
In-Place Parallel-Partition
Algorithms using Exclusive-Read-and-WriteMemory

An AlgorithmWith Provably Optimal Cache Behavior

AlekWestover

Belmont High School
Massachusetts, USA

Mentor: William Kuszmaul (MIT)

MIT PRIMES Computer Science Research Program

Contents

Contents 1
Abstract 2
1 Introduction 3
2 Preliminaries 4
3 An In-Place Algorithmwith SpanO(lognloglogn) 5
4 A Cache Efficient In-Place Parallel Partition 7
5 Performance Comparisons 12
5.1 Comparing Parallel-Prefix-Based Algorithms 12
5.2 Comparing the Smoothed Striding and Strided Algorithms 14
6 Conclusion and Open Questions 14
7 Acknowledgements 18
References 19

AlekWestover

In-Place Parallel-Partition
Algorithms using Exclusive-Read-and-WriteMemory

AlekWestover∗
Belmont High School

alek.westover@gmail.com

William Kuszmaul†
Massachusetts Institute of Technology

kuszmaul@mit.edu

Abstract
Theparallel-partitionproblem,which is thefirst stepofQuick-
sort and appears inmanyother algorithms, is given an arrayA
of length n, and must partition the array based on some pivot
property.We present two algorithms for the parallel-partition
problem. Both algorithms are fully in place, have linear work
and polylogarithmic span, and use only exclusive read/write
shared-memory variables (i.e., are EREW). This means that
they can be implemented using only parallel for loops, and
do not require the use of any concurrency mechanisms such
as locks or atomic variables. Despite the parallel-partition
problem being heavily studied, no algorithms have achieved
these theoretical guarantees before.
Our first algorithm is an in-place EREW algorithm with

spanO(logn ·loglogn), which is within a factor ofO(loglogn)
of optimal. Although the algorithm achieves practical perfor-
mance improvements over the standard out-of-place parallel
partition due to improved cache behavior, the algorithm re-
mains bottlenecked by memory bandwidth in practice.

Our second algorithm is an in-place EREW algorithm with
polylogarithmic span and provably optimal cache behavior, up
to small-order factors. The resulting algorithm achieves near-
ideal scaling in practice by avoiding the memory-bandwidth
bottleneck. The algorithm’s performance is comparable to
that the Blocked Strided Algorithm of Francis, Pannan, Frias,
and Petit, which is the previous state-of-the art for parallel
EREW sorting algorithms, but which lacks theoretical guar-
antees on its span and cache behavior.

*.Keywords Parallel Partition, EREW PRAM, in-place algo-
rithms

∗Supported byMIT PRIMES
†Supported by a Hertz Fellowship and a NSF GRFP Fellowship

1 Introduction
A parallel partition operation rearranges the elements in an array so that the elements satisfying a particular pivot property
appear first. In addition to playing a central role in parallel quicksort, the parallel partition operation is used as a primitive
throughout parallel algorithms.1
A parallel algorithm can be measured by itswork, the time needed to execute in serial, and its span, the time to execute on

infinitely many processors. There is a well-known algorithm for parallel partition on arrays of size n with workO(n) and span
O(logn) [1, 6]. Moreover, the algorithm uses only exclusive read/write shared memory variables (i.e., it is an EREW algorithm).
This eliminates the need for concurrency mechanisms such as locks and atomic variables, and ensures good behavior even if
the time to access a location is a function of the number of threads trying to access it (or its cache line) concurrently. EREW
algorithms also have the advantage that their behavior is internally deterministic, meaning that the behavior of the algorithm
will not differ from run to run, which makes test coverage, debugging, and reasoning about performance substantially easier [7].

The parallel-partition algorithm suffers fromusing a large amount of auxiliarymemory, however.Whereas the serial algorithm
is typically implemented in place, the parallel algorithm relies on the use of two auxiliary arrays of size n. To the best of our
knowledge, the only known linear-work and polylog(n)-span algorithms for parallel partition that are in-place require the use
of atomic operations (e.g, fetch-and-add) [5, 20, 28].

An algorithm’s memory efficiency can be critical on large inputs. The memory consumption of an algorithm determines the
largest problem size that can be executed in memory. Many external memory algorithms (i.e., algorithms for problems too large
to fit in memory) perform large subproblems in memory; the size of these subproblems is again bottlenecked by the algorithm’s
memory-overhead [29]. In multi-user systems, processes with larger memory-footprints can hog the cache and the memory
bandwidth, slowing down other processes.
For sorting algorithms, in particular, special attention to memory efficiency is often given. This is because (a) a user calling

the sort function may already be using almost all of the memory in the system; and (b) sorting algorithms, and especially parallel
sortingalgorithms, areoftenbottleneckedbymemorybandwidth.The latterproperty, inparticular,means that anyparallel sorting
algorithmthatwishes to achieve state-of-the art performanceona largemulti-processormachinemust be (at least close to) inplace.

Currently the only practical in-place parallel sorting algorithms either rely heavily on atomic operations or other concurrency
mechanisms [5, 20, 28], or eschew theoretical guarantees [13]. Parallel merge sort [17] was made in-place by Katajainen [21],
but has proven too sophisticated for practical applications. Bitonic sort [8] is naturally in-place, and can be practical in certain
applications on super computers, but suffers in general from requiring workΘ(nlog2n) rather thanO(nlogn). Parallel quicksort,
on the other hand, despite the many efforts to optimize it [5, 13, 14, 20, 28], has eluded any in-place EREW (or CREW) algorithms
due to its reliance on parallel partition.2

Results.We show that parallel partition can be implemented in place, and without the use of concurrency mechanisms. All
of the algorithms considered in this paper use only exclusive read/write shared variables, and can be implemented using
parallel-for-loops without any additional concurrency considerations.
Our first result is a set of techniques that allows us to adapt the standard parallel partition algorithm to be fully in place.

The new algorithm has workO(n) and spanO(logn ·loglogn). As an immediate consequence, we also get an in-place quicksort
algorithmwith workO(nlogn) and spanO(log2nloglogn).

Using our algorithmic techniques, we implement a space-efficient parallel partition. Because the in-place algorithm eliminates
the use of large auxiliary arrays, the algorithm is able to achieve a reduction in cache misses over its out-of-place counterpart,
resulting in performance improvements over the standard parallel partition algorithm.
The in-place algorithm remains bottlenecked by memory bandwidth, however, due to the fact that multiple passes over the

input array are required. The memory-bandwidth bottleneck has led past researchers [13, 14] to introduce the so-called Strided
Algorithm, which has near optimal cache behavior in practice, butwhich exhibits theoretical guarantees only on certain random
input arrays.
The main result of this paper is an algorithm that we call the Smoothed Striding Algorithm, which achieves theoretical

guarantees not only on span, work, andmemory usage, but also on cache behavior. By randomly perturbing the internal structure
of the Strided Algorithm, and adding a recursion step that was previously not possible, we arrive at a new algorithm with
provably good span and cache behavior. The Smoothed Striding Algorithm is in-place, has polylogarithmic span, and exhibits
provably optimal cache behavior up to small-order factors.

Using the Smoothed Striding Algorithm, we implement and optimize a fully in-place parallel partition. The implementation
of the Smoothed Striding Algorithm performs within 15% of the Strided Algorithm on a large number of threads, while achieving
theoretical guarantees that were previously unattainable.

1In several well-known textbooks and surveys on parallel algorithms [1, 6], for example, parallel partitions are implicitly used extensively to performwhat
are referred to as filter operations.
2In aCRCWCREW algorithm, reads may be concurrent, but writes may not. CREW stands for concurrent-read exclusive-write.

AlekWestover

2 Preliminaries
We begin by describing the the parallelism and memory model used in the paper, and by presenting background on parallel
partition.

WorkflowModel.We consider a simple language-based model of parallelism in which algorithms achieve parallelism through
the use of parallel-for-loops (see, e.g., [1, 6, 12]); function calls within the inner loop then allow for more complicated parallel
structures (e.g., recursion). Our algorithms can also be implemented in the less restrictive PRAMmodel [1, 6].
Formally, a parallel-for-loop is given a range R ∈N, a constant number of arguments arg1,arg2,...,argc , and a body of code.

For each i ∈ {1,...,R}, the loop launches a thread that is given loop-counter i and local copies of the arguments arg1,arg2,...,argc .
The threads are then taken up by processors and the iterations of the loop are performed in parallel. Only after every iteration
of the loop is complete can control flow continue past the loop.

A parallel algorithmmay be run on an arbitrary numberp of processors. The algorithm itself is oblivious top, however, leaving
the assignment of threads to processors up to a scheduler.
TheworkT1 of an algorithm is the time that the algorithmwould require to execute on a single processor. The spanT∞ of

an algorithm is the time to execute on infinitely many processors. The scheduler is assumed to contribute no overhead to the
span. In particular, if each iteration of a parallel-for-loop has span s , then the full parallel loop has span s+O(1) [1, 6].
The workT1 and spanT∞ can be used to quantify the timeTp that an algorithm requires to execute on p processors using a

greedy online scheduler. If the scheduler is assumed to contribute no overhead, then Brent’s Theorem [11] states that for any p,
T1/p ≤Tp ≤T1/p+T∞.

The work-stealing algorithms used in the Cilk extension of C/C++ realize the guarantee offered by Brent’s Theoremwithin a
constant factor [9, 10], with the added caveat that parallel-for-loops typically induce an additional additive overhead ofO(logR).

MemoryModel.Memory is exclusive-read and exclusive-write. That is, no two threads are ever permitted to attempt to read
or write to the same variable concurrently. The exclusive-read exclusive-write memory model is sometime referred to as the
EREWmodel (see, e.g., [17]).

Note that threads are not in lockstep (i.e., they may progress at arbitrary different speeds), and thus the EREWmodel requires
algorithms to be data-race free in order to avoid the possibility of non-exclusive data accesses.
In an in-place algorithm, each thread is givenO(polylogn)memory upon creation that is deallocated when the thread dies.

This memory can be shared with the thread’s children. However, the depth of the parent-child tree is not permitted to exceed
O(polylogn).

Whereas the EREWmemory model prohibits concurrent accesses to memory, on the other side of the spectrum are CRCW
(concurrent-read-concurrent-write) models, which allow for both reads and writes to be performed concurrently (and in some
variants even allow for atomic operations) [1, 6, 24]. One approach to designing efficient EREW algorithms is to simulate efficient
CRCW algorithms in the EREWmodel [24]. The known simulation techniques require substantial space overhead, however,
preventing the design of in-place algorithms [24].3

The Parallel Partition Problem. The parallel partition problem takes an input arrayA of size n, and a decider function dec
that determines for each elementA[i] ∈Awhether or notA[i] is a predecessor or a successor . That is, dec(A[i])=1 ifA[i] is a
predecessor, and dec(A[i])=0 ifA[i] is a successor. The behavior of the parallel partition is to reorder the elements in the array
A so that the predecessors appear before the successors.

The (Standard) Linear-Space Parallel Partition.The linear-space implementation of parallel partition consists of two phases
[1, 6]:
The Parallel-Prefix Phase: In this phase, the algorithm constructs an array B whose i-th element B[i] =

∑i
j=1dec(A[i]) is the

number of predecessors in the first i elements ofA. The transformation fromA to B is called a parallel prefix sum and can be
performed withO(n)work andO(logn) span using a simple recursive algorithm: (1) First construct an arrayA′ of size n/2with
A′[i]=A[2i−1]+A[2i]; (2) Recursively construct a parallel prefix sum B′ ofA′; (3) Build B by setting each B[i]=B′[⌊i/2⌋]+A[i]
for odd i and B[i]=A′[i/2] for even i .
The Reordering Phase: In this phase, the algorithm constructs an output-arrayC by placing each predecessorA[i] ∈A in position
B[i] ofC . If there are t predecessors inA, then the first t elements ofC will now contain those t predecessors in the same order
that they appear inA. The algorithm then places each successorA[i] ∈A in position t+i−B[i]. Since i−B[i] is the number of
successors in the first i elements ofA, this places the successors inC in the same order that they appear inA. Finally, the algorithm
copiesC intoA, completing the parallel partition.
Both phases can be implemented withO(n)work andO(logn) span. Like its serial out-of-place counterpart, the algorithm

is stable but not in place. The algorithm uses two auxiliary arrays of size n. Kiu, Knowles, and Davis [23] were able to reduce

3The known simulation techniques also increase the total work in the original algorithm, although this can be acceptable if only a small number of atomic
operations need to be simulated.

the extra space consumption ton+p under the assumption that the number of processorsp is hard-coded; their algorithm breaks
the arrayA into p parts and assigns one part to each thread. Reducing the space below o(n) has remained open until now, even
when the number of threads is fixed.

3 An In-Place Algorithmwith SpanO(lognloglogn)
In this section, we present an in-place algorithm for parallel partition with spanO(lognloglogn). Each thread in the algorithm
requires memory at mostO(logn).
We assume without loss of generality that the total number of successors inA exceeds the number of predecessors, since

otherwise their roles can simply be swapped in the algorithm. Further, we assume for simplicity that the elements of A are
distinct; this assumption is removed at the end of the section.

AlgorithmOutline.Webegin by presenting an overview of the key algorithmic ideas needed to construct an in-place algorithm.
Consider how to remove the auxiliary arrayC from the Reordering Phase. If one attempts to simply swap in parallel each

predecessorA[i]with the element in position j=B[i] ofA, then the swaps will almost certainly conflict. Indeed,A[j]may also be
a predecessor that needs to be swapped withA[B[j]]. Continuing like this, there may be an arbitrarily long list of dependencies
on the swaps.

To combat this, we begin the algorithm with a Preprocessing Phase in whichA is rearranged so that every prefix is successor-
heavy, meaning that for all t , the first t elements contain at least t

4 successors. Then we compute the prefix-sum array B, and
begin the Reordering Phase. Using the fact that the prefixes ofA are successor-heavy, the reordering can now be performed
in place as follows: (1) We begin by recursively reordering the prefix P ofA consisting of the first 4/5·n elements, so that the
predecessors appear before the successors; (2) Then we simply swap each predecessorA[i] in the final 1/5·n elements with the
corresponding element B[A[i]]. The fact that the prefix P is successor-heavy ensures that the final 1

5 ·n elements of the reordered
P will consist of successors. This implies that for each of the swaps between predecessorsA[i] in the final 1/5···n elements and
earlier positions B[A[i]], the latter element will be a successor. In other words, the swaps are now conflict free.

Next consider how to remove the array B from the Parallel-Prefix Phase. At face value, this would seem quite difficult since the
reordering phase relies heavily onB. Our solution is to implicitly store the value of everyO(logn)-th element ofB in the ordering of
theelementsofA.That is,webreakA intoblocksof sizeO(logn), anduse theorderof theelements ineachblock toencodeanentryof
B. (If the elements arenot all distinct, then a slightlymore sophisticated encoding is necessary.)Moreover,wemodify the algorithm
for buildingB to only construct everyO(logn)-th element. The newparallel-prefix sumperformsO(n/logn) arithmetic operations
on values that are implicitly encoded in blocks; since each such operation requiresO(logn)work, the total work remains linear.

In the remainder of the section, we present the algorithm in detail. It proceeds in three phases.

A Preprocessing Phase. The goal of the Preprocessing phase is to make every prefix ofA successor-heavy. To perform the
Preprocessing phase on A, we begin with a parallel-for-loop: For each i = 1,..., ⌊n/2⌋, if A[i] is a predecessor and A[n−i+1]
is a successor, then we swap their positions inA. To complete the Preprocessing phase onA, we then recursively perform a
Preprocessing phase onA[1],...,A[⌈n/2⌉].

Lemma 3.1. The Preprocessing Phase has workO(n) and spanO(logn). At the end of the Preprocessing Phase, every prefix of
A is successor-heavy.

Proof. Recall that for each t ∈1,...,n, we call the t-prefixA[1],...,A[t] ofA successor-heavy if it contains at least t
4 successors.

The first parallel-for-loop ensures that at least half the successors inA reside in the first ⌈n/2⌉ positions, since for i=1,...,⌊n/2⌋,
A[n−i+1]will only be a successor ifA[i] is also a successor. Because at least half the elements inA are successors, it follows
that the first ⌈n/2⌉ positions contain at least ⌈n/4⌉ successors, making every t-prefix with t ≥ ⌈n/2⌉ successor-heavy.

After theparallel-for-loop, thefirst ⌈n/2⌉ positionsofAcontain at least asmany successors aspredecessors (since ⌈n/4⌉ ≥ ⌈n/2⌉
2).

Thus we can recursively apply the argument above in order to conclude that the recursion onA[1],...,A[⌈n/2⌉]makes every
t-prefix with t ≤ ⌈n/2⌉ successor-heavy. It follows that, after the recursion, every t-prefix ofA is successor-heavy.

Each recursive level has constant span and performs work proportional to the size of the subarray being considered. The
Preprocessing phase therefore has total workO(n) and spanO(logn). □

An Implicit Parallel Prefix Sum. Pick a block-size b ∈Θ(logn) satisfying b ≥ 2⌈log(n+1)⌉. ConsiderA as a series of ⌊n/b⌋
blocks of size b, with the final block of size between b and 2b−1. Denote the blocks byX1,...,X ⌊n/b ⌋ .
Within each blockXi , we can implicitly store a value in the range 0,...,n through the ordering of the elements:

Lemma 3.2. Given an arrayX of 2⌈log(n+1)⌉ distinct elements, and a valuev ∈ {0,...,n}, one can rearrange the elements ofX
to encode the bits ofv using workO(logn) and spanO(loglogn); and one can then later decodev fromX using workO(logn)
and spanO(loglogn).

AlekWestover

Proof. Observe that X can be broken into (at least) ⌈log(n+ 1)⌉ disjoint pairs of adjacent elements (x1,x2),(x3,x4), ..., and by
rearranging the order in which a given pair (x j ,x j+1) occurs, the lexicographic comparison of whether x j < x j+1 can be used
to encode one bit of information. Valuesv ∈ [0,n] can therefore be read and written toX with workO(b)=O(logn) and span
O(logb)=O(loglogn) using a simple divide-and-conquer recursive approach to encode and decode the bits ofv . □

To perform the Parallel Prefix Sum phase, our algorithm beings by performing a parallel-for loop through the blocks, and
storing in each blockXi a valuevi equal to the number of predecessors in the block. (This can be done in place with workO(n)
and spanO(loglogn) by Lemma 3.2.)

The algorithm then performs an in-place parallel-prefix operation on the valuesv1,...,v ⌊n/b ⌋ stored in the blocks. This is done
by first resetting each even-indexed valuev2i tov2i+v2i−1; then recursively performing a parallel-prefix sumon the even-indexed
values; and then replacing each odd-indexedv2i+1 withv2i+1+v2i , wherev0 is defined to be zero.

Lemma 3.3 analyzes the phase:

Lemma 3.3. The Parallel Prefix Sum phase uses workO(n) and spanO(lognloglogn). At the end of the phase, eachXi encodes
a valuevi counting the number of predecessors in the prefixX1◦X2◦···◦Xi ; and each prefixX1◦X2◦···◦Xi is successor-heavy.

Proof. If thevi ’s could be read and written in constant time, then the prefix sumwould take workO(n/logn) and spanO(logn),
since there areO(n/logn)vi ’s. Because eachvi actually requires workO(logn) and spanO(loglogn) to read/write (by Lemma
3.2), the prefix sum takes workO(n) and spanO(logn ·loglogn).
Once of the prefix-sum that has been performed, every blockXi encodes a valuevi counting the number of predecessors in

the prefixX1◦X2◦···◦Xi . Moreover, because the Parallel Prefix Sum phase only rearranges elements within eachXi , Lemma
3.1 ensures that each prefix of the formX1◦X2◦···◦Xi remains successor-heavy. □

In-Place Reordering. In the final phase of the algorithm, we reorderA so that the predecessors appear before the successors.
Let P =X1◦X2◦···◦Xt be the smallest prefix of blocks that contains at least 4/5 of the elements inA. We begin by recursively
reordering the elements in P so that the predecessors appear before the successors; as a base case, when |P | ≤ 5b=O(logn), we
simply perform the reordering in serial.
To complete the reordering ofA, we perform a parallel-for-loop through each of the blocksXt+1,...,X ⌊n/b ⌋ . For each block

Xi , we first extractvi (with workO(logn) and spanO(loglogn) using Lemma 3.2). We then create an auxiliary arrayYi of size
|Xi |, usingO(logn) thread-local memory. Using a parallel-prefix sum (with workO(logn) and spanO(loglogn)), we set each
Yi [j] equal tovi plus the number of predecessors inXi [1],...,Xi [j]. In other words,Yi [j] equals the number of predecessors in
A appearing at or beforeXi [j].

After creatingYi , we then perform a parallel-for-loop through the elementsXi [j] ofXi (note we are still within another parallel
loop through theXi ’s), and for each predecessorXi [j], we swap it with the element in positionYi [j] of the arrayA. This completes
the algorithm.

Lemma 3.4. The Reordering phase takes work O(n) and span O(logn loglogn). At the end of the phase, the array A is fully
partitioned.

Proof. After P has been recursively partitioned, it will be of the form P1◦P2 where P1 contains only predecessors and P2 contains
only successors. Because P is successor-heavy (by Lemma 3.3), we have that |P2 | ≥ |P |/4, and thus that |P2 | ≥ |Xt+1◦···◦X ⌊n/b ⌋ |.
After the recursion, the swaps performed by the algorithmwill swap the i-th predecessor inXt+1◦···◦X ⌊n/b ⌋ with the i-th

element in P2, for i from 1 to the number of predecessors inXt+1◦···◦X ⌊n/b ⌋ . Because |P2 | ≥ |Xt+1◦···◦X ⌊n/b ⌋ | these swaps are
guaranteed not to conflict with one-another; and since P2 consists of successors, the final state of arrayAwill be fully partitioned.

The total work in the reordering phase isO(n) since eachXi appears in a parallel-for-loop at exactly one level of the recursion,
and incursO(logn)work. The total span of the reordering phase isO(logn ·loglogn), since there areO(logn) levels of recursion,
and within each level of recursion eachXi in the parallel-for-loop incurs spanO(loglogn). □

Combining the phases, the full algorithm has workO(n) and spanO(loglogn). Thus we have:

Theorem 3.1. There exists an in-place algorithm using exclusive-read-write variables that performs parallel-partition with work
O(n) and spanO(logn ·loglogn).

Allowing for Repeated Elements. In proving Theorem 3.1 we assumed for simplicity that the elements ofA are distinct. To
remove this assumption, we conclude the section by proving a slightly more complex variant of Lemma 3.2, eliminating the
requirement that the elements of the arrayX be distinct:

Lemma 3.5. LetX be an array of b=4⌈log(n+1)⌉+2 elements. The there is an encode function, and a decode function such that:

• The encode function modifies the arrayX (possibly overwriting elements in addition to rearranging them) to store a value
v ∈ {0,...,n}. The first time the encode function is called onX it has work and spanO(logn). Any later times the encode
function is called onX , it has workO(logn) and spanO(loglogn). In addition to being given an argumentv , the encode
function is given a boolean argument indicating whether the function has been invoked onX before.

• The decode function recovers the value ofv from the modified arrayX , and restoresX to again be an array consisting
of the same multiset of elements that it began with. The decode function has workO(logn) and spanO(loglogn).

Proof. Consider the first b letters of X as a sequence of pairs, given by (x1,x2),...,(xb−1,xb). If at least half of the pairs (xi ,xi+1
satisfy xi ,xi+1, then the encode function can reorder those pairs to appear at the front ofX , and then use them to encodev
as in Lemma 3.2. Note that the reordering of the pairs will only be performed the first time that the encode function is invoked
onX . Later calls to the encode function will have workO(logn) and spanO(loglogn), as in Lemma 3.2.
If, on the other hand, at least half the pairs consist of equal-value elements xi =xi+1, then we can reorder the pairs so that

the first ⌈log(n+1)⌉+1 of them satisfy this property. (This is only done on the first call to encode.) To encode a value v , we
simply explicitly overwrite the second element in each of the pairs (x3,x4),(x5,x6),...with the bits ofv , overwriting each element
with one bit. The reordering performed by the first call to encode has work and spanO(logn); the writing ofv’s bits can then
be performed in workO(logn) and spanO(loglogn) using a simple divide-and-conquer approach.
To perform a decode and read the valuev , we check whether x1=x2 in order to determine which type of encoding is being

used, and then we can unencode the bits ofv using workO(logn) and spanO(loglogn); if the encoding is the second type (i.e.,
x1 = x2), then the decode function also restores the elements x2,x4,x6, ... of the array X as it extracts the bits of v . Note that
checking whether x1=x2 is also used by the encode function each time after the first time it is called, in order determine which
type of encoding is being used. □

The fact that the first call to the encode function on each Xi has spanO(logn) (rather thanO(loglogn)) does not affect the
total span of our parallel-partition algorithm, since this simply adds a step withO(logn)-span to the beginning of the Parallel
Prefix phase. Lemma 3.5 can therefore used in place of Lemma 3.2 in order to complete the proof of Theorem 3.1 for arraysA
that contain duplicate elements.

4 A Cache Efficient In-Place Parallel Partition
In Section 5, we will see that, although the techniques introduced in Section 3 achieve speedups over the classic parallel-prefix-
based partition algorithm, they nonetheless continue to be bottlenecked by cache misses. In this section, we introduce a second
algorithm, called the Smoothed StridingAlgorithm, which exhibits provably optimal cache behavior (up to small-order factors).
The Smoothed Striding Algorithm is fully in-place and has polylogarithmic span.

Modeling CacheMisses.We treat memory as consisting of fixed-size cache lines of some size b. Each processor is assumed
to have a small cache of polylogn cache lines. A cache miss occurs on a processor when the line being accessed is not currently
in cache, in which case some other line is evicted from cache to make room for the new entry. Each cache is managed with a
LRU (Least Recently Used) eviction policy; when child threads are created, they inherit their cache contents from their parent.
We will also assume that the algorithm can choose for certain small arrays to be pinned in cache (i.e. their entries are never

evicted from cache). This assumption is without loss of generality in the sense that LRU eviction is competitive (up to resource
augmentation) with the optimal off-line eviction strategy OPT (i.e. Furthest in the Future). Formally this is due to the following
theorem by Sleator and Tarjan:

Theorem 4.1 (Resource Augmentation Theorem [27]). LRU operating on a cache of sizeK ·M for someK >1will incur at most
1+ 1

K−1 times the number of times cache misses of OPT operating on a cache of sizeM , for the same series of memory accesses.

Recall that each processor has a cache of size logcn for c a constant of our choice. Up to changes in c LRU incurs no more than
a 1+ 1

polylogn factor more cache misses than OPT incurs. Thus, up to a 1+ 1
polylog(n) multiplicative change in cache misses, and

a polylog(n) change in cache size, we may assume without loss of generality that cache eviction is performed by OPT. Such an
assumption will not be necessary for our algorithm analyses, however; instead it will suffice to assume that certain small arrays
are pinned in cache and that other evictions are performed via LRU.

The Strided Algorithm [13]. The Smoothed Striding Algorithm borrows several structural ideas from a previous algorithm
of Francis and Pannan [13], which we call the Strided Algorithm. The Strided Algorithm is designed to behave well on random
arraysA, achieving span Õ(n2/3) and exhibiting onlyn/b+Õ(n2/3/b) cachemisses on such inputs. Onworst-case inputs, however,
the Strided Algorithm has span Ω(n) and incurs n/b+Ω(n/b) cache misses. Our algorithm, the Smoothed Striding Algorithm,
will build on the Strided Algorithm by randomly perturbing the internal structure of the original algorithm; in doing so, we
are able to provide provable guarantees on arbitrary inputs, and to add a recursion step that was previously impossible.

The original Strided Algorithm consists of two steps:

AlekWestover

• The Partial Partition Step. Let д∈N be a parameter, and assume for simplicity that дb |n. Partition the arrayA into n
дb

chunksC1,...,Cn/дb , each consisting of д cache lines of size b. For i ∈ {1,2,...,д}, define Pi to consist of the i-th cache line
from each of the chunksC1,...,Cn/дb . One can think of the Pi ’s as forming a strided partition of arrayA, since consecutive
cache lines in Pi are always separated by a fixed stride of д−1 other cache lines.
The first step of the algorithm is to perform an in-place serial partition on each of the Pi s, rearranging the elements within
the Pi so that the predecessors come first. This step requires workΘ(n) and spanΘ(n/д).

• The Serial Cleanup Step. For each Pi , define the splitting positionvi to be the position inA of the final predecessor
in (the already partitioned) Pi . Definevmin=min{v1,...,vд} and definevmax=max{v1,...,vд}. Then the second step of the
algorithm is to perform a serial partition on the sub-array
A[vmin],...,A[vmax−1]. This completes the full partition.

Note that the Cleanup Step of the Strided Algorithm has no parallelism, and thus has span Θ(vmax−vmin). In general, this
results in an algorithmwith linear-span (i.e., no parallelism guarantee). When the number of predecessors in each of the Pi ’s
is close to equal, however, the quantityvmax−vmin can be much smaller thanO(n). For example, if b = 1, and if each element
ofA is selected independently from some distribution, then one can use Chernoff bounds to prove that with high probability in
n,vmax−vmin ≤O(

√
n ·д ·logn). The full span of the algorithm is then Õ(n/д+√n ·д), which optimizes atд=n1/3 to Õ(n2/3). Since

the Partial Partition Step incurs only n/b cache misses, the full algorithm incurs n+Õ(n2/3) cache misses on a random arrayA.
Using Hoeffding’s Inequality in place of Chernoff bounds, one can obtain analogous bounds for larger values ofb; in particular

for b ∈ polylog(n), the optimal span remains Õ(n2/3) and the number of cache misses becomes n/b+Õ(n2/3/b) on an arrayA
consisting of randomly sampled elements.4

The Smoothed Striding Algorithm. To obtain an algorithmwith provable guarantees for all inputsA, we randomly perturb
the internal structure of each of the Pi ’s. DefineU1,...,Uд (which play a role analogous to P1,...,Pд in the Strided Algorithm) so that
eachUi contains one randomly selected cache line from each ofC1,...,Cn/дb (rather than containing the i-th cache line of each
Cj). This ensures that the number of predecessors in eachUi is a sum of independent random variables with values in {0,1,...,b}.

By Hoeffding’s Inequality, with high probability in n, the number of predecessors in eachUi is tightly concentrated around
µn
д , where µ is the fraction of elements inA that are predecessors. It follows that, if we perform in-place partitions of eachUi

in parallel, and then definevi to be the position inA of the final predecessor in (the already partitioned)Ui , then the difference
betweenvmin=minivi andvmax=maxivi will be small (even if the input arrayA is worst-case!).
Rather than partitioningA[vmin],...,A[vmax−1] in serial, the Smoothed Striding Algorithm simply recurses on the subarray.

Such a recursion would not have been productive for the original Strided Algorithm because the strided partition P ′
1,...,P

′
д used

in the recursive subproblem would satisfy P ′
1 ⊆ P1,...,P

′
д ⊆ Pд and thus each P ′

i is already partitioned. That is, in the original
Strided Algorithm, the problem that we would recurse on is a worst-case input for the algorithm in the sense that the partial
partition step makes no progress.
The main challenge in designing the Smoothed Striding Algorithm becomes the construction ofU1,...,Uд without violating

the in-place nature of the algorithm. A natural approach might be to store for eachUi and eachCj the index of the cache line
inCj thatUi contains. This would require the storage ofΘ(n/b) numbers as metadata, however, preventing the algorithm from
being in-place. To save space, the key insight is to select a random offsetX j ∈ {1,2,...,д}within eachCj , and then to assign the
(X j+i (mod д))+1-th cache line ofCj toUi for i ∈ {1,2,...,д}. This allows for us to construct theUi ’s using onlyO

(
n
дb

)
machine

words storing the metadataX1,...,Xn/дb . By setting д to be relatively large, so that n
дb ≤polylog(n), we can obtain an in-place

algorithm that incurs n(1+o(1)) cache misses.
The recursive structure of the Smoothed Striding Algorithm allows for the algorithm to achieve polylogarithmic span. As

an alternative to recursing, one can also use the in-place algorithm from Section 3 in order to partition
A[vmin],...,A[vmax−1]. This results in an improved span (since the algorithm from Section 3 has span onlyO(lognloglogn)), while
still incurring only n(1+o(1)) cache misses (since the cache-inefficient algorithm from Section 3 is only used on a small subarray
ofA). We analyze both the recursive version of the Smoothed Striding Algorithm, and the version which uses as a final step
the algorithm from Section 3; one significant advantage of the recursive version is that it is simple to implement in practice.

Formal AlgorithmDescription. Let b <n be the size of a cache line, letA be an input array of size n, and letд be a parameter.
(One should think of д as being relatively large, satisfying n

bд ≤polylog(n).) We assume for simplicity that that n is divisible by
дb, and we define s= n

дb .
5

4The original algorithm of Francis and Pannan [13] does not consider the cache-line size b . Frias and Petit later introduced the parameter b [14], and showed
that by setting b appropriately, one obtains an algorithmwhose empirical performance is close to the state-of-the-art.
5This assumption can be made without loss of generality by treating A as an array of size n′ = n + (дb−n (mod дb)), and then treating the final дb −n
(mod дb) elements of the array as being successors (which consequently the algorithm needs not explicitly access).

The Partial Partition Step if the algorithm partitions the cache lines ofA intoд setsU1,...,Uд of size s= n
дb and then performs

a serial partition on each of those setsUi in parallel. To determine the setsU1,...,Uд , the algorithm uses as metadata, an array
X =X [1],...,X [s], where eachX [i] ∈ {1,...,д}.

Formally, the Partial Partition Step performs the following procedure:
• Set each ofX [1],...,X [s] to be uniformly random and independently selected elements of {1,2,...,д}. For i ∈ {1,2,...,д}, and
for each j ∈ {1,2,...,s}, define

Gi (j)= (X [j]+i (mod д))+(j−1)д+1.
Using this terminology, we define eachUi for i ∈ {1,...,д} to contain theGi (j)-th cache line ofA for each j ∈ {1,2,...,s}. That
is,Gi (j) denotes the index of the j-th cache line from arrayA to be contained inUi .
Note that, to compute the index of the j-th cache line inUi , one needs only the value of X [j]. Thus the only metadata
needed by the algorithm to determine theU1,...,Uд is the arrayX . If |X |=s= n

дb ≤polylog(n), then the algorithm is in place.
• The algorithmperforms an in-place (serial) partition on eachUi (and performs these partitions in parallel with one another).
In doing so, the algorithm, also collectsvmin=minivi ,vmax=maxivi , where eachvi with i ∈ {1,...,д} is defined to be the
index of the final predecessor inA (or 0 if no such predecessor exists).6
The arrayA is now partially partitioned, i.e.A[i] is a predecessor for all i ≤vmin, andA[i] is a successor for all i >vmax.

The second step of the Smoothed Striding Algorithm is to complete the partitioning ofA[vmin+1],...,A[vmax]. This can be done
in one of two ways: TheRecursive Smoothed Striding Algorithm partitionsA[vmin+1],...,A[vmax] recursively using the same
algorithm (and resorts to a serial base case when the subproblem is small enough thatд≤O(1)); theHybrid Smoothed Striding
Algorithm partitionsA[vmin+1],...,A[vmax] using the in-place algorithm given in Theorem 3.1 with spanO(lognloglogn). In
general, the Hybrid algorithm yields better theoretical guarantees on span than the recursive version; on the other hand, the
recursive version has the advantage that is simple to implement as fully in place, and still achieves polylogarithmic span.We
analyze both algorithms in this section.

AlgorithmAnalysis.Our first proposition analyzes the Partial Partition Step.

Proposition 4.1. Let ϵ ∈ (0,1/2) and δ ∈ (0,1/2) such that ϵ ≥ 1
poly(n) and δ ≥

1
polylog(n) . Suppose s >

ln(n/ϵ)
δ 2 . Finally, suppose that

each processor has a cache of size at least s+c for a sufficiently large constant c .
Then the Partial-PartitionAlgorithm achievesworkO(n); achieves spanO(b ·s); incurs s+n

b +O(1) cachemisses; and guarantees
with probability 1−ϵ that

vmax−vmin<4nδ .

Proof. Since
∑

i |Ui |=n, and since the partitioning of eachUi takes timeO(|Ui |), the total work performed by the algorithm isO(n).
Assuming that arrayX is pinned in cache (note, in particular, that |X |=s ≤polylog(n), and so we are permitted to pinX in

cache), algorithm’s cache misses consist of: n/b misses from accessing each cache line ofA; s/b for instantiating the arrayX ;
andO(1) for other instantiating costs. This sums to

n+s

b
+O(1).

Note, in particular, that when each cache line inA is accessed, that line continues to be among theO(1)most recently accessed
cache lines until the final time that it is accessed, and thus does not get evicted from cache.
The span of the algorithm isO(n/д+s)=O(b ·s), since the eachUi is of sizeO(n/д), and because the initialization of array

X can be performed in timeO(|X |)=O(s).
It remains to show that with probability 1−ϵ ,vmax−vmin<4nδ . Let µ denote the fraction of elements inA that are predecessors.

For i ∈ {1,2,...,д}, let µi denote the fraction of elements inUi that are predecessors. Note that each µi is the average of s independent
random variablesYi (1),...,Yi (s) ∈ [0,1], whereYi (j) is the fraction of elements in theGi (j)-th cache line ofA that are predecessors.
By construction,Gi (j) has the same probability distribution for all i , since (X [j]+i) (mod д) is uniformly random in Zд for all
i . It follows thatYi (j) has the same distribution for all i , and thus that E[µi] is independent of i . Since the average of the µis is
µ, it follows that E[µi]=µ for all i ∈ {1,2,...,д}.

Since each µi is the average of s independent [0,1]-randomvariables, we can applyHoeffding’s inequality (i.e. a ChernoffBound
for a randomvariable on [0,1] rather thanon {0,1}) to each µi to show that it is tightly concentrated around its expected value µ, i.e.,

Pr[|µi−µ | ≥δ]<2exp(−2sδ 2).
Since s > ln(n/ϵ)

δ 2 ≥
ln(2n/(bϵ))

2δ 2 , we find that for all i ∈ {1,...,д},

Pr[|µi−µ | ≥δ]<2exp
(
−2 ln(2n/(bϵ))2δ 2 δ 2

)
=

ϵ

n/b
<
ϵ

д
.

6One can calculatevmin andvmax without explicitly storing each ofv1, ...,vд as follows. Rather than using a standard д-way parallel for-loop to partition each
ofU1, ...,Uд , one can manually implement the parallel for-loop using a recursive divide-and-conquer approach. Each recursive call in the divide-and-conquer
can then simply collect the maximum andminimumvi for theUi ’s that are partitioned within that recursive call. This addsO (logn) to the total span of the
Partial Partition Step, which is does not affect the overall span asymptotically.

AlekWestover

By the union bound, it follows that with probability at least 1−ϵ , all of µ1,...,µд are within δ of µ.
To complete the proof we will show that the occurrence of the event that ally simultaneously satisfy |µ−µy |<δ implies that

vmax−vmin ≤ 4nδ .
Recall thatGi (j) denotes the index withinA of the j th cache-line contained inUi . By the definition ofGi (j),

(j−1)д+1≤Gi (j)≤ jд.
Note thatA[vi]will occur in the ⌈sµi ⌉-th cache-line ofUi becauseUi is composed of s cache lines. Hence

(⌈sµi ⌉−1)дb+1≤vi ≤ ⌈sµi ⌉дb,
which means that

sµiдb−дb−1≤vi ≤sµiдb+дb .
Since sдb=n, it follows that |vi−nµi | ≤дb. Therefore,

|vi−nµ |<дb+nδ .
This implies that the maximum of |vi−vj | for any i and j is at most, 2bд+2δn. Thus,

vmax−vmin ≤ 2n
(
δ+

n

bд

)
=2n(δ+s)

≤ 2n
(
δ+

2δ 2
ln(2n/(bϵ))

)
<4n ·δ .

□

Wewill use Proposition 4.1 as a tool to analyze the Recursive and the Hybrid Smoothed Striding Algorithms.
Rather than parameterizing the Partial Partition step in each algorithm by s , Proposition 4.1 suggests that it is more natural

to parameterize by ϵ and δ , which then determine s .
We will assume that both the hybrid and the recursive algorithms use ϵ =1/nc for c of our choice (i.e. with high probability

in n). Moreover, the Recursive Smoothed Striding Algorithm continues to use the same value of ϵ within recursive subproblems
(i.e., the ϵ is chosen based on the size of the first subproblem in the recursion), that way the entire algorithm succeeds with high
probability in n.
For both algorithms, the choice of δ results in a tradeoff between cache misses and span. For the Recursive algorithm, we

allow for δ to be chosen arbitrarily at the top level of recursion, and then fix δ =Θ(1) to be a sufficiently small constant at all
levels of recursion after the first; this guarantees that we at least halve the size of the problem size between recursive iterations7.
Optimizingδ further (after the first level of recursion)would only affect the number of undesired cachemisses by a constant factor.

Next we analyze the Hybrid Smoothed Striding Algorithm.

Theorem 4.2. The Hybrid Smoothed Striding Algorithm algorithm using parameter δ ∈ (0,1/2) satisfying δ ≥ 1/polylog(n): has
workO(n); achieves span

O

(
lognloglogn+blogn

δ 2

)
,

with high probability in n; and incurs fewer than
(n+O(nδ))/b

cache misses with high probability in n.

An interesting corollary of the above theorem concerns what happens when b is small (e.g., constant) and we choose δ to
optimize span.

Corollary 4.2 (Corollary of Theorem 4.2). Suppose b ≤o(loglogn). Then the Cache-Efficient Full-Partition Algorithm algorithm
using δ =Θ

(√
b/loglogn

)
, achieves workO(n), and with high probability in n, achieves spanO(lognloglogn) and incurs fewer

than (n+o(n))/b cache misses.

Proof of Theorem 4.2. We analyze the Partial Partition Step using Proposition 4.1. Note that by our choice of ϵ , s=O
(
logn
δ 2

)
. The

Partial Partition Step therefore has workO(n), spanO
(
b logn
δ 2

)
, and incurs fewer than

n

b
+O

(
logn
bδ 2

)
+O(1)

cache misses.
7In general, setting δ = 1/8 will result in the problem size being halved. However, this relies on the assumption that дb | n, which is only without loss of
generality by allowing for the size of subproblems to be sometimes artificially increased by a small amount (i.e., a factor of 1+дb/n=1+1/s). One can handle
this issue by decreasing δ to, say, 1/16.

By Theorem 3.1, the subproblem of partitioning of
A[vmin+1],...,A[vmax] takes workO(n). With high probability in n, the subproblem has size less than 4nδ , which means that
the subproblem achieves span

O(lognδ loglognδ)=O(lognloglogn),
and incurs at mostO(nδ/b) cache misses.
The total number of cache misses is therefore,

n

b
+O

(
logn
bδ 2
+
nδ

b

)
+O(1),

which since δ ≥ 1/polylog(n), is at most (n+O(nδ))/b+O(1)≤ (n+O(nδ))/b, as desired. □

Proof of Corollary 4.2. We use δ =
√
b/loglogn in the result proved in Theorem 4.2.

First note that the assumptions of Theorem 4.2 are satisfied becauseO(
√
b/loglogn)> 1/polylog(n). The algorithm achieves

workO(n). With high probability in n the algorithm achieves span

O

(
lognloglogn+blogn

δ 2

)
=O(lognloglogn).

With high probability in n the algorithm incurs fewer than
(n+O(nδ))/b= (n+O(n

√
b/loglogn))/b

cache misses. By assumption
√
b/loglogn=o(1), so this reduces to (n+o(n))/b cache misses, as desired. □

The next theorem analyzes the span of the Recursive Smoothed Striding Algorithm.

Theorem 4.3. With high probability in n, the Recursive Smoothed Striding algorithm using parameter δ ∈ (0,1/2) satisfying
δ ≥ 1/polylog(n): achieves workO(n), attains span

O

(
b

(
log2n+ logn

δ 2

))
,

and incurs (n+O(nδ))/b cache misses.

A particularly natural parameter setting for the Recursive algorithm occurs at δ =1/
√
logn.

Corollary 4.3 (Corollary of Theorem 4.3). With high probability inn, the Recursive Smoothed StridingAlgorithmusing parameter
δ =1/

√
logn: achieves workO(n), attains spanO(blog2n), and incurs n/b ·(1+O(1/

√
logn)) cache misses.

Proof of Theorem 4.3. To avoid confusion, we use δ ′, rather than δ , to denote the constant value of δ used at levels of recursion
after the first.

By Theorem 4.1, the top level of the algorithmhasworkO(n), spanO
(
b
logn
δ 2

)
, and incurs s+n

b +O(1) cachemisses. The recursion
reduces the problem size by at least a factor of 4δ , with high probability in n.

At lower layers of recursion, with high probability inn, the algorithm reduces the problem size by a factor of at least 1/2 (since
δ is set to be a sufficiently small constant). For each i >1, it follows that the size of the problem at the i-th level of recursion is
at mostO(nδ/2i).

The sum of the sizes of the problems after the first level of recursion is therefore a geometric series summing to at mostO(nδ).
This means that the total work of the algorithm is at mostO(nδ)+O(n)≤O(n).

Recall that each level i > 1 uses s = ln(2−inδ ′/b)
δ ′2 , where δ ′=Θ(1). It follows that level i uses s ≤O(logn). Thus, by Proposition

4.1, level i contributesO(b ·s)=O(blogn) to the span. Since there are at mostO(logn) levels of recursion, the total span in the
lower levels of recursion is at mostO(blog2n), and the total span for the algorithm is at most,

O

(
b

(
log2n+ logn

δ 2

))
.

To compute the total number of cache misses of the algorithm, we add together (n+s)/b+O(1) for the top level, and then,
by Proposition 4.1, at most ∑

0≤i<O (logn)

1
b
O
(
22−inδ+logn

)
≤O

(
1
b
(nδ+log2n)

)
.

for lower levels. Thus the total number of cache misses for the algorithm is,
1
b

(
n+

logn
δ 2

)
+O(nδ+log2n)/b= (n+O(nδ))/b .

□

AlekWestover

Proof of Corollary 4.3. By Theorem 4.3, with high probability in n, the algorithm has workO(n), the algorithm has span

O

(
b

(
log2n+

logn
δ 2

))
=O(log2n),

and the algorithm incurs

(n+O(nδ))/b= (n+O(n/
√
logn))/b= (n+o(n))/b

cache misses. □

5 Performance Comparisons
In this section,we implement the techniques fromSections 3 and 4 to build space-efficient and in-place parallel-partition functions.
Each implementation considers an array of n 64-bit integers, and partitions them based on a pivot. The integers in the array

are initially generated so that each is randomly either larger or smaller than the pivot.
InSubsection5.1,weevaluate the techniques inSection3 for transforming thestandardparallel-prefix-basedpartitionalgorithm

into an in-place algorithm. We compare the performance of three parallel-partition implementations: (1) The high-space
implementation which follows the standard parallel-partition algorithm exactly; (2) amedium-space implementation which
reduces the space used for the Parallel-Prefix phase; and (3) a low-space implementation which further eliminates the auxiliary
space used in the Reordering phase of the algorithm. The low-space implementation still uses a small amount of auxiliarymemory
for theparallel-prefix, storingeveryO(logn)-th elementof theparallel-prefixarrayexplicitly rather thanusing the implicit-storage
approach in Section 3. Nonetheless the space consumption is several orders of magnitude smaller than the original algorithm.

In addition to achieving a space-reduction, the better cache-behavior of the low-space implementation allows for it to achieve
a speed advantage over its peers, in some cases completing roughly twice as fast as the medium-space implementation and four
times as fast as the low-space implementation. We show that all three implementations are bottlenecked by memory throughput,
however, suggesting that the cache-optimal Smoothed Striding Algorithm can do better.
In Subsection 5.2, we evaluate the performance of the Recursive Smoothed Striding Algorithm and the Strided Algorithms.

The cache efficiency of the two algorithms allows for them to achieve substantially better scaling than their parallel-prefix-based
counterparts. The Strided Algorithm tends to slightly outperform the Smoothed Striding Algorithm, though on 18 threads their
performance is within 15% of one-another. We conclude that the Smoothed Striding Algorithm allows for one to obtain empirical
performance comparable to that of the Strided Algorithm, while simultaneously achieving the provable guarantees on span
and cache-efficiency missing from the original Strided Algorithm.

Machine Details. Our experiments are performed on a two-socket machine with eighteen 2.9 GHz Intel Xeon E5-2666 v3
processors. To maximize the memory bandwidth of the machine, we use a NUMAmemory-placement policy in which memory
allocation is spread out evenly across the nodes of the machine; this is achieved using the interleave=all option in the Linux
numactl tool [22]. Worker threads in our experiments are each given their own core, with hyperthreading disabled.
Our algorithms are implemented using the CilkPlus task parallelism library in C++. The implementations avoid the use of

concurrency mechanisms and atomic operations, but do allow for concurrent reads to be performed on shared values such as
n and the pointer to the input array. Our code is compiled using g++ 7.3.0, withmarch=native and at optimization level three.

Our implementations are available at
github.com/awestover/Parallel-Partition.

5.1 Comparing Parallel-Prefix-Based Algorithms
In this section, we compare four partition implementations, incorporating the techniques from Section 3 in order to achieve space
efficiency.Wefind that the performances of each of the implementations are closelymodeled by cachemisses,which allows for the
more space-efficient algorithms to achievepractical speedups.Thediscussionof cachemisses andmemory-bandwidthbottlenecks
in this section also sets the groundwork for understanding the performance of the Smoothed Striding Algorithm in Section 5.2.

The partition implementations considered in this section are:
• A Serial Baseline: This uses the serial in-place partition implementation from GNU Libc quicksort, with minor adaptions to
optimize it for the case of sorting 64-bit integers (i.e., inlining the comparison function, etc.).

• The High-Space Parallel Implementation: This uses the standard parallel partition algorithm [1, 6], as described in Section
2. The space overhead is roughly 2n eight-byte words.

• The Medium-Space Parallel Implementation: Starting with the high-space implementation, we reduce the space used by the
Parallel-Prefix phase by only constructing everyO(logn)-th element of the prefix-sum array B, as in Section 3. (HereO(logn)
is hard-coded as 64.) The array B is initialized to be of size n/64, with each component equal to a sum of 64 elements, and then
a parallel prefix sum is computed on the array B. Rather than implicitly encoding the elements of B inA, we use an auxiliary
array of size n/64 to explicitly store the prefix sums.

github.com/awestover/Parallel-Partition

The algorithm has a space overhead of n
32+n eight-byte words.

8

• The Low-Space Parallel Implementation: Starting with the medium-space implementation, we make the reordering phase
completely in-place using the preprocessing technique in Section 3.9 The only space overhead in this implementation is the
n
32 additional 8-byte words used in the prefix sum.
We remark that the ample parallelism of the low-space algorithmmakes it so that for large inputs the value 64 can easily be

increased substantially without negatively effecting algorithm performance. For example, on an input of size 228, increasing it to
4096 has essentially no effect on the empirical runtime while bringing the auxiliary space-consumption down to a 1

2048 -fraction
of the input size. (In fact, the increase from 64 to 4096 results in roughly a 5% speedup.)

AnAdditionalOptimization forTheHigh-Space Implementation.Theoptimizationof reducing theprefix-sumbya factor
ofO(logn) at the top level of recursion, rather than simply by a factor of two, can also be applied to the standard parallel-prefix
algorithmwhen constructing a prefix-sum array of sizen. Even without the space reduction, this reduces the (constant) overhead
in the parallel prefix sum,while keeping the overall span of the parallel-prefix operation atO(logn).We perform this optimization
in the high-space implementation.

Performance Comparison. Figure 1 graphs the speedup of the each of the parallel algorithms over the serial algorithm, using
varying numbers of worker threads on an 18-core machine with a fixed input size of n=230. Both space optimizations result
in performance improvements, with the low-space implementation performing almost twice as well as the medium-space
implementation on eighteen threads, and almost four times as well as the high-space implementation.
Figure 2 compares the performances of the implementations in serial. Parallel-for-loops are replaced with serial for-loops

to eliminate scheduler overhead. As the input-size varies, the ratios of the runtimes vary only slightly. The low-space imple-
mentation performs within a factor of roughly 1.9 of the serial implementation. As in Figure 1, both space optimizations result
in performance improvements.

The Source of the Speedup. If we compare the number of instructions performed by the three parallel implementations,
then the medium-space algorithmwould seem to be the clear winner. Using Cachegrind to profile the number of instructions
performed in a (serial) execution on an input of size 228,10 the high-space, medium-space, and low-space implementations
perform 4.4 billion, 2.9 billion, and 4.6 billion instructions, respectively.
Cache misses tell a different story, however. Using Cachegrind to profile the number of top-level cache misses in a (serial)

execution on an input of size 228, the high-space, medium-space, and low-space implementations incur 305 million, 171 million,
and 124 million cache misses, respectively.
To a first approximation, the number of cache misses by each algorithm is proportional to the number of times that the

algorithm scans through a large array. By eliminating the use of large auxiliary arrays, the low-space implementation has the
opportunity to achieve a reduction in the number of such scans. Additionally, the low-space algorithm allows for steps from
adjacent phases of the algorithm to sometimes be performed in the same pass. For example, the enumeration of the number
of predecessors and the top level of the Preprocessing phase can be performed together in a single pass on the input array.
Similarly, the later levels of the Preprocessing phase (which focus on only one half of the input array) can be combined with
the construction of (one half of) the auxiliary array used in the Parallel Prefix Sum phase, saving another half of a pass.

TheMemory-Bandwidth Limitation. The comparison of cachemisses suggests that performance is bottlenecked bymemory
bandwidth. To evaluatewhether this is the case, wemeasure for each t ∈ {1,...,18} thememory throughput of t threads attempting
to scan through disjoint portions of a large array in parallel.Wemeasure two types of bandwidth, the read-bandwidth, in which
the threads are simply trying to read from the array, and the read/write bandwidth, in which the threads are attempting to
immediately overwrite entries to the array after reading them. Given read-bandwidth r bytes/second and read/write bandwidth
w bytes/second, the time needed for the low-space algorithm to perform its memory operations on an input ofm bytes will be
roughly 3.5m/w+ .5m/r seconds. We call this the bandwidth constraint. No matter how optimized the implementation of
the low-space algorithm is, the bandwidth constraint serves as a hard lower bound for the running time.11
Figure 3 compares the time taken by the low-space algorithm to the bandwidth constraint as the number of threads t varies

from 1 to 18. As the number of threads grows, the algorithm becomes bandwidth limited, achieving its best possible parallel
performance on the machine. The algorithm scales particularly well on the first socket of the machine, achieving a speedup

8In addition to the auxiliary array of size n/64, we use a series of smaller arrays of sizes n/128,n/256, ... in the recursive computation of the prefix sum. The
alternative of performing the parallel-prefix sum in place, as in Section 3, tends to be less cache-friendly in practice.
9Depending on whether the majority of elements are predecessors are successors, the algorithm goes down separate (but symmetric) code paths. In our timed
experiments we test only with inputs containing more predecessors than successors, since this the slower of the two cases (by a very slight amount) for our
implementation.
10This smaller problem size is used to compensate for the fact that Cachegrind can be somewhat slow.
11Empirically, on an array of size n=228, the total number of cache misses is within 8% of what this assumption would predict, suggesting that the bandwidth
constraint is within a small amount of the true bandwidth-limited runtime.

AlekWestover

on nine cores of roughly six times better than its performance on a single core, and then scales more poorly on the second socket
as it becomes bottlenecked by memory bandwidth.

Implementation Details. In each implementation, the parallelism is achieved through simple parallel-for-loops, with one
exception at the beginning of the low-space implementation, when the number of predecessors in the input array is computed.
Although CilkPlus Reducers (or OpenMPReductions) could be used to perform this parallel summationwithin a parallel-for-loop
[15], we found a slightly more ad-hoc approach to be faster: Using a simple recursive structure, we manually implemented a
parallel-for-loop with Cilk Spawns and Syncs, allowing for the summation to be performed within the recursion.

5.2 Comparing the Smoothed Striding and Strided Algorithms
In this section we consider the performance of the Strided Algorithm and the Recursive Smoothed Striding Algorithm. Past work
[14] found that, on large numbers of threads, the StridedAlgorithmhas performance close to that of other non-EREWstate-of-the
art partition algorithms (i.e.,within 20%of the best atomic-operation based algorithms). The StridedAlgorithmdoesnot offer prov-
able guarantees on span and cache-efficiency, however; and indeed, the reason that the algorithm cannot recurse on the subarray
A[vmin+1],...,A[vmax] is that the subarray has been implicitly constructed to be worst-case for the algorithm. In this subsection,
we show that, with only a small loss in performance, the Smoothed StridingAlgorithm can be used to achieve provable guarantees
on arbitrary inputs. We remark that we do not make any attempt to generate worst-case inputs for the Strided Algorithm (in fact
the random inputs that we use are among the only inputs for which the Strided Algorithm does exhibit provable guarantees!).
Figures 2 and 1 evaluate the performance of the Smoothed Striding and Strided Algorithms in serial and in parallel. On a

single thread, the Smoothed Striding and Strided Algorithms perform approximately 1.5 times slower than the Libc-based
serial implementation baseline. When executed onmultiple threads, the performances of the Smoothed Striding and Strided
Algorithms scale close to linearly in the number of threads. On 18 threads, the Smoothed Striding Algorithm achieves a 9.6×
speedup over the Libc-based Serial Baseline, and the Strided Algorithm achieves an 11.1× speedup over the same baseline.
The nearly-ideal scaling of the two algorithms can be explained by their cache behavior. Whereas the parallel-prefix-based

algorithms were bottlenecked by memory bandwidth, Figure 3 shows that the same is no longer true for the Smoothed Striding
Algorithm. The figure compares the performance of the Smoothed Striding Algorithm to the minimum time needed simple to
read and overwrite each entry of the input array using 18 concurrent threads without any other computation (i.e., the memory
bandwidth constraint). On 18 threads, the time required by the memory bandwidth constraint constitutes 58% of the algorithm’s
total running time.

NUMAEffects.We remark that the use of the Linux numactl tool [22] to spread memory allocation evenly across the nodes of
the machine is necessary to prevent the Smoothed Striding Algorithm and the Strided Algorithm from being bandwidth limited.
For example, if we replicate the 18-thread column of Figure 3 without using numactl, then the speedup of the Smoothed Striding
Algorithm is 8.2, whereas the memory-bandwidth bound for maximum possible speedup is only slightly larger at 10.2.

Implementation Details. Both algorithms use b=512. The Smoothed Striding Algorithm uses slightly tuned ϵ,δ parameters
similar to those outlined in Corollary 4.3. Althoughvmin andvmax could be computed using CilkPlus Reducers [15], we found
it advantageous to instead manually implement the parallel-for-loop in the Partial Partition step with Cilk Spawns and Syncs,
and to computevmin andvmax within the recursion.

Example Application: A Full Quicksort. In Figure 4, we graph the performance of a parallel quicksort implementation using
the low-space parallel-prefix-based algorithm, the Smoothed Striding Algorithm, and the Strided Algorithm.We compare the
algorithm performances with varying numbers of worker threads and input sizes to GNU Libc quicksort; the input array is
initially in a random permutation.
Our parallel quicksort uses the parallel-partition algorithm at the top levels of recursion, and then swaps to the serial-

partitioningalgorithmonce the input sizehasbeen reducedbyat least a factorof8p,wherep is thenumberofworker threads.Byus-
ing the serial-partitioningalgorithmon the small recursive subproblemsweavoid theoverheadof theparallel algorithm,while still
achieving parallelism between subproblems. Small recursive problems also exhibit better cache behavior than larger ones, reduc-
ing the effects of memory-bandwidth limitations on the performance of the parallel quicksort, and further improving the scaling.

6 Conclusion and Open Questions
Parallel partition is a fundamental primitive in parallel algorithms [1, 6]. Achieving faster and more space-efficient implementa-
tions, even by constant factors, is therefore of high practical importance. Until now, the only space-efficient algorithms for parallel
partition have relied extensively on concurrency mechanisms or atomic operations, or lacked provable performance guarantees.
If a parallel function is going to invoked within a large variety of applications, then provable guarantees are highly desirable.
Moreover, algorithms that avoid the use of concurrency mechanisms tend to scale more reliably (and with less dependency on
the particulars of the underlying hardware).

In this paper, we have shown that, somewhat surprisingly, one can adapt the classic parallel algorithm to completely eliminate
the use of auxiliary memory, while still using only exclusive read/write shared variables, and maintaining a polylogarithmic
span. Although the superior cache performance of the low-space algorithm results in practical speedups over its out-of-place
counterpart, both algorithms remain far from the state-of-the art due to memory bandwidth bottlenecks. To close this gap,
we also presented a second in-place algorithm, the Smoothed Striding Algorithm, which achieves polylogarithmic span while
guaranteeing provably optimal cache performance up to low-order factors. The Smoothed Striding Algorithm introduces
randomization techniques to the previous (blocked) Striding Algorithm of [13, 14], which was known to performwell in practice
but which previously exhibited poor theoretical guarantees. Our implementation of the Smoothed Striding Algorithm is fully
in-place, exhibits polylogarithmic span, and has optimal cache performance.

Our work prompts several theoretical questions. Can fast space-efficient algorithms with polylogarithmic span be found for
other classic problems such as randomly permuting an array [3, 4, 26], and integer sorting [2, 16, 18, 19, 25]? Such algorithms
are of both theoretical and practical interest, and might be able to utilize some of the techniques introduced in this paper.
Another important direction of work is the design of in-place parallel algorithms for sample-sort, the variant of quicksort

in which multiple pivots are used simultaneously in each partition. Sample-sort can be implemented to exhibit fewer cache
misses than quicksort, which is be especially important when the computation is memory-bandwidth bound. The known
in-place parallel algorithms for sample-sort rely heavily on atomic instructions [5] (even requiring 128-bit compare-and-swap
instructions). Finding fast algorithms that use only exclusive-read-write memory (or concurrent-read-exclusive-write memory)
is an important direction of future work.

AlekWestover

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

2

4

6

8

10

12

Number of Threads

Sp
ee
du

p
O
ve
rS

er
ia
lP

ar
tit
io
n

Speedup Versus Number of Threads

Low-Space Med-Space
High-Space Smoothed-Striding
Strided

Figure 1. For a fixed table-size n = 230, we compare each implementation’s runtime to the Libc serial baseline, which takes
3.9 seconds to complete (averaged over five trials). The x-axis plots the number of worker threads being used, and they-axis
plots the multiplicative speedup over the serial baseline. Each time (including the serial baseline) is averaged over five trials.

23 24 25 26 27 28 29 300

1

2

3

4

5

6

Log Input Size

Sl
ow

do
w
n
O
ve
rS

er
ia
lP

ar
tit
io
n

Slowdown Versus Input Size in Serial

Low-Space Med-Space
High-Space Smoothed Striding
Strided

Figure 2. We compare the performance of the implementations in serial, with no scheduling overhead. The x-axis is the
log-base-2 of the input size, and the y-axis is the multiplicative slowdown when compared to the Libc serial baseline. Each
time (including the baseline) is averaged over five trials.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

5

10

15

20

Number of Threads

Sp
ee
du

p
O
ve
rS

er
ia
lP

ar
tit
io
n

Speedup Versus Number of Threads

Low-Space Low-Space Bandwidth Constraint
Smoothed Striding Smoothed Striding Bandwidth Constraint

Figure 3.We compare the performances of the low-space and Smoothed Striding parallel-partition algorithms to their ideal
performance determined by memory-bandwidth constraints on inputs of size 230. The x-axis is the number of worker threads,
and they-axis is the multiplicative speedup when compared to the Libc serial baseline (which is computed by an average over
five trials). Each data-point is averaged over five trials.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

2

4

6

8

10

12

14

Number of Threads

Sp
ee
du

p
O
ve
rS

er
ia
lP

ar
tit
io
n

Speedup Versus Number of Threads

Low-Space Smoothed Striding
Strided

Figure 4.We compare the performance of the low-space and high-span sorting implementations running on varying numbers
of threads and input sizes. The x-axis is the number of worker threads and the y-axis is the multiplicative speedup when
compared to the Libc serial baseline. Each time (including each serial baseline) is averaged over five trials.

AlekWestover

7 Acknowledgements
This project was performed as part of the MIT PRIMES program at the Massachusetts Institute of Technology (MIT). The MIT
PRIMES program selects talented high-school students in math and computer science (through a problem-based application
that tests students’ mathematics, programming, and problem-solving abilities) and gives them opportunities to work with MIT
graduate students in Math and Computer Science on unsolved research projects. This project was performed by student Alek
Westover with mentorship fromMIT Computer Science PhD studentWilliam Kuszmaul.

The work for the project is split as follows:
• Cache-Efficient In-Place Algorithms: The main contribution of the project is a cache-efficient in-place EREW parallel-
partition algorithm with provable guarantees on span and cache-behavior, and with near-state-of-the-art real-world
performance.
The theoretical ideas and analysis behind this algorithm, as well as the software implementation and experimentation
of the algorithm are completely due to the student, AlekWestover. The writeup of the algorithm and its analysis were
also performed by the student, with minor editing help by the mentor.

• Non-Cache-Efficient In-Place Algorithms: The paper also presents a non-cache-efficient in-place algorithm for par-
allel partition, which generalizes the classic parallel-prefix-based algorithm. This contribution is primarily of theoretical
interest. Most of this part of the project was performed prior to the student’s involvement. The performance bottlenecks of
this algorithmwere themotivation for the student’s work, which produced algorithmswith equally compelling theoretical
guarantees and far better practical performance.

The authors would also like to thank Bradley C. Kuszmaul for several suggestions that helped simplify the non-cache-efficient
in-place algorithm. The authors would further like to thank Reza Zadeh for introducing them to the parallel-partition problem.

This acknowledgements section was written by the mentor, William Kuszmaul.

References
[1] Umut A Acar and Guy Blelloch. 2016. Algorithm design: Parallel and sequential.
[2] SusanneAlbers and TorbenHagerup. 1997. Improved parallel integer sortingwithout concurrentwriting. Information and Computation 136, 1 (1997), 25–51.
[3] Laurent Alonso and René Schott. 1996. A parallel algorithm for the generation of a permutation and applications. Theoretical Computer Science 159,

1 (1996), 15–28.
[4] R_ Anderson. 1990. Parallel algorithms for generating random permutations on a shared memory machine. In Proceedings of the second annual ACM

Symposium on Parallel Algorithms and Architectures. ACM, 95–102.
[5] Michael Axtmann, SaschaWitt, Daniel Ferizovic, and Peter Sanders. 2017. In-place Parallel Super Scalar Samplesort. arXiv preprint arXiv:1705.02257 (2017).
[6] Guy E Blelloch. 1996. Programming parallel algorithms. Commun. ACM 39, 3 (1996), 85–97.
[7] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Julian Shun. 2012. Internally deterministic parallel algorithms can be fast. InACM SIGPLAN

Notices, Vol. 47. ACM, 181–192.
[8] Guy E. Blelloch, Charles E. Leiserson, Bruce MMaggs, C Greg Plaxton, Stephen J Smith, and Marco Zagha. 1998. An experimental analysis of parallel

sorting algorithms. Theory of Computing Systems 31, 2 (1998), 135–167.
[9] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson, Keith H Randall, and Yuli Zhou. 1996. Cilk: An efficient multithreaded

runtime system. Journal of parallel and distributed computing 37, 1 (1996), 55–69.
[10] RobertDBlumofe andCharles E Leiserson. 1999. Schedulingmultithreaded computations bywork stealing. Journal of theACM (JACM) 46, 5 (1999), 720–748.
[11] Richard P Brent. 1974. The parallel evaluation of general arithmetic expressions. Journal of the ACM (JACM) 21, 2 (1974), 201–206.
[12] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009. Introduction to algorithms. MIT press.
[13] Rhys S. Francis and LJH Pannan. 1992. A parallel partition for enhanced parallel quicksort. Parallel Comput. 18, 5 (1992), 543–550.
[14] Leonor Frias and Jordi Petit. 2008. Parallel partition revisited. In International Workshop on Experimental and Efficient Algorithms. Springer, 142–153.
[15] Matteo Frigo, Pablo Halpern, Charles E Leiserson, and Stephen Lewin-Berlin. 2009. Reducers and other Cilk++ hyperobjects. In Proceedings of the

twenty-first annual symposium on Parallelism in algorithms and architectures. ACM, 79–90.
[16] Alexandros V Gerbessiotis and Constantinos J Siniolakis. 2004. Probabilistic integer sorting. Information processing letters 90, 4 (2004), 187–193.
[17] Torben Hagerup and Christine Rüb. 1989. Optimal merging and sorting on the EREW PRAM. Inform. Process. Lett. 33, 4 (1989), 181–185.
[18] Yijie Han. 2001. Improved fast integer sorting in linear space. In Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms. Society

for Industrial and Applied Mathematics, 793–796.
[19] Yijie Han and Xin He. 2012. More efficient parallel integer sorting. In Frontiers in Algorithmics and Algorithmic Aspects in Information and Management.

Springer, 279–290.
[20] Philip Heidelberger, Alan Norton, and John T. Robinson. 1990. Parallel quicksort using fetch-and-add. IEEE Trans. Comput. 39, 1 (1990), 133–138.
[21] Jyrki Katajainen, Christos Levcopoulos, and Ola Petersson. 1993. Space-efficient parallel merging. RAIRO-Theoretical Informatics and Applications 27,

4 (1993), 295–310.
[22] Andi Kleen. 2005. A numa api for linux. Novel Inc (2005).
[23] Jie Liu, Clinton Knowles, and Adam Brian Davis. 2005. A cost optimal parallel quicksorting and its implementation on a shared memory parallel computer.

In International Symposium on Parallel and Distributed Processing and Applications. Springer, 491–502.
[24] E Matias and Uzi Vishkin. 1995. A note on reducing parallel model simulations to integer sorting. In Parallel Processing Symposium, 1995. Proceedings.,

9th International. IEEE, 208–212.
[25] Sanguthevar Rajasekaran and Sandeep Sen. 1992. On parallel integer sorting. Acta Informatica 29, 1 (1992), 1–15.
[26] Julian Shun, Yan Gu, Guy E Blelloch, Jeremy T Fineman, and Phillip B Gibbons. 2015. Sequential random permutation, list contraction and tree contraction

are highly parallel. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics,
431–448.

[27] Daniel D Sleator and Robert E Tarjan. 1985. Amortized efficiency of list update and paging rules. Commun. ACM 28, 2 (1985), 202–208.
[28] Philippas Tsigas and Yi Zhang. 2003. A simple, fast parallel implementation of quicksort and its performance evaluation on SUN enterprise 10000. In

Proceedings of the Eleventh Euromicro Conference on Parallel, Distributed and Network-Based Processing. IEEE, 372.
[29] Jeffrey Scott Vitter. 2008. Algorithms and data structures for external memory. Foundations and Trends® in Theoretical Computer Science 2, 4 (2008), 305–474.

	Contents
	Abstract
	1 Introduction
	2 Preliminaries
	3 An In-Place Algorithm with Span O(logn loglogn)
	4 A Cache Efficient In-Place Parallel Partition
	5 Performance Comparisons
	5.1 Comparing Parallel-Prefix-Based Algorithms
	5.2 Comparing the Smoothed Striding and Strided Algorithms

	6 Conclusion and Open Questions
	7 Acknowledgements
	References

