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ENUMERATING PERMUTATIONS AND RIM HOOKS

CHARACTERIZED BY DOUBLE DESCENT SETS

Christopher Zhu

The Roxbury Latin School

Abstract

Denote by dd(I;n) the number of permutations w ∈ Sn with double descent set I. In this paper, we

discuss the enumeration of dd(I;n) for singleton sets I, via a recursive formula for dd(I;n) as well as a

method to estimate values of dd(I;n). Additionally, we discuss the enumeration of certain rim hook classes

characterized by their double descent sets. We then present formulae for sizes of these classes of rim hooks,

introducing the theory of so-called minimal elements along the way. Finally, we end with a brief section on

the topic of circular permutations, concluding with the discussion of several conjectures and future work.
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1 Introduction

Throughout this paper, we let I be a finite set of positive integers, unless stated otherwise. We will also

use the standard notation [n] to represent the set {1, 2, ..., n}, and [m,n] to represent the set

{m,m+ 1, ..., n}.

Consider the symmetric group Sn of permutations w = w1w2...wn of [n]. A descent of w is an index i

satisfying wi > wi+1, and the descent set of w is

Des(w) = {i | i is a descent of w} ⊆ [n− 1].

For example, Des(1732645) = {2, 3, 5}. Next, consider the set of all permutations with a given descent set,

D(I;n) = {w ∈ Sn |Des(w) = I},

and its cardinality

d(I;n) = #D(I;n).

Using the Principle of Inclusion and Exclusion, MacMahon [2] proved in 1915 that d(I;n) is in fact a

polynomial in n, for a fixed finite set I. We call d(I;n) the descent polynomial of I. For the next century,

little detailed work was done on these descent polynomials, until Diaz-Lopez et al. [1] published a paper

on them in 2017. In this paper, Diaz-Lopez et al. provide recursions for d(I;n) and extensively study

algebraic properties of descent polynomials. Some of their results include a theorem about the positivity of

coefficients of d(I;n) when expressed in a Newton basis, as well as bounds on roots of descent polynomials.

Similar to descents, we can also define a peak of a permutation w as an index i satisfying

wi−1 < wi > wi+1. Analogously, we can define the peak set of a permutation w as

Peak(w) = {i | i is a peak of w} ⊆ [2, n− 1].

Following this definition is P (I;n) = {w ∈ Sn | Peak(w) = I}. In a 2013, Billey et al. [3] studied the

function #P (I;n) and showed that it is not polynomial, but of the form p(I;n)2n−#I−1, where p(I;n) is a

polynomial. This is called the peak polynomial of I. Billey et al. also presented a recursion for p(I;n), and

studied formulas for p(I;n) given a specific set I.

We now move on to double descents, which we investigate in this paper. A double descent of a
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permutation w is an index satisfying wi−1 > wi > wi+1. Next, we define

DDes(w) = {i | i is a double descent of w} ⊆ [2, n− 1],

and analogously,

DD(I;n) = {w ∈ Sn |DDes(w) = I},

and dd(I;n) = #DD(I;n). For example, DD({2}; 4) = {3214, 4312, 4213}, so dd({2}; 4) = 3.

The paper is structured as follows. We start off in section 2 where we discuss known results about

permutations without double descents. After that, we discuss permutations with singleton double descent

sets in section 3. In particular, we present a recursion for dd(I;n) for singleton I = {k}, which allows us to

express dd({k};n) in terms of dd({l};m) for l < k and m < n. We also discuss a method for estimating

values of dd(I;n) again for singleton sets I. In the next section (4), we analyze certain classes of rim hooks

associated with singleton and empty double descent cets, and we also provide theorems regarding the sizes

of these classes of rim hooks. While discussing rim hooks, we develop the theory of minimal elements,

which is useful in several proofs. Afterwards, we quickly take a look at circular permutations in section 5,

another permutation-associated object (just like rim hooks). Then, in section 6, we bring up conjectures

obtained from studying patterns in computer-generated data. Most importantly, we discuss a conjecture

that highlights a large difference between descents and double descents, as well as the so-called “down up

down up” conjecture which reveals an interesting pattern in data concerning singleton double descent sets.

Finally, we conclude with a section on future research questions.

2 Permutations Without Double Descents

In this section, we begin our discussion of permutations and double descents by discussing current

results in the literature. We start off by considering the specific case of permutations with no double

descents and no initial descent, which will build up to permutations with no double descents in general.

That is, we are considering all w ∈ Sn such that DDes(w) = ∅ and w1 < w2. We will use bn to denote the

number of such permutations in Sn. On OEIS [4], Michael Somos presents the following recursion for the

sequence bn, which will be useful in finding a generating function for bn.

Proposition 2.1 (Somos [4]). The function bn satisfies the following recursion:

bn+1 =
n∑
k=0

(
n

k

)
bkbn−k − bn.
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On the same OEIS reference to Somos’ recurrence, Peter Bala provides an exponential generating function

for bn. This will be useful for enumerating dd(∅;n).

Proposition 2.2 (Bala [4]). The exponential generating function for bn is
1

2
+

√
3

2
tan

(√
3

2
x+

π

6

)
.

The following recursion, which relates dd(∅;n) and bn, is given by Emanuele Munarini on OEIS [5].

Proposition 2.3 (Munarini [5]). The function dd(∅, n) satisfies the following recursion:

dd(∅;n+ 1) =
n∑
k=0

(
n

k

)
· dd(∅, k) · bn−k.

This recursion, along with Proposition 2.2, can be used to prove the formula for the exponential generating

function of dd(∅;n) given by Noam Elkies on OEIS [5].

Proposition 2.4 (Elkies [5]). The exponential generating function for dd(∅;n) is

√
3
2 · e

x
2

cos
(√

3
2 x+ π

6

) .

These results provide most of the background on permutations whose double descent set is the empty set.

We now proceed to study the next largest double descent set, the singleton set.

3 Singleton Double Descent Sets

The main enumeration theorem of this section is the following recursion for dd(I;n) when I is a

singleton set.

Theorem 3.1. Let I = {m} be a singleton set. Then we have

dd(I;n+ 1) =

n∑
k=m+1

(
n

k

)
· dd(I; k) · bn−k

+

(
n

m− 2

)
· dd(∅;m− 2) ·

(
dd(∅;n−m+ 2)− bn−m+2

)
+

m−4∑
k=0

(
n

k

)
· dd(∅; k) · c({m− 1− k};n− k)

(3.1)

where c(I;n) denotes the number of permutations in Sn with an initial ascent and double descent set I.

Proof. To construct a permutation w ∈ Sn+1 with a double descent at m, we first consider possible values

of w−1(n+ 1). Because there is a double descent at m, we have wm−1 > wm > wm+1, so w−1(n+ 1) 6=

m,m+ 1 because all other wi < n+ 1. Also, w−1(n+ 1) 6= m− 2; otherwise, there would also be a double

descent at wm−1 since we have wm−1 > wm. Thus, w−1(n+ 1) ∈ [m+ 2, n+ 1] ∪ {m− 1} ∪ [m− 3].
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Suppose w−1(n+ 1) ∈ [m+ 2, n+ 1]. Then we can choose m+ 1 ≤ k ≤ n elements of [n] to form a

permutation to the left of n+ 1 with a double descent at m, and the remaining n− k elements of [n] form

a permutation to the right of n+ 1 with no initial descent and no double descents. For a given k, there are(
n

k

)
· dd(I;n) · bn−k ways to do this, so summing over all valid k gives the first term of equation 3.1. Next,

suppose w−1(n+ 1) = m− 1. Then we must have a permutation of length m− 2 to the right of n+ 1 with

no double descents, and a permutation of length n− (m− 2) to the right of w with an initial descent

(which contributes to the double descent at wm) but no double descents. There are

(
n

m− 2

)
·

dd(∅, n−m+ 2) ·
(
dd(∅;n−m+ 2)− bn−m+2

)
such permutations, where the last term counts the number

of permutations with an initial descent but no double descents. This gives the second term of equation 3.1.

Finally, suppose w−1(n+ 1) ∈ [m− 3]. Then we can choose 0 ≤ k ≤ m− 4 elements to the right of n+ 1 to

form a permutation with no double descents, and the remaining n− k elements form a permutation with a

double descent at m− 1− k (which is the mth spot in the entire permutation w ∈ Sn+1) and no initial

descent. For a given k, there are

(
n

k

)
· dd(∅; k) · c({m− 1− k};n− k) ways to do this. Summing over all

valid k gives the third and final term of equation 3.1.

We do not have too much information on c(I;n) so far, but as it is a subset of dd(I;n), it seems to follow a

“nice” pattern, which is summed up in the following conjecture.

Conjecture 3.2. The limit lim
n→∞

c({m};n)

dd({m};n)
exists for a fixed m ∈ N . That is, we can estimate c({m};n)

as dd({m};n) · C(m), where C(m) is some constant depending on m. Estimates for the first few values of

C(m) are:

m 3 4 5 6 7 8 9

C(m) 1 0.3935 0.6365 0.5052 0.5677 0.5358 0.5514

For a fixed m, the values of
c({m};n)

dd({m};n)
decrease and increase as n increases, and they appear to converge

to some limit. We just computed some values of
c({m};n)

dd({m};n)
for small n and averaged them to produce the

estimates of C(m) in the table above.

Example 3.3. Using Theorem 3.1 and assuming Conjecture 3.2, we can estimate the value dd({m};n).
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Suppose n = 9 and m = 6. Then the theorem gives

dd({6}, 9) =
8∑

k=7

(
8

k

)
· dd({6}; k) · b8−k +

(
8

4

)
· dd(∅; 4) ·

(
dd(∅; 4)− b4

)
+

2∑
k=0

(
8

k

)
· dd(∅; k) · c({5− k}; 8− k)

=

(
8

7

)
· 426 · 1 +

(
8

8

)
· 2491 · 1 +

(
8

4

)
· 17 · (17− 9) +

2∑
k=0

(
8

k

)
· dd(∅; k) · c({5− k}; 8− k)

Using the estimation given by the conjecture, we can simplify this to

= 15419 +
2∑

k=0

(
8

k

)
· dd(∅; k) · c({5− k}; 8− k)

≈ 15419 +

2∑
k=0

(
8

k

)
· dd(∅; k) · dd({5− k}; 8− k) · C(5− k)

= 15419 +

(
8

0

)
· 1 · 2904 · 0.6365 +

(
8

1

)
· 1 · 462 · 0.3935 +

(
8

2

)
· 2 · 66 · 1

= 22417.772

The actual value of dd({6}; 9) is 22419, so the estimate is off by 0.005%.

4 Rim Hooks

One important object associated with permutations, the rim hook, is brought up by considering

permutations as rim hook tableaux. Rim hooks are skew shapes that do not contain 2× 2 squares. The

following are examples of rim hooks:

We use the standard skew shape notation to represent these rim hooks. For example, the 2nd rim hook

from the above left is written as (3, 2, 1, 1)/(1), and the 3rd rim hook from the above left is written as

(2, 2, 2, 1)/(1, 1). Also, the notation |s| for a skew shape s will denote the number of squares in s.
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A rim hook tableau is a filling of a rim hook with the numbers 1 through n, where n is the number of

squares in the rim hook, or the length of the rim hook. A rim hook tableau also must satisfy the two

following rules: for every two vertically adjacent squares, the upper square must contain the smaller

number, and for every two horizontally adjacent squares, the left square must contain the smaller number.

3 1 2

4 5
is not a valid rim hook tableau, but

1 2 4

3 5
is valid.

With this in mind, we can use rim hooks to encode the descent information of a permutation. By reading

a rim hook tableau from the bottom left to top right, following adjacent squares, we can reconstruct a

permutation. For example, the above tableau on the right corresponds to the permutation 35124 ∈ S5.

The rim hook of 35124 precisely encodes a permutation in S5 with a single descent at index 2. Any other

permutation whose rim hook tableau has the same shape, such as 25134, will have the same descents. In

general, these rim hook tableaux give us a way to characterize permutations with given descents.

For example, these are the following rim hooks that characterize permutations in S6 with a double

descent at index 2:

Some permutations with corresponding rim hook tableaux (to the rim hooks above, in that order) are

632415, 541263, and 432156, all of which have a double descent at 2.

We will use the notation RI(n) to denote the set of all rim hooks of length n which correspond to

permutations with double descent set I. For example, the 3 rim hooks above are the elements of R{2}(6).

We can count the number of such rim hooks for singleton sets I with the following formula.

Theorem 4.1. #R{m}(n) = Fn−mFm−1, where Fn is the nth Fibonacci number.

To prove this theorem, we need the following 2 propositions which give recurrences for #RI(n).

Proposition 4.2. Let m = max(I ∪ {0}). For n ≥ m+ 3, we have #RI(n) = #RI(n− 1) + #RI(n− 2).

Proof. All rim hooks must end in one of the two following shapes (i.e. these are their top right squares):

. .
. or

. .
.
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We will call rim hooks that end in the horizontal squares H-rim hooks and ones that end in vertical

squares V -rim hooks. Now, suppose that RI(n) contains a H-rim hooks and b V -rim hooks. To create a

valid rim hook of RI(n+ 1), we take rim hooks from RI(n) and add an extra square, making sure not to

create any additional double descents in the rim hooks. For example, the following shows valid and invalid

extensions of a rim hook of R{3}(5):

is valid, but is not.

A valid extension of a H-rim hook can either be an extra square to the right (as shown in the above left

diagram) or an extra square added to the top of the end of the rim hook, so a H-rim hook can be extended

to a new H-rim hook and new V -rim hook. For a V -rim hook, however, the only valid extension is the

addition of one square to the right side of the end of the rim hook, creating a new H-rim hook. Thus, if

RI(n) has a H-rim hooks and b V -rim hooks, then RI(n+ 1) will have a+ b H-rim hooks and a V -rim

hooks, for a total of #RI(n+ 1) = 2a+ b rim hooks. Applying this pattern again, we get

#RI(n+ 2) = 3a+ 2b, thus showing that the recursion #RI(n) = #RI(n− 1) + #RI(n− 2) holds.

This proposition shows that we can calculate any #RI(n) recursively, given the 2 initial values

#RI(m+ 1) and #RI(m+ 2), where m = max(I ∪ {0}). We now return back to proving theorem 4.1.

Given the previous recursion, we just need to determine initial values of R{m}(n) to prove 4.1. The

following proposition tells us what these initial values are.

Proposition 4.3. For m ≥ 4, we have #R{m}(m+ 1) = #R{m−1}(m) + #R{m−2}(m− 1).

Proof. The argument in this proof is nearly the same as the one in proposition 4.2, except here extensions

are done on the bottom left of a rim hook and not the top right. Also, H-rim hooks and V -rim hooks are

respectively defined as rim hooks that start with two horizontal or two vertical squares. Now, suppose

#R{m}(m+ 1) consists of a H-rim hooks and b V -rim hooks. An extension of these rim hooks will

increase the index of the descent by 1 and add 1 to the length of the rim hook, thereby creating an element

of #R{m+1}(m+ 2). By the same argument 4.2, R{m+1}(m+ 2) will contain a+ b H-rim hooks and a

V -rim hooks, for a total of 2a+ b elements. We also get #R{m+2}(m+ 3) = 3a+ 2b, thus showing the

desired recursion is true.
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With propositions 4.2 and 4.3, we can now prove theorem 4.1.

Proof of Theorem 4.1. After brief computation we get that #R{2}(3) = 1 and #R{3}(4) = 1, so by

proposition 4.3, we have #R{m}(m+ 1) = Fm−1 for m ≥ 2, where Fn denotes the n-th Fibonacci number.

Now, for a fixed m, the smallest valid n for which R{m}(n) is defined is m+ 1, and the rim hooks in

R{m}(m+ 1) necessarily end in 3 vertical squares. Hence, there are no H-rim hooks (defined as in 4.2) in

R{m}(m+ 1), so #R{m+1}(m+ 2) must equal #R{m}(m+ 1) because each V -rim hook in R{m}(m+ 1) is

extended to one new H-rim hook in #R{m+1}(m+ 2). Therefore, we have determined that

#R{m}(m+ 1) = #R{m+1}(m+ 2) = Fm−1.

After applying the recursion from proposition 4.2 to these initial values, theorem 4.1 becomes clear.

As we see, it is possible to calculate the size of any RI(n) recursively, given two pre-computed initial

values. However, there is a nicer non-recursive formula for the specific case I = ∅.

Theorem 4.4. Let n ≥ 2, and let H =

⌊
n+ 2

2

⌋
. Then #R∅(n) =

H∑
k=1

(
n− k + 1

k − 1

)
.

Before we prove this theorem, we must first introduce the theory of minimal elements. Define the height

of a rim hook (more generally, a young diagram) to be the number of rows in the diagram. Then we define

a minimal element of height h with double descent set I, written as min(I, h), as the rim hook of height h

that encodes double descent set I and has the minimal number of squares possible.

For example, the following two rim hooks represent min(∅, 4) and min({3}, 5) respectively:

Minimal elements are useful because they allow us to quickly generate rim hooks by adding squares to

the rows of a minimal element. The process of adding a square to a rim hook in general is as follows: to

add a square to some row of a rim hook, just add a square to the right of the rightmost square in the

specified row of the rim hook, and then shift all above rows to the right by 1.

The following diagram demonstrates this process (added square in green):
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→ →

Now, notice that any rim hook can be decomposed into a minimal element, along with additional squares

in some rows. For example, the above right rim hook is equivalent to min(∅, 3) with 2 added squares in the

top row, 1 added square in the second row, and 1 added square in the bottom row. In the case that the

double descent set of the rim hook is ∅, the double descent set of the minimal element will also be ∅. We

formalize this argument as follows:

Proposition 4.5. Let |min(I, h)| denote the number of squares in min(I, h). Then we can construct all

elements of R∅(n) of height h by adding n− |min(∅, h)| squares to the rows of min(∅, h). Specifically, there

is a bijection between the set of elements of R∅(n) of height h and the set of all possible additions of

n− |min(∅, h)| squares to min(∅, h).

Proof. Suppose we have an arbitrary element r of R∅(n) of height h for some n. Then, by the definition of

minimal element, min(∅, h) must be contained within r. In particular, r can be uniquely obtained from

min(∅, h) by adding |r| − |min(∅, h)| = n− |min(∅, h)| squares to min(∅, h) in the correct rows.

For example, suppose we want to construct an element of R∅(8) with height 4. Then we take min(∅, 4),

and because this already has 6 squares in it, we just add the 2 remaning squares to any 2 not necessarily

distinct rows. The following diagram shows how this process works (added squares in green):

→ →

To simplify notation for later, we will use the notation extn(m) to denote the set of rim hooks of length

n generated by a minimal element m, i.e. extensions of m. That is, elements of extn(m) are created by

adding n− |m| extra squares to m through the process of square-addition as shown above.

Now that we have built up an understanding of minimal elements, we can proceed with the proof of

Theorem 4.4.

Proof of Theorem 4.4. By proposition 4.5, if M represents the set of all possible minimal elements of

length at most n, then #R∅(n) =
∑
m∈M

#extn(m), because any element of R∅(n) is generated by the

minimal element of the same height.
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Thus, we begin by determining all the minimal elements of R∅(n). We start with the simple cases:

min(∅, 1) is just a single square; min(∅, 2) is the young diagram given by (1, 1), and min(∅, 3) is the skew

shape given by (2, 2, 1)/(1). More generally, all minimal elements of height greater than 2 (and for double

descent set ∅) have a staircase shape, where the top and bottom rows have 1 square, and the middle rows

all have 2 squares.

Next, we determine the largest minimal element that can generate an element of R∅(n). Let

m = min(∅, h) be the desired minimal element. Then |m| = 2h− 2, so the maximal h such that |m| ≤ n is

H =

⌊
n+ 2

2

⌋
.

Now that we know all the minimal elements that generate elements of R∅(n), we are almost done. We

can simplify the summation at the beginning of this proof as follows:

#R∅(n) =
∑
m∈M

#extn(m) =

H∑
k=1

#extn(min(∅, k))

because all the possible minimal elements are the ones of heights ranging from 1 to H =

⌊
n+ 2

2

⌋
.

For a given height h, the value of #extn(min(∅, h)) is the number of ways to distribute n− |min(∅, h)|

additional squares among the h rows of min(∅, h). This is commonly known as the number of weak

h-compositions of n− |min(∅, h)|, and this is given by the formula(
(n− |min(∅, h)|) + h− 1

h− 1

)
=

(
n− (2h− 2) + h− 1

h− 1

)
=

(
n− h+ 1

h− 1

)
.

Combining this with the previous summation, we get the desired formula:

#R∅(n) =
H∑
k=1

#extn(min(∅, k)) =
H∑
k=1

(
n− k + 1

k − 1

)
.

Example 4.6. Let us compute #R∅(6) by using Theorem 4.4 and also by listing out the rim hooks

individually. We have H =
⌊
6+2
2

⌋
= 4, so

#R∅(6) =

H∑
k=1

(
n− k + 1

k − 1

)
=

4∑
k=1

(
7− k
k − 1

)
=

(
6

0

)
+

(
5

1

)
+

(
4

2

)
+

(
3

3

)
= 13.

Next, we list the elements of R∅(6):
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Indeed, there are 13 rim hooks in R∅(6), matching up with the value given by Theorem 4.4 as expected.

5 Other Results

Here we briefly mention the topic of circular permutations. Intuitively, a circular permutation w of

length n is just a permutation in Sn “wrapped-around”; that is, we read w = w1w2...wn from left to right,

but when wn is reached, we just return back to w1. This allows us to define double descents at all indices

1, 2, ..., n and not just 2, 3, ..., n. For example, a double descent at n would mean wn−1 > wn > w1. Now,

we formally define the set of circular permutations Cn as follows. Define the rotation map to be

ρ : Sn
∼−→ Sn which maps a permutation w = w1w2...wn to wnw1...wn−1. Then, the set of equivalence

classes of Sn under the equivalence relation w ∼ ρ(w) is Cn.

When we discuss the double descents of a permutation w ∈ Sn, we mean double descents at the usual

indices, 2, 3, ..., n− 1. However, if w is an element of Cn, then double descents also include indices 1 and n.

Theorem 5.1. The number of permutations in Cn with no double descents is equal to bn−1.

Proof. Each equivalence class defining Cn has exactly one representative w ∈ Sn satisfying w1 = n.

Therefore, we can count permutations in Cn with no double descents by counting permutations in Sn with

first element n that have no double descents (defined as usual, so at indices in [2, n− 1]) and do not satisfy

wn−1 > wn > w1 or wn > w1 > w2. To construct such an element of Sn, we just take an element of Sn−1

with no double descents and no initial descent and put n to the left of it. That is, if u = u1u2...un−1 ∈

Sn−1 has no double descents and no initial descent, then nu1u2...un−1 is the desired element of Sn. The

no initial descent condition is required since n > u1, as u1 ∈ [n− 1], so this avoids a double descent at

index 2. Now we check that nu1u2...un−1 has no double descents at all indices. A permutation of the form

nu1u2...un−1 has no double descents at indices 2, 3, ..., n− 1 by construction, and it also does not satisfy

wn−1 > wn > w1 or wn > w1 > w2 (i.e. has no double descents at indices n and 1) because wn < w1;

wn ∈ [n− 1] and w1 = n, so wn must be less than w1. Clearly, the number of such permutations is just the

number of permutations in Sn−1 with no double descents and no initial descent, bn−1.
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6 Conjectures

All of the following conjectures come from observing patterns in computer-produced data tables of

values of dd(I;n) for various I and n.

Conjecture 6.1. For fixed i, j ∈ Z≥2, the limit lim
n→∞

dd({i};n)

dd({j};n)
exists and is a positive number.

Remark. This conjecture highlights a major difference between descents and double descents. According

to the paper by Diaz-Lopez et al. [1], d({i};n) is a polynomial of degree i, so lim
n→∞

d({i};n)

d({j};n)
is either 0 or

∞ when i 6= j, whereas the corresponding limit for double descents is always a positive number.

In fact, we can generalize this conjecture:

Conjecture 6.2. Let I, J ⊂ Z≥2 be two sets such that dd(I;n), dd(J ;n) = 0 for finitely many n. Then the

limit lim
n→∞

dd(I;n)

dd(J ;n)
exists and is a positive number.

The following graphs show values of
dd(I;n)

dd(J ;n)
plotted with respect to n for various I and J :

(a) I = {5} and J = {2, 3, 4} (b) I = {3} and J = {2, 3}

(c) I = ∅ and J = {2, 5} (d) I = {2} and J = {4}

Clearly, each graph demonstrates that
dd(I;n)

dd(J ;n)
converges; in particular, each ratio converges alternately.

Conjecture 6.3. {dd({i};n)}ni=1 is asymptotically equidistributed. Namely, for fixed 0 < α < β < 1,

14



∑
αn<i<βn

dd({i};n) ∼ (β − α)

n−1∑
i=2

dd({i};n).

Remark. This conjecture can be intuitively understood, as when a permutation becomes extremely long

(i.e. for large n), the probability there is a double descent at index k should be nearly the same as the

probability of a double descent at index k + 1.

Conjecture 6.4. Given a fixed n ∈ N, the numbers dd({i};n) for 2 ≤ i <
⌈n

2

⌉
follow a “down up down

up” pattern. Namely, dd({i};n) > dd({i+ 1};n) if i is even, and dd({i};n) < dd({i+ 1};n) if i is odd.

Remark. This conjecture is very unexpected, as it seems to hold for all values of n (numerically verified

for some n). In particular, the “down up down up” pattern persists even as the values of dd({i};n)

approach uniform distribution.

Conjecture 6.5. Let n, i ∈ N such that i <
⌈n

2

⌉
− 1. Then

∣∣∣∣1− dd({i};n)

dd({i+ 1};n)

∣∣∣∣ > ∣∣∣∣1− dd({i+ 2};n)

dd({i+ 3};n)

∣∣∣∣.
7 Future Work

It might be possible to establish lower and upper bounds on dd(I;n) by using Naruse’s hook-length

formula for skew shapes as well as Proposition 4.2. Let I be a double descent set. By definition of RI(n),

we have

dd(I;n) =
∑

r∈RI(n)

f r,

where f r is the number of rim hook tableaux of r. Then, we have the following bounds:

inf
r∈RI(n)

f r ·#RI(n) ≤ dd(I;n) ≤ sup
r∈RI(n)

f r ·#RI(n).

With the recursion given in Proposition 4.2, we can determine #RI(n) as long as we compute the initial

conditions for the recursion. For example, we have already determined the initial conditions for singleton

double descent sets, allowing us to formulate Theorem 4.1.

To evaluate inf
r∈RI(n)

f r and sup
r∈RI(n)

f r, we might be able to use Naruse’s hook-length formula, which is as

follows:

fλ/µ = |λ/µ|!

[ ∑
D∈E(λ/µ)

( ∏
c∈λ/D

1

h(c)

)]
,

where λ/µ is a skew shape, and E(λ/µ) is the set of excited diagrams of λ/µ, and h(c) is the hook-length

of a square c as calculated in λ. More explanation on this formula can be found in the literature.
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