x, y are neighbors, we use x ∼ y to represent this relation. Let Cn represent a cycle of length n.

Definition 2.1. A probability distribution over the vertex set V (G) is a mapping µ : V → [0, 1]
satisfying

∑
x∈V µ(x) = 1. Suppose that two probability distributions µ1 and µ2 have finite support.

A coupling between µ1 and µ2 is a mapping A : V × V → [0, 1] with finite support such that∑
y∈V

A(x, y) = µ1(x) and
∑
x∈V

A(x, y) = µ2(y).

Definition 2.2. The transportation distance between two probability distributions µ1 and µ2 is
defined as follows:

W (µ1, µ2) = inf
A

∑
x,y∈V

A(x, y)d(x, y),

where the infimum is taken over all coupling A between µ1 and µ2.

By the theory of linear programming, the transportation distance is also equal to the optimal
solution of its dual problem. Thus, we also have

W (µ1, µ2) = sup
f

∑
x∈V

f(x)[µ1(x)− µ2(x)]

where f is a Lipschitz function satisfying

|f(x)− f(y)| ≤ d(x, y).
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Definition 2.3. [10] Let G = (V,E) be a simple graph, for any x, y ∈ V and α ∈ [0, 1], the α-Ricci
curvature κα is defined to be

κα(x, y) = 1−
W (µα

x , µ
α
y )

d(x, y)
,

where the probability distribution µα
x is defined as:

µα
x(z) =


α, if z = x,
1− α

dx
, if z ∼ x,

0, otherwise.

Definition 2.4. [8] Let G = (V,E) be a simple graph, for any x, y ∈ V , the Lin-Lu-Yau Ricci
curvature κ(x, y) is defined as

κ(x, y) = lim
α→1

κα(x, y)

1− α
,

where κα(x, y) is the α-Ricci curvature defined in above definition.
Naturally, a Ricci-flat graph is defined to be a graph in which the Ricci curvature of each edge is

zero.
Definition 2.5. [8] A graph G is Ricci-flat if κ(x, y) = 0 for all edges xy ∈ E.

Next, we provide definitions for some properties of a graph that concern its symmetries, more
precisely its automorphism group.
Definition 2.6. A graph G is edge-transitive if its automorphism group acts transitively on its edges.
Definition 2.7. A graph G is vertex-transitive if its automorphism group acts transitively on its
vertices, i.e., for all pairs of vertices v1, v2 ∈ V there exists an automorphism ϕ : v1 7→ v2.
Definition 2.8. A graph G is symmetric if it is both edge-transitive and vertex-transitive.
Definition 2.9. A graph G is arc-transitive (also called symmetric by some authors) if its automor-
phism group acts transitively on ordered pairs of adjacent vertices, i.e., for all ordered pairs of adjacent
vertices (u1, v1), (u2, v2), there exists an automorphism ϕ : u1 7→ u2, v1 7→ v2.

Although in general symmetric graphs are not necessarily arc-transitive, for graphs of odd degree,
the two notions are equivalent. The following lemma can be proven by considering the two orbits for
the arcs in a symmetric but not arc-transitive graph under the automorphism group and comparing
the indegree and outdegree of an vertex in the directed graph induced by the orbits.
Lemma. If a graph G is of odd degree, then it is arc-transitive if and only if it is symmetric.

3 Local structures with zero curvature
The Ricci-curvature of an edge xy describes roughly the “closeness” of the neighbors of vertices x and
y. In order to formulate how close the two sets of neighbors Γ(x) and Γ(y) are, we define the local
characteristics of edge xy as follows.

Consider all possible bijective pairings p : Γ(x) \ {y} → Γ(y) \ {x} between neighbors of x and y
excluding themselves such that each neighbor of x is paired uniquely with a neighbor of y. Sort all
the distances between paired vertices d(xi, p(xi)) into a non-decreasing sequence S(p). Let S(p′) be
the least sequence by lexicographic order taken from all possible pairings p between the neighbor sets.
The local characteristics (N0, N1, N2) of edge xy is defined such that Ni is the number of occurrences
of i in the sequence S(p′). In other words, Ni describes the number of (i+ 3)-cycles Ci+3 supporting
edge xy with disjoint pairs of neighbors of x and y.

The curvature of an edge in a regular graph is then completely determined by its local character-
istics.
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Lemma 3.1. Let xy be an edge in a d-regular graph G with local characteristics (N0, N1, N2). Then
the Ricci-curvature of the edge xy is given by

κ(x, y) = −2 +
4 + 3N0 + 2N1 +N2

d
.

Proof. Since G is d-regular, we have µα
x(x) = µα

y (y) = α, µα
x(y) = µy(x) = 1−α

d , and µα
x(vx) =

µy(vy) =
1−α
d for vx ∈ Γ(x)−{y} and vy ∈ Γ(y)−{x}. The main idea of the proof is to show that the

optimal transport plan is to transfer α− 1−α
d from vertex x to y, and 1−α

d from vertices in Γ(x)−{y}
to their paired vertex in Γ(y)− {x} in the distance-minimizing pairing p′.

Let S(p′) be the least sequence associated with the pairing p′ used in the above definition of the
local characteristics of edge xy . Let A(u, v) : V × V → [1, 0] be a coupling function such that

A(u, v) =


α− 1− α

d
, if u = x, v = y,

1− α

d
, if v = p′(u),

0, otherwise.

Since we’ll be taking the limit as α → 1, assume that α > 1−α
d . Then the transportation distance

is bounded above by

W (µα
x , µ

α
y ) ≤

∑
u,v∈V

A(u, v)d(u, v)

=A(x, y)d(x, y) +
∑

d(u,p′(u))=1,2,3

A(u, p′(u))d(u, p′(u))

=(α− 1− α

d
) · 1 + 1− α

d
· (N1 + 2N2 + 3(d− 1−N0 −N1 −N2))

=3− 2α− 1− α

d
(4 + 3N0 + 2N1 +N2).

In order to differentiate between the paired neighbors of x and y, define the following sets of
vertices:

V0 = {v ∈ Γ(x)− {y} | d(v, p′(v)) = 0},
X1 = {v ∈ Γ(x)− {y} | d(v, p′(v)) = 1},
X2 = {v ∈ Γ(x)− {y} | d(v, p′(v)) = 2},
X3 = {v ∈ Γ(x)− {y} | d(v, p′(v)) = 3},
Y3 = {v ∈ Γ(y)− {x} | d(p′−1(v), v) = 3}.

We define a Lipschitz function f : V → R by the following procedure:

1. f(x) = 2, f(y) = 1, f(x2) = 3 for x3 ∈ X3, and f(y3) = 0 for y3 ∈ Y3.

2. For v0 ∈ V0, if v0 ∈ Γ(X3), then f(v0) = 2; otherwise f(v0) = 1. For x1 ∈ X1, if x1 ∈ Γ(X3),
then f(x1) = 2 and f(p′(x1)) = 1; otherwise f(x1) = 3 and f(p′(x1)) = 2. For x2 ∈ X2,
if x2 ∈ Γ(X3), then f(x2) = 2, f(p′(x2)) = 0, and f(v2) = 1 for all v2 ∈ Γ(x2) ∪ Γ(p′(x2));
otherwise f(x1) = 3, f(p′(x2)) = 1, and f(v2) = 2.

3. For the remaining vertices v, if v ∈ Γ(x) for f(X) = 3, then f(v) = 2; otherwise f(v) = 1.
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It is easy to check that f is indeed 1-Lipschitz, and as a result the transportation distance is
bounded below by

W (µα
x , µ

α
y ) ≥

∑
v∈V

f(v)[µα
x(v)− µα

y (v)]

=f(x)(α− 1− α

d
) + f(y)(

1− α

d
− α) +

∑
v∈V0

(
1− α

d
− 1− α

d
)

+
∑

v∈Γ(x)−{y}−V0

f(v)(
1− α

d
− 0) +

∑
v∈Γ(y)−{x}−V0

f(v)(0− 1− α

d
)

=(f(x)− f(y))(α− 1− α

d
) +

1− α

d
(

3∑
i=1

∑
xi∈Xi

(f(xi)− f(p′(xi)))

=
1− α

d
· (N1 + 2N2 + 3(d− 1−N0 −N1 −N2))

=3− 2α− 1− α

d
(4 + 3N0 + 2N1 +N2).

Since the two bounds are equal, we have

W (µα
x , µ

α
y ) = 3− 2α− 1− α

d
(4 + 3N0 + 2N1 +N2).

Therefore, the Ricci curvature of edge xy is

κ(x, y) = lim
α→1

1−W (µα
x , µ

α
y )

1− α
= −2 +

4 + 3N0 + 2N1 +N2

d
.

Corollary 3.1.1. Let xy be an edge in a Ricci-flat 5-regular graph G. Then the local characteristics
(N0, N1, N2) of edge xy must be one of the following five types listed in Table 3.1.

Type-A (2, 0, 0)
Type-B (1, 1, 1)
Type-C (1, 0, 3)
Type-D (0, 3, 0)
Type-E (0, 2, 2)

Table 3.1: Local characteristics for edges in Ricci-flat 5-regular graphs

Proof. With κ = 0 and dx = 5, Lemma 3.1 gives

3N0 + 2N1 +N2 = 6.

Since there are only 4 vertices in Γ(x) − y, we have N0 + N1 + N2 ≤ 4. All solutions of the above
are given in Table 3.1. A schematic drawing of each local structure is shown in Fig. 3.1. Note that
vertices that are not neighbors of x and y may be the same vertex as other vertices in the graph as
long as the local characteristic of xy is still satisfied.
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x y

Type-A

x y

Type-B

x y

Type-C

x y

Type-D

x y

Type-E

Figure 3.1: Local structures of edge xy in Ricci-flat 5-regular graphs.

It is worth noting that in each type of local structure, at least two pairs of vertices given by the
pairing p′ have to have distance less than 3. Moreover, excluding type-A, each type requires at least
three pairs of vertices with distance less than 3.

4 Ricci-flat 5-regular symmetric graphs
In this section, we classify Ricci-flat 5-regular graphs G that are symmetric.

Theorem 4.1. If G is a Ricci-flat 5-regular symmetric graph, then G is isomorphic to RF 5
72.

For a symmetric graph G, every edge in G must have the same local structure. Therefore, we
classify G based on the local structure of its edges.

4.1 Ricci-flat 5-regular symmetric graphs of girth 3
Lemma 4.2. If G is a Ricci-flat 5-regular symmetric graph, then the edges in G are not type-A.

Proof. Let xy be an edge in G, v1, v2 be common vertices of x and y, and x1, x2, y1, y2 be the neighbors
of x and y respectively, as shown in Fig. 4.1. Consider edge xx1, which needs to be in two C3 for it to
be type-A. Clearly, x1 � y considering edge xy, so x1 must be connected to two of the vertices in the
set {v1, v2, x2}. Since v1 and v2 are interchangeable, i.e., there exists an automorphism ϕ : v1 7→ v2,
we have wlog x1 ∼ v1. Next, we consider edge v1y. Note that d(x1, v2) = 2, so we must have either
v1 ∼ v2 or x1 ∼ y. However, both option add a third C3 on edge xv1 or xy, and we have reached a
contradiction.
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x y

v1

v2

y1

y2

x1

x2

x1

v1

Figure 4.1

Lemma 4.3. If G is a Ricci-flat 5-regular symmetric graph, then the edges in G are not type-B or
type-C.

Proof. Consider a vertex x0 in G and its neighbors xi, 1 ≤ i ≤ 5. Since every edge is type-B or type-C,
it is in a C3. For edge x0x1, wlog x1 ∼ x2. For edge x0x3, wlog x3 ∼ x4. Then, edge x0x5 cannot
be in a C3 since connecting x5 with any other vertex will result in two C3 on an edge, which is a
contradiction since none of the edges are type-A.

x0

x1

x2

x3x4

x5

Figure 4.2

4.2 Ricci-flat 5-regular symmetric graphs of girth 4
Before proving that Ricci-flat 5-regular symmetric graphs with type-D edges do not exist, we prove a
short lemma using the technique of double counting to show that a Ricci-flat graph containing only
type-D edges must contain two 4-cycles sharing two edges, that is, the subgraph shown in Fig. 4.3
which is isomorphic to the complete bipartite graph K3,2.

Figure 4.3

Lemma 4.4. If G is a Ricci-flat 5-regular graph containing only type-D edges, then it contains K3,2

as a subgraph.

Proof. We show by contradiction that there doesn’t exist a Ricci-flat 5-regular graph with only type-D
edges that does not contain K2,3, i.e., in which all 4-cycles share at most one edge. Suppose such a
graph G exists. Consider a vertex x0 in G and its neighbors xi, 1 ≤ i ≤ 5. Since all C4 share at most
one edge, each one of the five edges x0xi is in exactly three C4. Thus, the number of ordered pair
(x0xi, C

∗
4 ) where x0xi ∈ C∗

4 should be 15. On the other hand, each C4 through vertex x0 contains
two edges xi and xixj . Thus, the number of ordered pairs (x0xi, C

∗
4 ) should be even, and we have

reached a contradiction.
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Lemma 4.5. If G is a Ricci-flat 5-regular symmetric graph, then the edges in G are not type-D.

Proof. Since G is symmetric and of odd degree, it must be arc-transitive. As a result, the neighborhood
of an edge u1v1 ∈ G denoted by Γ(u1v1), i.e., the subgraph induced by Γ(u1) ∪ Γ(v1) must be
isomorphic to the neighborhood of any other edge Γ(u2v2). Since by Lemma 4.4, G must contain K3,2

as a subgraph, each edge is in a K3,2 as a result of Lemma 4.4. We classify all possible neighborhoods
of an edge xy such that xy is in a K3,2 and there is an automorphism ϕ : Γ(xy) → Γ(xy) mapping xy
to yx. Let xi and yi be the neighbors of x and y excluding themselves, and wlog xi ∼ yi for i = 1, 2, 3
and d(x4, y4) = 3. In order to form a K3,2 on xy, we have wlog either x1 ∼ y2 or x1 ∼ y4.

Assume that x1 ∼ x2 and x1 � y4, we break into two cases based on the number of connections
between xi and yj .

1. Suppose each xi, i = 1, 2, 3 is connected to at most one yj , j 6= i.

x y

y1x1

x3 y3

y2

y4

x2

x4

(a)

x y

y1x1

x3 y3

y2

y4

x2

x4

(b)

x y

y1x1

x3 y3

y2

y4

x2

x4

(c)

x y

y1x1

x3 y3

y2

y4

x2

x4

(d)

Figure 4.4

(a) Assume that xy has the neighborhood shown in Fig. 4.4(a). Consider edge xx4, which
cannot form a C4 through xy as it has distance 3 to all the non-adjacent vertices. Thus, it
must form a C4 with each xi, i = 1, 2, 3 by connecting x4 to a new neighbor of xi namely zi.
For the neighborhood of xx4, we need to connect one of zi to xj , i, j ∈ {1, 2, 3}. Note that
xx1 is already in three C4, namely x1y1yx, x1y2x2x and x1z1x4x. Since we have y2 ∼ y, its
neighborhood including the fifth neighbor of x1 is isomorphic to Γ(xy). Thus, the neighbors
of x1 and x are not further connected, and we have x1 � z2, z3 and z1 � x2, x3. Therefore,
we must have either x2 ∼ z3 or z2 ∼ x3.
If x2 ∼ z3 as in Fig. 4.5(a), consider edge xx2, which is already in three C4. Let v be the
fifth neighbor of x2, we have d(v, x1) = 3. However, as x1 is connected to y2, a neighbor of
x2, the neighborhood of xx2 is not isomorphic to Γ(xy), contradiction.
If z2 ∼ x3 as in Fig. 4.5(b), then edge xx3 is in three C4 and has isomorphic neighborhood
to xy. Consider edge xx2, which needs another C4 formed through a new neighbor of
x2 namely v since x2 cannot connect to any of the existing vertices. However, v � x1

considering the neighborhood of xx1, v � x3 considering the neighborhood of xx3. Thus,
the third C4 on edge xx2 cannot be formed, a contradiction.

x y

y1x1

x3 y3

y2

y4

x2

x4

z1

z2

z3

x2

(a)

x y

y1x1

x3 y3

y2

y4

x2

x4

z1

z3

x3

z2

(b)

Figure 4.5
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(b) Assume that xy has the neighborhood shown in Fig. 4.4(b). Similar to Case 1(a), we have
zi ∼ xi for i = 1, 2, 3 where zi are neighbors of x4 as in Fig. 4.6(a). Since the neighborhood
of edge xx4 needs to be isomorphic to Γ(xy), we must have wlog either z1 ∼ x2 or z1 ∼ x3.
However, d(z1, x3) = 3 considering edge xx1, which is already in three C4, so we must
have z1 ∼ x2 and also z2 ∼ x1. Next, we consider edge xx3, which is in two C4 and needs
to form a C4 through either xx1 or xx2. Since xx1 and xx2 are equivalent edges under
an automorphism, let the C4 pass through xx1. Since x1 is at maximum degree, x3 must
be connected to one of the neighbors of x1. However, none of the neighbors of x1 can
be connected to x3 given the neighborhood structure of edges xy and xx4, and we have
reached a contradiction.

(c) Assume that xy has the neighborhood shown in Fig. 4.4(c). Similar to Case 1(a), we have
zi ∼ xi for i = 1, 2, 3 where zi are neighbors of x4 as in Fig. 4.6(b), and we need to connect
neighbors of x4 and x so that the neighborhood of xx4 is isomorphic to Γ(xy). Since xx1

is already in three C4, we have x1 � z2, z3. Thus, we have either x2 ∼ z3 and x3 ∼ z1
(shown with dashed lines), or x2 ∼ z1 and x3 ∼ z2 (shown with dotted lines). However, in
each case four C4 are created on edge xx1 and xx3 respectively, a contradiction.

x y
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z2 x1

(a)

x y
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x3 y3

y2

y4x4
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z3

x2

z1

x3

z2

(b)

Figure 4.6

(d) Assume that xy has the neighborhood shown in Fig. 4.4(d) respectively. The argument for
Case 1(c) applies similarly.

2. Suppose each xi, i = 1, 2, 3 is connected to at most two yj , j 6= i. Wlog, let x1 ∼ y2, y3, and by
the automorphism ϕ there needs to be a vertex yj such that it is connected to two xi, i 6= j. By
casework, we have the following potential neighborhoods of xy shown in Fig. 4.7 in which there
exists an automorphism ϕ.
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(c)

x y
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x3 y3

y2

y4

x2

x4

(d)

Figure 4.7

(a) Assume that xy has the neighborhood shown in Fig. 4.7(b). We relabel the vertices by
interchanging y1 and y2 and redraw the graph in Fig. 4.8 to highlight the symmetry and
its similarity to the following cases.
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Figure 4.8

Consider edge xx4 and note that x4 has distance 3 to y4 and the fifth neighbor of x1. Since
it does not connect to any existing vertex either, it cannot form a C4 through both xx1

and xy, a contradiction.
(b–d) Assume that xy has the neighborhood shown in Fig. 4.7(b)-(d) respectively. Consider edge

xx4 and a similar contradiction arises as in Case 2(a).

Therefore, we proved that we must have wlog x1 ∼ y4. Then, x4 must also be connected to a
neighbor of y given the automorphism ϕ. Note that x4 � y1 or else d(x4, y4) = 1, so we have wlog
x4 ∼ y3. Moreover, note that x4 � y2, since if X4 is connected to two neighbors of y, y4 must be
connected two neighbors of x as well, resulting in d(x4, y4) = 1. Similarly, y4 � x2, x3. Therefore,
we have x1 ∼ y4 and x4 ∼ y3. We combine this with the discussion of whether xi and yj where
i, j ∈ {1, 2, 3}, i 6= j is connected above, and arrive at several possibility for Γ(xy).

1. Suppose xi � yj for all i, j ∈ {1, 2, 3} and i 6= j as in Fig. 4.9.

x y

y1x1

x3 y3

y2

y4

x2

x4

Figure 4.9

Consider edge xx1. Let z1, z2 be the two new neighbors of x1. Then, for Γ(xx1) to be isomorphic
to Γ(xy), wlog we have z1 connected to two neighbors of x excluding x1, and z2 connected to
the remaining neighbor of x. Since x3 and x4 are interchangeable, there are two cases.

(a) Assume wlog that z1 ∼ x2, x4 and z2 ∼ x3. Consider edge xx4. Note that it cannot have
an isomorphic neighborhood to xy because y3 and z1, two neighbors of x4, have degree 3
in the neighborhood of xx4, a contradiction.

(b) We have that z1 ∼ x3, x4 and z2 ∼ x2. Consider edge z1x4, which is in two C4, namely
z1x1xx4 and z1x3y3x4. However, we also have xx3, which makes it impossible for Γ(z1x4)
to be isomorphic to Γ(xy), a contradiction.

2. Suppose there exists xi, i ∈ {1, 2, 3} such that xi ∼ yj for some j ∈ {1, 2, 3}−{i}, then there are
only two non-isomorphic possibilities for Γ(xy) by noticing that the automorphism ϕ sending
xy to yx must be ϕ : x1 7→ y3, x2 7→ y2, x3 7→ y1, x4 7→ y4.
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(b)

Figure 4.10

(a) Assume that xy has the neighborhood shown in Fig. 4.10(a). Let the fifth neighbor of x1

be z1 and the fifth neighbor of y3 be z2. Consider edge x1y3, which needs one more C4 and
it must be formed by connecting z1 ∼ z2. This way, edges xx1 and yy3 have isomorphic
neighborhoods to xy. Next, we consider edge xx1, which is already in three C4. To make
Γ(xx1) isomorphic to Γ(xy), we must have x2 ∼ z1.
Next, we consider edge x4x. Notice that y3, a neighbor of x4, is connected to four neighbors
of x, thus it must be mapped to x1 by the automorphism sending edge x4x to xy. Thus,
x2, the only neighbor of x not connected to y3, must be connected to a new neighbor of
x4 namely w1. Similarly, since vertices x3 and x4 are interchangeable, the same analysis
applies and x2 must be connected to a neighbor of x4. Note that x4 � w1 since if so, w1 as
a neighbor of x3 would be connected to two neighbors of x, resulting in Γ(xx3) no longer
possible to be isomorphic to Γ(xy). Thus, we must have x2 ∼ w2 ∼ x4. However, in this
case, xx2 would be in four C4, a contradiction.

x y

y1x1

x3 y3

y2

y4

x2

x4

z1

x2

z2

w2

x4

x3

w1

x2

Figure 4.11

(b) Assume that xy has the neighborhood shown in Fig. 4.10(b). Let the fifth neighbor of x1

be z. Consider edge xx1, which is in two C4, so another C4 needs to be formed through
x1z. Since x3 and x4 are interchangeable, let z ∼ x4. To make the Γ(xx1) isomorphic to
Γ(xy), we must have z ∼ x2, x3. However, in this way, Γ(xx2) cannot be isomorphic to
Γ(xy), a contradiction.
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Figure 4.12

Next, we move onto symmetric graphs with type-E edges.

Lemma 4.6. If G is a Ricci-flat 5-regular symmetric graph with type-E edges, then it is isomorphic
to RF 5

72.

Proof. We start by considering a C5 in G and denote its vertices xi, 1 ≤ i ≤ 5. Since each edge is
type-E, it needs to be supported on two C4. There are only three arrangements of the C4 on edges in
the C5 under consideration such that each arc in the C5 are in the same orbit under the automorphism
group of this subgraph, since for the two C4 on an edge xixi+1, at least one of them is adjacent to
a C4 on the neighboring edge xi+1xi+ 2. If both C4 on an edge are adjacent to the two C4 on
neighboring edges of the C5, we have the first case in Fig. 4.13(a). When only one C4 is adjacent to
a C4 on the neighboring edges, if there are no three adjacent C4 in a row, that is, adjacent C4 on
edges xixi+1, xi+1xi+2, xi+2xi+3, we have the second case shown in Fig. 4.13(b); otherwise, we have
the third case shown in Fig. 4.13(c).
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Figure 4.13

Since G is symmetric, all the C5 in G must have a local structure that is isomorphic to the subgraph
shown above in each case. We construct the graph with the aid of a curvature calculator [5]. In the
first two cases, contradiction arises in the construction process, while the local structure of a C5 in
the third case can be successfully expanded into a Ricci-flat 5-regular graph, which is isomorphic to
what we denote as RF 5

72. The 2-neighborhood and 3-neighborhood of a vertex in RF 5
72 are shown in

Fig. 1.3.

This concludes our proof of Theorem 4.1.

5 General Ricci-flat 5-regular graphs of girth 3
In this section, we prove some lemmas that show the nonexistence of certain subgraphs of girth 3 in
a Ricci-flat 5-regular graph.
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We start by considering graphs containing adjacent triangles, that is, an edge of type-A.

Lemma 5.1. If G is a Ricci-flat 5-regular graph, then it does not contain subgraph H shown in
Fig. 5.1.

x y

z

w

Figure 5.1

Proof. Suppose G contains H, let x1, y1, z1, w1 each be another neighbor of x, y, z, w respectively.
Consider the edge xx1 and let x2 be another neighbor of x1, which has to be distinct from all existing
vertices. Note that d(x2, y) = d(x2, z) = d(x2, w) = 3 because xy, xz, xw have to be Type-A and
d(x1, y1) = d(x1, z1) = d(x1, w1) = 3. Therefore, edge xx1 cannot be one of the types since any type
requires at least two pairs of vertices with distance less than 3, which is a contradiction.

Lemma 5.2. If G is a Ricci-flat 5-regular graph, then it does not contain subgraph H shown in
Fig. 5.2.

x1

x2

x3x4

x5

x0

Figure 5.2

Proof. Suppose G contains H, we consider the remaining two neighbors of x1, which must be two new
vertices y1, y2 since x1 � x3, x4, x5 by Lemma 5.1. Similarly, x2 needs two new vertices as x2 � y1, y2,
or otherwise edge x1x2 is already supported on one C3 as d(x0, x0) = 0 and one C5 as d(x3, x5) = 2.
We continue the same line of reasoning for x3, x4, x5 and let the new neighbors for xi be y2i−1 and
y2i. Consider edge x1x2, which has to be either type-B or type-C.

1. x1x2 is type-B, then it is supported on a C4 through new neighbors of x1 and x2, wlog we have
y2 ∼ y3 and d(y1, y4) = 3 as shown in Fig. 5.3. Next, we consider edge x2x3, which can be either
type-B or type-C.

(a) If x2x3 is type-C as in Fig. 5.3(a), we have wlog d(y4, y5) = 2 since y5 and y6 are equivalent.
Consider edge x2y4 which is already in one C5. It must be type-B since it cannot form any
C3, C4, C5 through x2x0 without forming a C4 through x2x1. It needs to form a C3 and
a C4 through x2x1 and x2x3. Since x1 � y4 considering edge x1x2, we have y3 ∼ y4 and
y2 ∼ y4 and as a result d(y1, y3) = d(y1, y4) = 3 considering edge x1x2. Next, we consider
edge x1y1, since d(y1, x3) = 3 by type-A of edge x0x1, then it cannot form any C3, C4, C5

through edge x1x2, and it cannot form a C4 through x1x0. Thus it is not type-C, D, E. To
be type-B, it needs y1 ∼ y2 which contradicts to d(y1, y3) = 3. Hence, x1y1 cannot be any
of the good types. A contradiction.

(b) Therefore, edge x2x3 is type-B and forms a C4 with either x2y3 or x2y4.
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i. If a C4 is formed through x2y3, we have wlog y3 ∼ y5 as in Fig. 5.3(b). Consider edge
x2y4, which is clearly not type-A. It cannot be in a C3, otherwise we have y3 ∼ y4
which leads to x2y3 being in two C4 and one C3. Since d(y1, y4) = d(y6, y4) = 3, edge
x2y4 cannot be type-E as a C5 cannot be formed through x2x0 without forming C4.
Thus iAt is type-D and y4 ∼ y2, y5. We have d(y1, y3) = d(y1, y4) = 3 considering edge
x1x2. Then, we reach a contradiction that x1y1 is not any of the types by the same
argument as in the above case.
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y6y7

y8

y9

y10

(b)

Figure 5.3

ii. Therefore, we must have y4 ∼ y5. Applying the above argument to edge x3x4, we see
that y6 ∼ y7 or y6 ∼ y8 by rotational symmetry.
Continuing this way we obtain the structure shown in Fig. 5.4. Consider the new
neighbors of y4. We claim that y4 cannot have three distinct new neighbors. If so, let
the new neighbors be v1, v2, v3. Clearly d(x0, vi) = 3, d(x1, vi) ≥ 2 and thus edge x2y4
must be type-B since it is already in one C4 and cannot form any C3, C4, C5 through
x2x0. In this way, x2y4 must be in a C3, contradicting with the assumption that y4
has three new neighbors. As a result, y4 must be connected to an existing vertex.
We consider the possible neighbors of y4. Note that y4 � y1, y2 considering x1x2,
y4 � y7, y8 considering x0x2, and y4 � y9, y10 considering x0x5. Moreover, y4 � y2, y6
by the argument in Case (b)i.
Thus, we must have y4 ∼ y3, that is, edge x2y4 is type-B and needs a C5. The only way
to form a C5 supporting x2y4 is through x2x1, and we have y4 ∼ t1 ∼ y2. Similarly,
x2y3 must be type-B and needs a C5 through x2x3. The C5 cannot go through vertex
t1, since if y3 ∼ t1 ∼ y5, edge y3y4 would be in two C3 and one C5. Thus, we must
have y3 ∼ t2 ∼ y5. However, edge y3y4 is now in one C3 and two C4, a contradiction.
Therefore, we have y4 � y3.
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Figure 5.4

2. x1x2 is type-C, then it has to be supported on two more C5 as shown in Fig. 5.5. We have
wlog d(y1, y3) = d(y2, y4) = 2. Consider edge x2y3, which is in one C5 through x2x1 and cannot
form any C3, C4, C5 through the edge x2x0 without forming a C4 through x2x3 or through x2x1.
Thus, edge x2y3 must be type-B and forms either a C3 or a C4 through edge x2x3. Since no C3

can be formed through x2x3, it has to be a C4 through x2x3, resulting in y4 ∼ y5. In this way,
edge x2x3 is type-B, and leads to a contradiction by similar analysis in Case 1 as x2x3 and x1x2

are equivalent under rotational symmetry. We have finished the proof that a Ricci-flat 5-regular
graph does not contain subgraph H.

x1

x2

x3x4

x5

x0

x1

y1 y2

y3

y4

y5

y6y7

y8

y9

y10

Figure 5.5

Lemma 5.3. If G is a Ricci-flat 5-regular graph, then it does not contain subgraph H shown in
Fig. 5.6.

x0

x1 x2

x3

x4x5

x6

Figure 5.6
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Proof. Consider edge x0x5, which must be type-B and needs a C5 since it is already in a C3 and a C4

given that x1 � x5 by Lemma 5.2.

1. Suppose it forms a C5 through x0x2, then we must have x1 ∼ t1 ∼ x5 shown in Fig. 5.7 as the
C5 cannot go through any new neighbors of x2 considering that edge x0x2 is type-A. Let t2 be
the fifth neighbor of x5, we have d(t2, x3) = 3 as edge x0x5 is type-B. Observe that vertex x3

needs two new vertices w1, w2 as its neighbors. We have t1, x6, x2, x4 � w1, w2 considering that
edge x0x3 is type-A. In addition, x6 � x2 otherwise there would be two C4 supported on edge
x0x5, similarly, x6 � x4 and t1 � x2, x4. Thus d(x6, x3) = d(t1, 3) = 3, and edge x4x5 cannot
be type-C as there is no way to form three C5 and thus it has to be type-B that needs a C4.
Vertex x4 needs two new vertices as its neighbors u1, u2. Note that x6, t1 � u1, u2 considering
that edge x0x4 is type-A. To form the C4 on x4x5, wlog let x5 ∼ t2 ∼ u1. Consider edge x4u1,
which is in a C4. Thus, it is either type-B, type-D, or type-E.

x1 x2
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x4x5
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t2 u1

u2

w1

w2
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x1 x2

x3

x4x5

x6

Figure 5.7

(a) If edge u1x4 is type-E, then there must be a C5 passing through edge x4x0. The only way
to form such C5 is by connecting u1 ∼ w1 and u1 ∼ w2 such that a C4 is formed through
one of them with edge x4x3 and a C5 is formed with the other through x4. Now we consider
the edge u2x4. Observe that it cannot form any C3 or C4 with any neighbor of x4, thus it
is not any type. A contradiction. Similarly, edge u2x4 is not type-E.
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x6

Figure 5.8

(b) If edge u1x4 is type-D, then u1 ∼ w1 and edge x3x4 is type-B, we have d(u2, w2) = 3.
u2x4 is not in any C3 so it is also type-D. To form the third C4 for edge u1x4, let u3 be
the shared neighbor of u1, u2. For edge u2x4 to be type-D, it needs two C4 through edges
x4x5 and x4x3, and it must be u2 ∼ t2 and u2 ∼ w1, otherwise there would be two C4

for edge x4x5 or edge x4x3, a contradiction since both edges are type-B. Now we have
d(u1, w2) = d(u2, w2) = 3 for edge x3x4. Consider edge w2x3, and note that w2 � x2. If a
C4 is not formed through w2x3x2, then any new neighbor of w2 has distance 3 to vertex x4

and vertex x0, which results in edge w2x3 not being one of the five types, a contradiction.
Thus w2 ∼ w3 ∼ x2 and edge w2x3 is type-B, let x2 ∼ w4, we have d(w1, w4) = 3. Observe
that w1 � w2 as d(u2, w2) = 3, and thus both w1x3 and w2x3 are not in any C3. Note there
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cannot be a C5 on w1x3 through x3x0x2 as d(w1, w4) = 3. Then w1x3 is type-D whose
second C4 is formed by w1 ∼ w3 and the third C4 is formed by w1 ∼ p1 ∼ w2 where p1 is
a new vertex. Now the edge w2x3 is in two C4 and cannot form C3, C4, C5 through edge
x3x4 and cannot form C3, C4 through edge x3x2 so that w2x3 is not type-D or type-E. A
contradiction.
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Figure 5.9

(c) Thus edge u1x4 is type-B and u2 ∼ u1. Observe that the C5 for edge u1x4 does not pass
through edge x4x0, and as a result it must pass through edge x4x3 through w1 or w2.
Wlog, let w1 ∼ u3 ∼ u1. Note that u1 � w1, w2 considering edge edge u1x4 and u2 � w2

considering edge x3x4. Consider edge w1x3, which cannot form C4 or C5 through x3x0,
implying that it is not type-C or type-D. Assuming it is type-B as shown in Fig. 5.10(a),
then w1 ∼ w2, and it needs a C4 which must pass through edge x3x2. Since d(x2, u1) = 3
considering edge x0x4, this C4 cannot be obtained by u3 ∼ x2. Let x2 ∼ w3 ∼ w1.
Similar analysis applies to edge w2x3 and it has to be type-B, needing a C4 through
x2x3. To avoid two separate C4 on edge x3x2, we have w2 ∼ w3. Let v1 be the fifth
neighbor of x2 and consider edge v1x2. As d(v1, w1) = d(v2, w2) = 3 considering edge x3x2,
d(v1, x4) = d(v1, x5) = 3 considering edge x0x2, and thus edge x2v1 cannot be any type.
A contradiction. Therefore, edge w1x3 and w2x3 are both type-E as shown in Fig. 5.10(b)
and both need a C4 through edge x3x2. Without forming two C4 supported on x3x2, let
w1, w2 ∼ v1 ∼ x2. Now consider the C5 passing through x3x0 for type-E of edge w1x3, but
it cannot be formed without passing through x0x2 which leads to two distinct C4 on edge
x3x2. A contradiction.
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Figure 5.10
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2. Thus, x0x5 must form a C5 through x0x3, and in this case we have x4 ∼ y1 ∼ x5 shown in
Fig. 5.11. Let y2 be the fifth neighbor of x4 as x4 cannot be connected to any existing vertices.
Consider edge x3x4, which must be either type-B or type-C.
We claim that x3x4 cannot be type-C. If so, since d(x5, w1) = d(x5, w2) = 3, x4y1 and x4y2
must each be in a C5 through x4x3. Note y1 � y2 as there is C5 passing through y1x4x3. There
is no C3, C4, C5 passing through y2x4x0 because of type-A of edge x4x0 and edge x0x2. Thus
x4y2 cannot be any good type. A contradiction.

x1 x2

x3

x4x5

x6 x0

y1

y2

x1 x2

x3

x4x5

x6

Figure 5.11

Therefore, x3x4 must be type-B. Let z1 be a new neighbor of x3, then we have wlog z1 ∼ y2 for
the C4 on x3x4. Note that y1 � x6 because of type-A of edge x0x4. Thus, y1 must have two
new vertices u1, u2.
Next, we consider edge x4y1, since d(x5, x1) = 3, we have y1 � z1, thus x4y1 cannot form any
C3, C4, C5 through x4x3 and thus must be type-B. Since a C4 cannot be formed through x4x0,
we have have wlog u2 ∼ y2. Then a C5 must be formed through x4x0 followed by x4x5. Thus,
we have wlog u1 ∼ x5 for the C5. See 5.12(b). Now edge x5y1 is also type-A, we have that
the edge x6x5 cannot form any new C3, C4, C5 through x5x4, thus it is not type-C or type-E. It
cannot be type-D because it cannot form a C4 through x5y1. Thus, x6x5 must be type-B and
forms a C3 by connecting x6 and u1.
Next, we observe the inflectional symmetry across the dotted line with the starting configuration
vertices xi, and apply our analysis above to the upper half of the graph in Fig. 5.12(b). For the
addition of new vertices, note that z1 6= z2 as otherwise the fifth edge on vertex x3 cannot form
any C3, C4, C5 through x3x0 and x4x4, and that v2 6= u2 as otherwise edge w1v2 cannot be one
of the five types.
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Figure 5.12

Finally, we observe the rotational symmetry around the 4-cycle x1x0x5x6, and the vertex set
{x5, x1, x0, x4, y1, u1, x6} and the edges between them are isomorphic to the starting configura-
tion of the lemma. Similarly analyzing the addition of new vertices, we obtain the graph shown
in Fig. 5.13 with vertices re-labeled to highlight its symmetry. Consider edge y1w1, which is
already in two C4. Note that it is not possible to form another C4 through y1x1 or y2x2. Thus,
edge y1w1 must be type-E, note w1 � w4 as edge x1y1 is type-A, thus we have w1 ∼ u3, u8 for
the two C5 through y1x1 and y2x2. Similarly for all yiwi, we have w2 ∼ u2, u5, w3 ∼ u4, u7 and
w4 ∼ u6, u1.
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Figure 5.13

Next, we consider edge z1u1, which is in two C4 through z1y1 and z1y4. Since a C5 cannot
be formed through z1x1, z1u1 must be type-D and forms a C4 through z1u8. Since u1 cannot
connect to any of the existing vertices, it must have two new neighbors v1, t1. Thus, for the C4

through z1u8, we have u1 ∼ v1 ∼ u8, and edge z1u8 is also set as type-D. We apply the same
analysis to other edges ziuj , and denote the new vertex that forms the C4 as vi. We show that
all vi are distinct vertices by eliminating the following cases in which v1 = v2 and v3 = v4.

(a) Suppose v1 = v2 as shown in Fig. 5.14. Note that t1 6= t2 since u1w1 and u2w1 are type-D
edges as they are already in three C4. Consider edge v1u1, which is already in two C4
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through u1w4u8v1 and u1w1u2v1. Since no C5 can be formed through u1z1 as all other
neighbors of z1 are at maximum degree, v1u1 is type-D and forms another C4 through u1t1.
Thus, we have t1 ∼ t3 ∼ v1. Applying the same argument to v1u2, we have t3 ∼ t2. Next,
we consider edge v1u8, which is in two C4 through v1u1w4u8 and v1u2w1u8. It cannot
be type-E since no C5 can be formed through u8z1 since all other neighbors of z1 are at
maximum degree, so v1u8 must be type-D and forms another C4 through a new neighbor
of u8 namely t4 and we have t4 ∼ t3. Since u3 � t4, let the fifth neighbor of u3 be t5. The
same argument for v1u8 applies to v1u3, and we have t5 ∼ t3. However, now edge t3v1 is
in four C4, contradiction.
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Figure 5.14

(b) Suppose v1 = v3 as shown in Fig. 5.15. Consider edge v1u4, which is in one C4 through
v1u5. Consider edge v1u1. If v1 and u1 each has a new vertex as its fifth neighbor, then by
process of elimination, u1v1 cannot be any type. Wlog, we let u1 ∼ u4 and v1 ∼ t1 ∼ u8

so that we have edge v1u1 as type-B. Next, we consider edge u1w1, in which both vertices
have degree 5 already and it is clear u1v1 cannot be any type with curvature zero. Similar
contradiction arises after satisfying the requirements for edge v1u1.
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By symmetry of the above two cases, we have proved that all vi are distinct as shown in Fig. 5.16.
Consider edge u1w1, which is in two C4 through w1u8v3u1 and w1y1z1u1. Since no C5 can be
formed through u1w4 as u8 � u3 considering edge z1y1, edge u1w1 must be type-D and forms
a C4 through w1u2 or w1u3. Since vertices u2 and u3 are interchangeable, wlog, the C4 passes
through w1u2. Thus u1, u2 must have a common neighbor namely t1, since every existing vertex
has degree greater than 3. By rotational symmetry, we obtain u3 ∼ t2 ∼ u4, u5 ∼ t3 ∼ u6, and
u7 ∼ t4 ∼ u8. With some quick calculations analogous to the proof that all vi are distinct, we
see that all four ti are distinct vertices.
Next, we consider edge w1u8, which is in two C4 through u8z1 and u8w4. Since both w1 and u8

are at maximum degree, we must form two C5 by connecting t4 ∼ t2 and v1 ∼ t1. By rotational
symmetry, we have t1 ∼ t3, t1 ∼ v2, t2 ∼ v2, t2 ∼ v3, t3 ∼ v3, t4 ∼ v1, t4 ∼ v4. Now edge t2 ∼ t4
is in four C5 and must be in two C4. However, the only way to form a C4 is by connecting
v1 ∼ v2 but then u1w1 would be in four C4, and we have reached a contradiction, concluding
the proof.
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Lemma 5.4. If G is a Ricci-flat 5-regular graph, then it does not contain subgraph H shown in
Fig. 5.17.

x0

x1 x2

x3

x4x5

x6

x7

Figure 5.17

Proof. Consider edge x0x5 which is already in a C3 and a C5. It cannot be type-C because no C5 can
be formed through x0x2 without forming a C4 through x0x1. Thus, x0x5 must be type-B. Since no
C4 can be formed through x0x2 and x0x3 given that they must be type-A edges, a C4 must be formed
through x0x1. However, if a C4 is formed through x1x0x5, we constructed a forbidden subgraph by
Lemma 5.3 and we’re done.

Lemma 5.5. If G is a Ricci-flat 5-regular graph, then it does not contain subgraph H shown in
Fig. 5.18.

x0

x1 x2

x3

x4x5

Figure 5.18

Proof. Consider edge x0x1. By Lemma 5.1, we have x1 � x3, x4. By Lemma 5.2, we have X1 � x5.
Thus, edge x0x1 cannot be type-A and must be either type-B or type-C. If x0x1. If x0x1 is type-C,
then it must form a C5 through x0x5, which is impossible by Lemma 5.4. Thus, edge x0x1 is type-B
and needs a C4 and C5. By Lemma 5.3 and Lemma 5.4, no C4 can be formed through x0x5. However,
no C4 can form through x0x3, x0x4 given that x0x3 and x0x4 are type-A edges, and we have reached
a contradiction as x0x1 cannot be supported on any C4.

Lemma 5.6. If G is a Ricci-flat 5-regular graph, then it does not contain subgraph H shown in
Fig. 5.19.

x0x1

x2 x3

x4

Figure 5.19

Proof. Let the fifth neighbor of x0 be x5 shown in Fig.5.20. By Lemma 5.5, x5 � x1, x4. Consider
edge x0x5 which must be type-D or type-E because no C3 can be formed on x0x5. Thus, a C4 or
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C5 needs to be formed through at least one of x0x2 or x0x3. Since x0x2 and x0x3 are type-A edges,
forming a C5 through them implies forming a C4 through x0x1 and x0x4. Thus, x0x5 must be type-E,
and we have x1 ∼ y1 ∼ x5, x1 ∼ y2 ∼ x5, x4 ∼ y3 ∼ x5, and x4 ∼ y4 ∼ x5. Consider edge x1x0, which
must be type-B since it is in a C3 and a C4. The C5 can either pass through x0x4 or x0x3.

x0x1

x2 x3

x4

x5y1

y2

y3

y4

Figure 5.20

1. Suppose x0x1 forms a C5 through x0x4, then we must have x1 ∼ z1 ∼ z2 ∼ x4 since x1 and x4

cannot connect to any of the existing vertices as in Fig. 5.20. Note that x2 � z1, z2 as edge x2x0

is type-A, and similarly x3 � z1, z2 as edge x0x3 is type-A, so x2, x3 must have new neighbors.
Let x2 ∼ w1, w2 and x3 ∼ w3, w4. Consider edge x3x4, which is in a C3 and must be either
type-B or type-C as both x3 and x4 are at maximum degree. However, x3x4 cannot be type-E
as no C5 can be formed through x3x2 considering type-A edges x0x2 and x0x3. Furthermore,
no C4 can be formed through x3w3 and x3w4 because a C5 would be formed on the type-A edge
x0x3. Therefore, x3x4 cannot be type-B either, which is a contradiction.

z1 z2

w1

w2 w3

w4

x0x1

x2 x3

x4

x5y1

y2

y3

y4

Figure 5.21

2. Thus, x0x1 must form a C5 through x0x3. To form the C5, we must have x1 ∼ z1 ∼ x2. Similarly,
x0x4 forms a C5 through x0x2, and we have x4 ∼ z2 ∼ x3. Since clearly x2 � y1, y2, y3, y4, let
z3 be the fifth neighbor of x2. Note that {x0, x1, x2, x3, z1} form a subgraph that is isomorphic
to the starting configuration. Applying the same argument to x2z3, we have z3 ∼ w1 ∼ z1,
z3 ∼ w2 ∼ z1, z3 ∼ w3 ∼ z2, and z3 ∼ z2. Now, consider edge x3w2, which must be type-E as
the subgraph {x2, x3, z2, x4, x0} is isomorphic to the starting configuration. However, it cannot
form any C3, C4, C5 through x3x0 as all of its neighbors are at maximum degree, which is a
contradiction and we’re done.
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In the next lemma, we consider graphs with two adjacent C3.

Lemma 5.7. If a 5-regular Ricci-flat graph G contains two adjacent C3, then all other edges of the
two C3 excluding the shared one are type-B and in disjoint C4.

Proof. We name the vertices of the subgraph in Fig. 5.23.
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x13

Figure 5.23

By Lemma 5.6, none of edges x0x1, x0x3, x2x1, and x2x3 are type-A, thus they are either type-B
or type-C. By contradiction, we assume edge x0x1 is type-C. Then assume x0x4 is in two C4, then
they must pass through edge x0x1, x0x3 and x0x5 which leads to x0x1 being in a C4, and x0x1 cannot
be type-C, a contradiction. Therefore edge x0x4 cannot type-D or type-E, neither is edge x0x5. Thus
both x0x4 and x0x5 are in a C3 which can only be obtained through x4 ∼ x5.

We claim x0x4 is not type-C. Otherwise, it must form a C5 through edge x0x2 and then x2x3 as
d(x4, x6) = d(x4, x7) = 3, this produce a C4 through edge x0x3, a contradiction. Thus x0x4 must be
type-B. So is x0x5.

Since x0x1 is not in any C4, then the C4 for edge x0x4 must pass through edge x0x3, then x0x3 is
type-B that cannot be in two separate C4. Thus both x4 and x5 are adjacent to one neighbor of x3.
Let x4 ∼ x11 ∼ x5. Then now we have x4x5 in two C3 so this edge is type-A. Let x5 ∼ x12, x13 and
x4 ∼ x14, x15.

Consider edge x0x1. Observe that x14x4 or x15x4 cannot form a C5 through edge x0x2, otherwise
x14 ∼ x3 which causes two C4 on edge x0x3. Thus to form a C5 for edge x0x4, it must pass through
edge x0x1. Wlog, let x14 ∼ x8. Similarly for edge x0x5, let x12 ∼ x9.
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Figure 5.24

Consider the edge x4x11 which is type-B, thus x11 � x8. Consider the edge x5x11 which is type-B,
thus x11 � x9.

We claim that vertex x11 does not connect to any of the existing vertices. Assume x11 ∼ x10,
observe that vertex x1 has has distance at most 2 to all neighbors of vertex x11. Thus edge x11x10 is
neither type-C or type-E. For both cases, it needs a C4 either from x4 or x5. By symmetry of these two
vertices, let x4 be in this C4, then either x10 ∼ x14 or x10 ∼ x15. However both edges x4x11, x5x11 are
type-B that does not needs two C4. A contradiction. Since d(x5, x6) = d(x5, x7) = 3, then x11 � x6

and x11 � x7. Thus vertex x11 has two new vertices as its neighbors. Let x11 ∼ x16 and x11 ∼ x17.
Observe edge x4x14. Clearly it is not type-A . Since it cannot be in any C4 through either

x4x0, x4x5 or x4x11, then it is not type-B, type-D or type-E. It is not type-C, otherwise, the C5 passes
through edge x4x5 must pass through either x11 or x16, however both cases cause two separate C4 on
edge x4x11. A contradiction. Thus all edges x0x1, x0x3, x2x1, x2x3 are type-B.

As edge x0x1 in a C4. we claim it is not formed by x3 ∼ x8. Otherwise, none of vertices
{x4, x5, x6, x7} can be adjacent to x9 or x10 or any new neighbor of vertex x3. We claim x4 ∼ x8.
Otherwise , there is no C5 supported on edge x0x4 passing through the edge x0x2, together with no C4

supported on edge x0x4 passing through the edge x0x1 or x0x3, then edge x0x4 is not any good type.
Similarly, we have all x5, x6, x7 are adjacent to x8, which causes the degree d8 = 6. A contradiction.

Therefore, we must have the subgraph shown in Fig. 5.25.
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Figure 5.25

Lemma 5.8. If a Ricci-flat 5-regular graph G contains a pair of adjacent C3, then both vertices of
the shared edge are not in any other C3.
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Proof. We use the same numbering of vertices as above, then the lemma essentially states that edges
x0x4, x0x5, x2x6, x2x7 are not in C3.

By Lemma 5.7, we have x3 � x8, x9, x10. Let x3 ∼ x11, x12, x13. For edges x0x1, x2x1 in C4,
Wlog, let x4 ∼ x8, x6 ∼ x10. In the following, we assume vertex x4 � x9, x10. Note if we cannot
construct a Ricci-flat graph under this assumption, then vertex x4 must be adjacent to at least two of
{x8, x9, x10}, and by symmetry of x4 and x6, x6 is also adjacent to at least two of {x8, x9, x10} which
causes d(x4, x6) = 2, a contradiction.

For a contradiction of our result, we assume edge x0x4 is in a C3, then it has to be x5 ∼ x4

and x0x4 is type-B. Note the edge x0x3 needs a C4 either from x0x4 or x0x5, since there cannot be
two separate C4 supported on x0x4, then it must be through x0x5. Wlog, let x5 ∼ x11. Clearly,
x0x5 is also type-B. It is easy to see that x5 � x8, x9, x10. As x4 � x9, x10, x11, x12, x13, then the C5

supported on x0x4 cannot pass through x0x2 and must pass through edge x0x3 directly. We assume
the C5 passes through x4x0x3x11. Let x4 ∼ x14 ∼ x11, let x4 ∼ x15.

1. x5 ∼ x12. Note x5 � x14, otherwise a subgraph in Lemma 4.6 is generated. Let x5 ∼ x16. Then
d(x2, x15) = 3 for edge x0x4, d(x1, x16) = 3 for edge x0x5, d(x1, x13) = 3 for edge x0x3. Note
x8 � x11, x12, x13, x16 considering edge x4x5. Now the edge x0x1 needs a C5.

• If x9 ∼ x12, we have d(x1, x16) = d(x2, x16) = 3 for edge x0x5, d(x5, x10) = 3 for edge
x0x1, d(x4, x13) = 3 for edge x0x3 and d(x2, x16) = 3 for edge x0x5. If x11 ∼ x12, let
x12 ∼ x17, then d(x17, x13) = 3 for edge x3x12. Consider edge x3x13, the largest cycle
passing through it are C4, C5, C5, C5 each with x3x2, x3, x12, x3x0, x3x11. Thus edge x3x13

is not any good type. A contradiction. Similarly, x12 � x13 as largest cycle passing through
x3x11 are also C4, C5, C5, C5. If x11 ∼ x13, then largest cycle passing through x3x12 are
also C4, C5, C5, C5. Therefore, none of edges {x3x11, x3x12, x3x13} is in C3.
Consider edge x13x3, if it is type-D, then there are two C4 passing through x3x11, x3x12.
Let x13 ∼ x17 ∼ x12 and x13 ∼ x18 ∼ x111 , then the edge x3x12 is type-E as it is in two
C4 and one C5, and it need a C5 passing through edge x3x11, let x12 ∼ x19 ∼ x18. Observe
that edge x3x11 is also type-E that must have x9 ∼ x11 for the second C5. Consider edge
x5x16, x16 ∼ x12 as x12 achieve the maximal degree, x16 ∼ x13 considering x5x11 or x3x13.
Thus there cannot be any C5 through x15x5x0 which implies x16x5 is type-D that needs
three C4. To avoid two C4 on x4x5, it needs x16 ∼ x14. However, there cannot be any C4

through edge x5x11. A contradiction. Thus edge x13x3 is type-E which needs a C5 through
x3x0, this can only be formed by x13 ∼ x16.
If further assume x16 ∼ x12. The edge x5x12 is in C3 = x16x5x12x16, thus either type-B or
type-C. Then x12 is not adjacent to any existing vertices for the edge x0x1 and x5x12. Let
x12 ∼ x17. Then consider edge x3x12, if (a) x12x16 contributes in the C4 : x3x12x16x13x3,
then together with the other C4 : x3x12x0x5x3, it is type-E that need one more C5 through
x3x11 and x12x7, that is d(x11, x17) = 2. By edge x3x2, we must have wlog x13 ∼ x7,
note then there is no C5 supported on x11x3 passing through x3x2, then x11x3 must be
type-B that can only be formed by x11 ∼ x13. However, the edge x3x13 would be in
one C3 and two C4, a contradiction. Thus (b) for edge x3x12, x12x16 contributes in the
C5 : x3x12x16x5x11x3, then it needs x13 ∼ x17. Observe edge x3x13 which is in two C4

through x3x2, x3x12 and one C5 through x3x0, thus it is type-E that passes through a C5

through x3x11. Since x3x11 is in the C4 : x3x11x5x12x3 and C5 : x3x11x14x4x0x3 and there
is no new C5 through x11x3x2, then x3x11 must be type-B that form a C3 through x3x12,
however, this cannot be true as vertex x12 arrives the maximal degree. Then x16 � x12,
then x16x5 cannot be in any C3 thus is type-E that forms C5 through x5x4 and forms two
C4 through x5x12 an d x5x11. Note if x13 ∼ x17 ∼ x12, then d(x12, x11) = 3 for edge
x3x12. While under this situation, edge x3x11 cannot be any good type. Thus for edge
x3x13, we must have x11 ∼ x18 ∼ x13 and x12 ∼ x17 ∼ x19 ∼ x13. Then for edge x3x11,
the fifth neighbor of vertex x11 must have distance 2 to vertex x2 which can be achieved
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by x11 ∼ x20 ∼ x7. Now consider edge x3x12, it must be type-E that needs x12 ∼ x18.
Then we consider the edge x5x16, which has to be type-E that need two C4 through x3x11

and x3x12, the only way to attain this is x16 ∼ x14, x16 ∼ x17. Let x16 ∼ x21 ∼ x15. NOw
we consider edge x11x20, as the neighbor of x11: x5, x0 have maximal degree and their
neighbors also have maximal degree, there is no way to construct a good type for x11x20.
Thus we conclude x9 ∼ x12.

• Then the C5 passing through x0x1 using edge x0x5. Let x5 ∼ x16 ∼ x9. However, there
would be two C5 supported on edge x0x5, a contradiction.

2. Thus x5 � x12, x13. Then the C5 supported on x0x5 must pass through edge x0x1 directly. Let
x5 ∼ x16 ∼ x9. Now we need a C5 supported on x0x3, still we need to consider if x9 ∼ x12

works. However, we found that a Ricci-flat graph based on this subgraph cannot be constructed
with the aid of calculator [5].

Thus the C5 for edge x0x4 passes through x4x0x3x12. Let x4 ∼ x14 ∼ x12, let x4 ∼ x15. By symmetry,
let x5 ∼ x16 ∼ x9 and x5 ∼ a. Note if a = x15, then edge x4x5 is also type-A edge which should have
a same local structure as x0x2, and a Ricci-flat graph cannot be obtained

Lemma 5.9. If G is a Ricci-flat 5-regular graph, then it contains an edge that is not in any triangle,
i.e., a type-D or type-E edge.

Proof. If G contains type-A edges, the conclusion is obvious by Lemma 5.8; if G does not contain
type-A edge, the same argument in Lemma 4.3 applies, and G cannot consist of only type-B and
type-C edges.

6 Future directions
Through extensive search and construction, we have not yet found another Ricci-flat 5-regular graph
that is not isomorphic to RF 5

72 or a Cartesian product of Ricci-flat cubic graphs and cycles. Therefore,
our main conjecture is the following:

Conjecture 1. If G is a Ricci-flat 5-regular graph, then G is either isomorphic to RF 5
72 or a Cartesian

product of the Petersen graph, the Triplex graph, or the dodecahedral graph with a cycle of length at
least 6, or the infinite path.

To break up the main conjecture into smaller manageable pieces, we have the following conjectures.

Conjecture 2. If G is a Ricci-flat 5-regular graph, then G does not contain adjacent triangles.

Conjecture 3. If G is a Ricci-flat 5-regular graph, then G does not contain vertex-sharing triangles.

Conjecture 4. If G is a Ricci-flat 5-regular graph, then G does not contain vertex-disjoint triangles.

As a result of combining Conjectures 2–4, we have:

Conjecture 5. If G is a Ricci-flat 5-regular graph, then G has girth 4, i.e. it does not contain
triangles.

For Ricci-flat 5-regular graph of girth 4, it will be important to prove or disprove the following
conjectures:

Conjecture 6. If G is a Ricci-flat 5-regular graph, then G contains type-E edges.

Conjecture 7. If G is a Ricci-flat 5-regular graph that contains only type-E edges, then G is isomor-
phic to RF 5

72.
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Conjecture 8. If G is a Ricci-flat 5-regular graph and contains both type-D and type-E edges, then
G is either isomorphic to RF 5

72 or a Cartesian product of the Petersen graph, the Triplex graph, or
the dodecahedral graph with a cycle of length at least 6, or the infinite path.

Conjectures 6-8, if proven to be true, will finish the proof of our main conjecture.
We also have the following over-arching questions concerning Ricci-flat regular graphs of arbitrary

degree and their automorphism groups.

Question 1. Does there exist a Ricci-flat arc-transitive graph of every degree?

Question 2. What about edge-transitive, vertex-transitive, and symmetric graphs?

Question 3. What can be said in general about the automorphism group of a Ricci-flat regular graph?
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