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Abstract – lingual-disabled people around the world suffer from communication 

problems and discrimination (World Federation of the Deaf, 2016).  Even worse, according 

to the World Health Organization, in 93 counties, 31 countries didn't have sign language 

interpreting services, while 30 countries had 20 or fewer qualified interpreters (World Health 

Organization, 2018). Due to this issue, I hope that software of sign language translation, 

instead of interpreters, could be more efficient and reliable at helping deaf or mute. After 

research, I expect to design a translation system based on deep learning enabling videos to be 

recognized and translated into speech. My design successfully achieves this expectation. In my 

design, OpenPose, an open source convolutional neural network (CNN), is used to estimate 

hand pose of each frame from videos. Then, I build a long short-term memory (LSTM) 

network under Tensorflow framework to classify patterns of hand pose. To train this network, 

a dataset containing 3060 videos of seventeen different sign language words or sentence is also 

created and augmented. After attempts of optimization, the LSTM Network reaches 93.62% 

accuracy and the function of sign language translation into speech is realized. In addition, the 

success of using 2D raw videos raises possibilities of real-time sign language translation on 

phones whereby sign language translation system is popularized. What to improve next is to 



create data that contain all kinds of sign language. Besides, I hope to achieve the real-time 

function of this system in the future. 
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I.  INTRODUCTION 

People who are lingual-disabled always have a feeling of loneliness, isolation, and 

frustration (World Health Organization, 2018) [1]. In most cases, they are unable to even access 

basic service and product (World Federation of the Deaf, 2016) [2]. Sign language is 

undoubtedly an effective tool for them to communicate with others but unfortunately, it is only 

understood by a few people.  

There are multiple critical factors that determine the effectiveness and usefulness of sign 

language translation system. Although many kinds of research have been done to achieve 

goals such as chronological recognition, hand pose estimation, sentence translation, high 

accuracy, or real-time function by various methods, the popularization would be hindered if 

any of the factors misses. Pros and cons of several papers will be discussed and evaluated 

based on the five goals listed above. 

     In the paper of “Real-time American Sign Language Recognition with Convolutional 

Neural Networks” [3], the proposed method based on GoogLeNet achieves nearly 98% of 

accuracy with five letters and 74% with ten (Garcia & Viesca, 2016) [4]. To make the 

translator more accessible and faster, the researchers sacrifice the accuracy by using 2D color 

images. The translator could work on laptops in real-time, but it is not practical enough 

because there is only alphabet recognition. The same problem appears in another project-



Automatic Indian Sign Language Recognition for Continuous Video Sequence. However, 

given that this project exploits skin filtering which extracts the shape of hands, 24 different 

alphabets are recognized with the accuracy of 96% (Singha & Karen, 2015) [5]. CNN with 

skin segmented images could also be used for continuous sign language recognition (Tripathi 

& G.C.Nandi, 2015) [6]. Nevertheless, it’s not considered as real continuous recognition. 

They used gradient based key frame extraction method and treated each frame independently, 

and then tried Euclidean Distance, Correlation and so on as classifiers. A weakness of this 

project is the high dependency on background and light condition. 

 

Fig. 1. Existing Projects. Left: special gloves used for hand pose estimation.(Cihan, 2018) [7]; Right Top: 

Resnet for hand pose estimation. (Masood, 2018) [8]; Right Bottom: A Sign Language Translation 

System. (Oberweger, 2017) 

Recurrent neural network (RNN) could achieve the recognition of time-related 

action.  In “Real Time Sign Language Gesture Recognition from Video Sequences” (Thuwal 

& Srivastava, 2017) [9], CNN is first used to get hand pose estimation from each frame of 



spatial video. RNN is then used to gain the temporal features. It could finally achieve the 

accuracy of 95.217%. The advance of this project is that it employs CNN hand pose 

estimation by using depth image which significantly increase the accuracy hands recognition. 

However, it relies on depth videos with gloves which is not very accessible and may not apply 

well in daily life. Beyond of this project, there has already been a sign language translation 

product in the market. However, its tablets and depth camera are too expensive to afford or 

spread. 

     Researches give me a deep understanding of the feasibility and necessity of different 

methods. With pros and cons carefully considered, I decide to use the combination of CNN 

and RNN for sign language translation. Hand pose estimation could be achieved without 

depth camera by using OpenPose. Although hand pose estimation of OpenPose could increase 

accuracy, it will probably slow down the processing speed, so real-time will be a long-time 

goal. LSTM, an improved RNN network, will be used for chronological sign language 

recognition [10]. With OpenPose and LSTM network, the translation system could achieve 

sentence translation with 2D videos, as well as keep high accuracy, which would boost the 

popularization of sign language translation system. 

 



Fig. 2. Explanation of the Sign Language System 

II. MATERIALS 

In order to train and test the deep learning model, an American Sign Language dataset which 

primarily contains 340 videos completed by two subjects with 17 different phrases including 

both one-handed and two-handed signs was designed. The phrases are: Again, Deaf, Fine, 

Friend, Good, Hearing, Hello, I love you, I understand, My, Name, Nice to meet you, No, 

Nothing, Thank you, What’s up, Yes. A dataset with 340 videos might not be enough to train a 

good model. So, the data are augmented through rotations, zooming, and translation (Fig. 3) 

whereby the number of video data is expanded to 3060. All the processed videos have the same 

resolution and fps as raw videos. 

 

Fig. 3. Data Augmentation 

III. METHODS 

A. Recurrent Neural Network 

Sign language translation is a kind of behavior recognition process which requires both feature 

extraction and feature recognition. The feature extraction process is successfully done by OpenPose, 

the convolutional neural network. During feature recognition process, a sign language video is complex 

sequences of extracted features of hands movement; in order to cope with the sequential information, 

RNN-LSTM model were introduced to include memory to model temporal dependencies. 



RNN (the recurrent neural network) is an artificial neural network in which nodes in hidden 

layers are connected to the following hidden layers of a sequential data inputs. Input of a hidden layer 

contains not only input data but also output from previous hidden layer which processes data of 

previous frame of video, then would generate a new output. Consequently, the features of previous 

movements of hands are able to be considered in latter sign language recognition.  

 

Figure 1: Representation of RNN Model 

In an RNN model, h(n) is hidden-layer activations and x(n) is the inputs from sequential data. 

The input to hidden connection is parametrized by a weight matrix U, the hidden to hidden connection 

is parametrized by a weight matrix W, and the hidden to output connection is parametrized by a weight 

matrix V. The output o(n) is an unnormalized probability which is then put into L(n) to get 𝑦" = 

softmax(o(n)). Finally, 𝑦" is compared to y(n) to determine how far o(n) is from target.   



B. Forward propagation: 

The forward propagation equation for RNN can be expressed with a bias vector b:  

𝑎(%) = 𝑏 +𝑊ℎ(%,-) + 𝑈𝑥(%) 

Therefore, forward propagation has to begin with an initial state h(0). And the following h(n) can be 

calculated through activation function. Most of time, tanh function is used: 

ℎ(%) = tanh	(𝑎(%)) 

 Then, the output is determined by ℎ(%), weight matrix V, and bias vector c: 

𝑜(%) = 𝑐	 + 	𝑉ℎ(%) 

Finally, normalized probability is gained by: 

𝑦"(%) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜(%)) 

C. Loss Function: 

The four equations can be applied on each time step from t(1) to t(n) so that the total loss of 

result of sequence x to the target sequence y can be determined by the sum of loses over all the time 

steps. 

log loss function is used to evaluate how well the RNN models the dataset. 

For each step of the RNN, the loss function of binary classification is: 

𝐿(%)=𝑦"(%),𝑃(𝑦(%)|𝑥)A 	= 	−𝑙𝑜𝑔(𝑦(%)) 

By using logistic regression, 𝑃(𝑦(%)|𝑋) can be expressed as: 

𝑃(𝑦(%)|𝑥) =

⎩
⎨

⎧ ℎI(𝑥) = 𝑔=𝑓(𝑥)A =
1

1 + exp{−𝑓(𝑥)}		,			𝑦
(%) = 1	

1 − ℎI(𝑥) = 1 − 𝑔=𝑓(𝑥)A =
1

1 + exp{𝑓(𝑥)}		,			𝑦
(%) = 0

 

Put this equation into previous one and we can get: 

𝐿(%)=𝑦"(%), 𝑃(𝑦(%)|𝑥)A = Q						log	(1 + exp
{−𝑓(𝑥)})		,			𝑦(%) = 1	

log	(1 + exp{𝑓(𝑥)})		,			𝑦(%) = 0
 



 

The sum of loss function presents the overall loss function which is: 

L(𝑦", 𝑃(𝑦|𝑥)) 	= 	V𝐿(%)=𝑦"(%),𝑃(𝑦(%)|𝑥)A

WXY

%Z-

 

In the case of sign language translation where the classification M is larger than 2, we calculate loss for 

each label and sum them together. The loss function for each step can be modeled as: 

−V𝑦[,\log	(𝑝[,\)
^

\Z-

 

M is the number of classes. Y is a binary indicator if observation o is correctly classified in the class c. 

p shows the probability that o is in class c. 

D. Vanishing Gradient Problem of RNN 

RNN has long-term dependencies. The problem happens during backward propagation where 

gradient of error from loss function is calculated in a backward order. By using chain rule of partial 

derivative, the gradient can be calculated as: 

𝜕𝐿(%)

𝜕𝑈 = 	V
𝜕𝐿(%)

𝜕𝑦"(%)
𝜕𝑦"(%)

𝜕ℎ(%) 	(
`

𝜕ℎ(a)

𝜕ℎa,-)

%

aZbc-

	)
%

bZd

𝜕ℎ(b)

𝜕𝑈  

Because we are using tanh activation function ℎ(%) = tanh	(𝑎(%)),  

`
𝜕ℎ(a)

𝜕ℎa,-)

%

aZbc-

= 	 ` tanh′𝑊
%

aZbc-

 

As the graph shows, the range of tanh’ is between 0 and 1. Therefore, as t get bigger, product of the 

series of values that is between 0 and 1 will approach zero. Consequently, vanishing gradient would 

happen in long term. 



 

Figure 2: tanh function and its derivative 

E. LSTM: 

 

 

The structure of LSTM includes three gates. The forget gate determines what information from 

previous step should be kept or thrown. Output value from the sigmoid function is between 0 (less 

important) to 1 (very important). The input gate is used to control what information is important from 



current input x. The output gate decides what the next hidden state should be. The math formula for f(t), 

i(t), d(t), o(t), c(t), h(t), and y(t) are: 

𝑓(%) = 𝑠𝑖𝑔𝑚(𝑊gh𝑥% +𝑊ihℎ%,-) 

𝑖(%) = 𝑠𝑖𝑔𝑚(𝑊gj𝑥% +𝑊ijℎ%,-) 

𝑑(%) = 𝑠𝑖𝑔𝑚(𝑊gl𝑥% +𝑊ilℎ%,-) 

𝑜(%) = 𝑠𝑖𝑔𝑚(𝑊g[𝑥% + 𝑊i[ℎ%,-) 

𝑐(%) = 𝑓(%) ∗ 𝑐(%,-) + 𝑖(%) ∗ 𝑑(%) 

ℎ(%) = 𝑜(%) ∗ tanh	(𝑐(%)) 

The forget gate creates a path for important information to be kept which solves the problem of 

vanishing gradient. 

 

IV. DESIGN 

A. Whole Design 

The goal of this project is to get text and speech of translation result from an input video of 

sign language which separated into frames. Then, each frame is put into OpenPose for the 

spatial feature of hands. In order to extract the temporal feature from LSTM network, the spatial 

feature of each 30 continuous frames as an array is recorded. And every two successive arrays 

have 80 percent of overlaps. In the end, the LSTM network model will predict the most possible 

translation and speak it out. The overview of the system shows in Figure 4. 



 

Fig. 4. Overview of the System 

The development tools and environment as fellow: 

Compiler: Jupyter Notebook 1.0.0 

Environment: Python 3.6.5 

Library: Tensorflow, OpenPose 

GPU: GTX 1080 

B. Spatial Feature Extraction 

OpenPose designed by CMU is a real-time multi-person system to detect human key points 

on images. By using this library, a series of dictionaries containing x, y position and their 

predicted probability of 21 points on each hand could be generated. Extract the position 

information of each frame into a .txt document, which is the required spatial feature. 

C. Temporal Feature Extraction 

LSTM network has a great advantage in learning long-term memory tasks, so it could be 

effective in sequential data learning. In this neural network model, an RNN model based on 

two layers of LSTMs each of which contains 34 hidden layers is designed. The two layers are 



followed with a layer of softmax activation, whose output is then matched with the expected 

training output. 

 

Fig. 5. LSTM Model 

D. Model Improvement and Experiment Design 

 Regularization and dropout are used to reduce overfitting of the model. L2 regularization 

could increase the generalization ability of model and prevent overfitting by punishing high-

value weights. Dropout is a technique which randomly selects and temporarily disables neurons. 

In this project, dropout of 0.8 and 0.5 is tried while other variables are controlled. 

 In order to find out better model, three variables, including hidden layers (34 layers and 45 

layers), activation function (ReLU, Leaky ReLU, Elu and Tanh), and learning rate (0.5, 0.05, 

0.005and 0.0005), are tested separately. Set epochs to 3000 and batch size to 512 for keeping 

the fairness of experiments. Only one independent variable will be changing each time. 



 

Fig. 6. Activation Functions. 

V. DATA ANALYSIS 

 Trained by augmented data, the LSTM model has better performance on sign language 

recognition. From TABLE I, all metrics are approximately 10 percent higher after data 

augmentation. From the change value of precision and recall, it’s obvious that augmented data 

helps the model to classify more true positives in relevant elements and less false positives in 

all positives. 

TABLE I.  COMPARISON OF ACCURACIES 

Dataset 
Testing 

Accuracy 
F1 Score Recall Precision 

Before Augmentation 
(340 vidios) 

81.80% 82.27% 81.80% 82.40% 

After Augmentation 
(3060 vidios) 

92.41% 92.44% 92.41% 92.61% 



 Based on the confusion matrix, before data augmentation, the decoding result of seventeen 

labels produced by the deep-learning annotator doesn’t match with the ground truth. The 

classifier gets confused among easy signs (“deaf”, “hearing”, “I love you”, “my”, “no”, “thank 

you”, “yes”). On the opposite, it is good at recognizing complex signs (“nice to meet you” and 

“nothing”). It is caused by overfitting in which model loses the ability to generalize easy signs. 

When more data is used, the misclassification is largely eliminated. 

 

Fig. 7. Comparison of Confusion Matrix 

 Fig 8 contains curves of training accuracies and testing accuracies with the same model and 

different dataset. The training and testing accuracies have a gap in both situations. However, 

before data augmentation, the overfitting problem is very serious; the difference between 

training and testing accuracies is more than 15 percent. After data augmentation, the training 

and testing accuracies become closer. As a result, even though training accuracies is lower than 

the previous one, testing accuracy is 10.61% higher. 



 

Fig. 8. Comparison of Training Performance 

TABLE II.  ACCURACIES OF THE PROPOSED SYSTEM 

The Relationship Between Deep Learning Techniques and Validation Accuracy 

Version 
Activation 

Functions 
Epoch 

Hidden 

Layers 

Learning 

Rate 
Dropout 

Batch 

Size 

Validation 

Accuracy  

F1 

Score 

model 1.0 RELU 3000 34 0.005 N/A 512 86.32% 86.40% 
model 1.0.1 RELU 3000 34 0.005 N/A 512 92.41% 92.44% 
model 1.1 Leaky ReLU 3000 34 0.005 N/A 512 93.62% 93.66% 
model 1.2 ELU 3000 34 0.005 N/A 512 92.07% 92.09% 
model 1.3 Tanh 3000 34 0.005 N/A 512 85.94% 85.99% 
model 2.0 Leaky ReLU 3000 34 0.5 N/A 512 91.34% 91.35% 
model 2.1 Leaky ReLU 3000 34 0.05 N/A 512 88.78% 88.79% 
model 2.2 Leaky ReLU 3000 34 0.0005 N/A 512 92.70% 92.73% 
model 3.0 Leaky ReLU 3000 45 0.005 N/A 512 93.54% 93.58% 
model 4.0 Leaky ReLU 3000 34 0.005 0.5 512 92.53% 92.55% 
model 4.1 Leaky ReLU 3000 34 0.005 0.8 512 91.99% 92.03% 

In order to improve the model, I tested activation functions, hidden layers, learning rate 

and learning rate decay, dropout, separately. The relationship of accuracy and each factor is 

revealed by these experiments. Because in sign language translation, both high accuracy and 

high recall is required, so the F1 Score is the best measurement of the effectiveness of 

models. 



     For activation functions, RELU, Leaky RELU, ELU and Tanh (Fig 6) are tested in this 

experiment. ReLU could prevent the vanishing gradient. However, many neurons might be 

permanently deactivated when parameters are smaller than zero. Leaky ReLU and ELU 

appear to solve this zero-value problem. In the result, the most effective activation function is 

Leaky RELU (model 1.1) which achieves 93.66% in F1 Score. And the lowest one is the 

Tanh because of the vanishing gradient. As for hidden layers, size of 34 and 45 is tested. The 

performance of the model with 34-layer size is pretty better because the deeper network 

would cause more serious vanishing gradient. In learning rates of 0.5, 0.05, 0.005, 0.0005, 

rate of 0.005 performs the best. Cause the neurons of this model are not small, dropout of 0.5 

results in better performance. 

 

Fig. 9. Activation Function and Loss 



 

Fig. 10. Different Learning Rate 

 In the result display, the video of a person who presents sign language and is not in the 

training dataset is put into the trained model through the interface built by Tkinter. The result 

of translation could be accurately predicted and speak out. 

 

Fig. 11. The Display of Sign Language Translation System 

VI. DISCUSSION AND CONCLUSION 

In this project, I successfully developed a sign language translation system based on deep 

learning. This project could help deaf or mute to better communicate with others. The main 

parts of this project are: 



• Create a sign language dataset containing 3060 videos of 17 different sign language 

phrases. 

• Use Openpose for hand pose estimation. 

• Build an LSTM network for sign language translation. 

After the establishment and improvement of neural networks in 3 months, the f1 score of 
my translation system reaches 93.66%. The performance of this deep learning model is very 
high and achieves my previous goal of over 90%. My project is a successful solution for sign 
language translation: 

• Supplement existing solutions of sign language translation system 

o   Costly 

o   Unreliable 

o   Inaccessible 

• Help sign language users to better communicate with others. 

• However, this project also has some weakness: 

•  Real-time translation is not achieved right now. 

•  Dataset is not big enough. 

•  User interface is not well created. 

These weaknesses could be solved in the future. In the next one year, I will work on the 

real-time translation and user interface. The further question is how to gain larger dataset of 

sign language. 
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