On the Complexity of Generalized Roller Splat!

Sebastian Zhu, William Yue, and Vincent Fan

Abstract. In the popular mobile game Roller Splat!, the player controls a paintball
rolling around a rectangular board, with a number of blocked out regions. On any
given move, the paintball moves in any of the four cardinal directions until it hits a
barrier or the edge of the board. As the paintball rolls, it paints the board under-
neath it, and the objective is to paint every open square. In this paper, we show that
if given an arbitrary board, it is computationally “easy” to determine whether or not
the whole board can be covered by showing there exists a polynomial time algorithm
(the problem is in P). We also explore three other similar 2-dimensional variants and
show they are also in P, presenting code implementations. Then we consider the more
interesting 3-dimensional case and prove it is computationally “hard” by constructing
a novel reduction from 3-SAT to show it is NP-complete.

Keywords: Ice-sliding game, Complexity theory, Algorithms, Turing reduction

2 Sebastian Zhu, William Yue, and Vincent Fan
Contents
1 Introduction 3

2 Polynomial-time Algorithms for 2-Dimensional Variants 7

2.1
2.2
2.3
24

Stop Reachability 9
Pass Reachability 9
Stop COVETrageot 10
Pass Coverage 11

3 Intractability of Pass Coverage in Higher Dimensions 11

3.1 Definitions and Structure of the Grid 13
3.2 Gadgets ... 14
3.3 Layers ... 21
3.4 Modification of Gadgets in the Grid 25
3.5 Construction of the Grid 25
3.6 Proof of VTA Traversal 27
3.7 Proof of PC Traversal 28
4 Conclusion 31
5 Acknowledgements and Credits 31
References 32
Appendix A 33

Appendix B 38

On the Complexity of Generalized Roller Splat! 3
1 Introduction

The ice-sliding game is a recurring motif in video games, as seen in the popular mo-
bile games Roller Splat! (which involves coloring in blank squares with a ball of paint) and
Niwashi (which involves cutting squares of grass with the namesake tool). These games
have been heavily featured on Facebook and Instagram advertisements. Furthermore, the
theme is also present in puzzle elements of various RPG games, such as those of the popular
and world-renowned Pokémon franchise. For example, the player must play a version of
the ice-sliding game at the seventh gym in the Sinnoh region, to battle the Ice-type Gym
Leader; the player must also solve a similar puzzle to catch a legendary Pokémon, Regigigas,
at Snowpoint Temple [snoalsnob]. In all of these games, the user is controlling a maximal
sliding agent, such as the ball of paint, the grass cutting tool, or the player’s sprite. Further-
more, players are trying to accomplish a set of tasks on a gridded game board, whether it be
moving from one point to another, or traversing the entire board. This ice-sliding theme also
manifests itself in real life: Tilt-Mazes, a physical puzzle where the player tries to maneuver
a small ball, also feature maximal sliding agents . In fact, these tilt puzzles exist in both
2-dimensional and 3-dimensional forms. In the former, the bead rolls around on one plane,
while in the latter, the bead is confined to a box. Examples of both devices are shown in
Figures 3 and 4, respectively .

E'a?.lb

el ol

O L e A e e A f.‘ﬂ
il v v e
T T T A R i P TR A A) v
L e e N N R "J’l‘j
Bl Ed e E =3 Ll il Ed E L T

Fig. 1: The player’s goal is to reach the gym leader (on raised podium) from the red entrance.
However, the player cannot stop when moving on ice. The player can only stop moving in
one direction when halted by the well, another sprite, a set of stairs, or a patch of dry

snow. [snoal

4 Sebastian Zhu, William Yue, and Vincent Fan

o
R N

b
L
b
o
Lo]
b
o
r
o
o
i
o
L
i

L
L
L~
L
o
L~

L
“a

b
¥

gl gl
-

Lo
b
-’
e

L~

&

Fig.2: The Player’s goal is to reach the direct front of the statue, in order to summon a

legendary Pokémon. However, once again, the player’s avatar will not stop

unless stopped by a wall or a rock. [snob]

sliding on ice

Fig. 3: This figure shows a real life tilt puzzle realized by famous puzzle maker Oskar van
Deventer. The player tries to roll the bead to a desired location by tilting the board. Unless
the user is very dextrous, the bead also acts as a maximal sliding agent, as it can only be

stopped when it hits a wall.

On the Complexity of Generalized Roller Splat! 5

Fig. 4: The above shows a 3d bead puzzle sold by the ABBYFRANK store on Amazon. Once
again, the bead is considered to be a maximal sliding agent as it will only be stopped by
the presence of a barrier. [3dt]

There have been significant mathematical studies into the realm of recreational games.
Certainly, many mathematicians have long been captured by the beauty of Chess [BC39).
More recently, Demaine et al. have analyzed the complexity of numerous video games, such as
the classic Tetris and Super Mario Brothers [DHLNO3JADGV15|. Specifically, many puzzles
involving moving agents on grid-based game boards have received thorough mathematical
treatment. In the category of sliding puzzles, these include the famous 15-puzzle and child-
hood favorite Rush Hour [RW90LFB02]. There are also a variety of well-studied games where
the player actively pushes around obstacles around on the game board, including Push and
PushPush. Many of these games have been shown to be NP- or PSPACE-complete .

On the other hand, games featuring maximal sliding agents have not been nearly as well
studied through the years. Tejeda published a 2014 paper about the complexity of collect-
ing items with maximal sliding agents [Tej14]. In this paper, we will instead explore the
complexity (among other aspects) of covering the board in various ways. Note that while
in two dimensions, the P time algorithm is equivalent for PAss COVERAGE, proving NP-
completeness in three dimensions is strictly harder, as we tackle a more specific problem,
and therefore have less freedom when it comes to creating a reduction. For example, in
Tejada’s reduction, the maximal sliding agent chooses between two paths to denote true
or false for each variable, and then takes corresponding paths to clause gadgets to reach a
target square with a desired item, before continuing through all the other variables. This
method does not work for full coverage of the grid; after all, even if you manage to reach
the target square, how can you cover the other paths not taken? If you choose true for a
variable, how do you cover the false path without allowing the agent to take both paths?
Is there a way to cover all squares except for the special clause squares? We solve these

6 Sebastian Zhu, William Yue, and Vincent Fan

issues and many more in Section 3 by creating a mostly open grid that allows us to cover
paths from a different direction. Our reduction also requires many more layers than Tejada’s.

Broadly, complexity theory is concerned with the intrinsic difficulty of a problem, as well
as making comparisons between the difficulties of two problems. As such, complexity theory
features various categories, such as P and NP. We will present some important definitions,
and then explain their connections to our work. [TWO6]

Definition 1 (Language). Any set of strings that can be input to a Turing Machine is
a language. Languages, which often represent problems, are members of various complexity
classes, which we introduce below. For example, if the problem at hand asks if a number
is prime, we then associate that problem with the language Lprimrs ={string which is a
natural encoding of the problem of n being prime or not ¥n € N} However, we will often
abuse notation and simply say that a problem is in a complexity class, instead of the language
associated with this problem.

Definition 2 (P). The complezity class P contains all languages such that there exists a
DTM L which decides P in time that is bounded by a polynomial function of the input size
(the length of the string that represents the problem). If IT is a decision problem for which
L € P we say that there is a polynomial time algorithm for II.

Definition 3 (NP). When a decision problem IT has a succinct certificate which can be used
to check that a given instance is true in polynomial time then we say that the associated lan-
guage, Ly = {z|x is a natural encoding of an instance of I1} is accepted in non-deterministic
polynomial time, or it is in NP. In other words, given a proposed “solution” to a problem
in NP, there exists a polynomial time algorithm to check the validity of this solution.

Definition 4 (Polynomial Time Reduction). If A and B are both languages and a
function f that runs in polynomial time of input size that satisfies x € A < f(x) € B,
then f is a polynomial time reduction from A to B and we write A <,, B. Importantly, if
A <,, B and B is ‘easy’ then so is A. This allows us to compare the difficulty of problems
i some instances.

Definition 5 (NP-hard). We define a language L to be NP-hard if A € NP implies that
A <, L. Such a language L is at least as difficult as any other language in NP.

Definition 6 (NP-complete). We define a language L to be NP-complete if L is both in
NP and is NP-hard. Such a language L can be thought of the “hardest” problems in NP.

Definition 7 (Ice-sliding game). The 2-dimensional version of the Ice-sliding game is
played on an m x n grid of squares. Each square is either empty, or occupied by a barrier.
The player begins by occupying some designated empty square. The player may then move
in the directions up, down, right, or left. However, the player is a maximal sliding agent,
that is, once it begins moving in one direction, it will not stop until stopped by a barrier (the
player stops in the square directly adjacent to the first barrier it encounters). Given these
rules for movement, the objective of the game is to accomplish various tasks on the game
board, which we will specify below. The 3-dimensional version is similar: it is played on an
axbxc array of cubes (for continuity, we still refer to these cells as “squares” below), either
empty or filled with a barrier. In a similar mazimal sliding fashion, the player can move
around, except it has six directions to choose from: up, down, right, left, front, or back. This
definition can be extended similarly for all dimensions at least 2.

On the Complexity of Generalized Roller Splat! 7

We note now that there is no intrinsic relationship between the difficulty of a problem in
NP versus one in P; problems in NP are not automatically harder than those in P (after all
P C NP). However, mathematicians do focus on studying the hardest problems in NP, which
we have defined to be NP-complete above. While it is generally accepted that NP-complete
problems are not in P, nobody has succeeded in providing a proof. After all, this is one
of the Millenium Problems [Jaf06]. As it is generally thought that P # NP, we call such
NP-complete problems intractable; in other words, unless P = NP, there does not exist an
algorithm that accepts the problem in polynomial time.

In this paper we will study the complexity of decision problems involving the Roller
Splat!, or Ice-Sliding motif as defined above. Specifically, we show that, given an initial
game board with obstacles, it is in P to determine whether the desired goal can be reached.
There are four variants on the goal, which we enumerate in section 2. The four decision
problems are in P by virtue of the polynomial time algorithms we provide below. Further-
more, we show that the 3 dimensional analogue of the PASS COVERAGE variant is in fact
NP-complete by constructing a novel reduction from 3-SAT, a famous problems which is
known to be NP-complete [Coo71].

This problem has natural applications in robotics. Consider the Roomba series of au-
tonomous robotic vacuum cleaners sold by iRobot. Robots like this rely on simple sensors,
and act as maximal sliding agents trying to achieve PASS COVERAGE over a designated area
in order to clean it. Navigational challenges by small, cheap robots in organized storage areas
can be solved by STOP COVERAGE as well. While more complex methods of autonomous
travel are possible, they rely on more complicated, expensive, and bulky equipment. Thus,
this simple model of maximal sliding agents is still highly relevant given the current con-
straints of technology. Furthermore, rigorously studying the computational complexity of a
game can potentially improve the quality of future games and puzzles as well. For exam-
ple, given our analysis, futher game-makers may be able to determine if they have created
the hardest ice-sliding puzzles, and may also be able to determine if their puzzles are too
hard /impossible to solve.

2 Polynomial-time Algorithms for 2-Dimensional Variants

In this section, we provide polynomial-time algorithms for four 2-dimensional ice-sliding
problems to show they are in P:

1. STOP REACHABILITY: whether or not the agent can stop on some target square;

2. PAssS REACHABILITY: whether or not the agent can pass through (traverse) some target
square;

3. STor COVERACGE: whether or not the agent can stop on every square;

4. Pass COVERAGE: whether or not the agent can pass through (traverse) every square.

In particular, PAss COVERAGE describes the game of Roller Splat!, while STOP REACH-
ABILITY and PASS REACHABILITY are common in RPG games.

A natural way to express the board is as a directed graph, where the vertices represent
possible stopping points of the agent, and directed edges represent possible movements be-
tween them. Note that the edges must be directed since, as in the case below, the agent

8 Sebastian Zhu, William Yue, and Vincent Fan

may only be able to travel from one point to another. We depict examples of these graphical
representations from the example board shown below.

Definition 8 (Stopping Point Graph Representation). Given a board, assign it a
graph G. Its vertices are all potential stopping points, which are squares directly next to
barriers. We connect two vertices x,y of G with a directed edge if an agent placed on the
square corresponding to vertex x can make a move to the square corresponding to vertex y.

1

The construction of this graph can be completed in O(N*) time, with N = max{m,n}
where m and n are the dimensions of the grid, since it takes O(NN?) time to choose the valid
vertices, then at most O(N?) time to connect directed edges.

For our code implementation, we will create a new class instance Coordinate for each
point in the grid, defined by its row and column values, z and y.

The method rFinpSTOPPINGPOINTS (Algorithm 1 in Appendix A) takes in the inputs
of m and n, as well as a list of the Coordinates B1, consisting of all the coordinates of squares
with barriers in them. For the example board, m = 4, n = 4, and B; is a list containing one
element: the Coordinate (1,3). The method outputs the list of Coordinates S, containing
all the stopping points.

Definition 9 (Movement Graph Representation). Given a board, assign it a graph
H. Its vertices are all possible sets of back and forth movements. We connect two vertices
x,y of H with a directed edge if it is possible for an agent undergoing the back and forth
movement of x to, after reaching a stopping point, change direction and enter the back and
forth movement of y.

The key observation motivating this representation is that all the arrows in the movement
graph representation come in pairs, so we can assign each pair a vertex in H. In the following

On the Complexity of Generalized Roller Splat! 9

depiction, we put the vertices at the midpoints of each of these back and forth movements.
Note that the number of vertices in H matches the number of back and forth movements in

G.

The construction of this graph can also be completed in O(N*) time, as there are at
most O(N?) back and forth movements, so it takes O(N?) time to find the valid directed
edges. This graph is relevant for Tejada’s proof of PASS COVERAGE, discussed in section
2.4, as well as for showing the membership of d-dimensional case of PASsS COVERAGE in NP.

2.1 Stop Reachability

Theorem 1. Given a board, a starting square, and an ending square, the problem of deter-
mining whether there exists a path from the starting square that stops on the ending square
is in P.

Proof. Consider the stopping point graph representation G, which can be constructed in
O(N*) time. Potentially, the starting square is not a stopping point in the graph, so in
this case, we add it to the graph, with an indegree of 0 and outdegree of at most 4 (four
cardinal directions). From this starting square, we can perform a breadth first search (BFS)
in O(V + E) = O(N*) time to see if there exists a directed path from the starting square
to the ending square. a

First we define the method 1sReacHABLE (Algorithm 2 in Appendix A) for performing
a BFS through the graph representation. It takes an input of a starting coordinate s, an
ending coordinate e, and a directed adjacency list D representing the graph.

In order to utilize this method, we must construct the stopping point graph representa-
tion. The method sTOPREACHABILITY (Algorithm 3 in Appendix A) constructs it before
running the previous 1SREACHABLE method on it.

2.2 Pass Reachability

Theorem 2. Given a board, a starting square, and an ending square, the problem of deter-
mining whether there exists a path from the starting square that passes through the ending
square is in P.

Proof. This is very similar to the above proof, except we add in a special red vertex v
corresponding to the ending square into the stopping point graph representation G. We
connect directed edges from the possible stopping points that, when a paintball is placed
there, may make one move and pass over the ending square. Now perform another breadth
first search from the starting square in O(N*) time. O

10 Sebastian Zhu, William Yue, and Vincent Fan

In PasSREACHABILITY (Algorithm 4 in Appendix A), we construct the modified stop-
ping point graph representation with the added red vertex; we just always add the coordinate
e to the adjacency list of each vertex if it can reach it with one of the four directional moves.

2.3 Stop Coverage

Theorem 3. Given a board and a starting square, the problem of determining whether it is
possible to stop on every square in the board is in P.

Proof. Consider the stopping point graph representation G of the board. We can easily check
in polynomial time whether or not this graph contains every vertex; if not, we’re done. It
suffices to find a traversal through these vertices from the starting vertex.

This directed graph can be uniquely maximally decomposed into its strongly connected
components (SCCs), which are subgraphs C' of G such that for any two vertices z,y € C,
there exists a directed path from x to y. Using Tarjan’s algorithm [Tar72], we can find SCCs
using depth first search in O(N*) time. Now consider the reduced graph G’ with vertices
as SCCs (also called the condensation of G), and connect any two vertices u,v € G’ with a
directed edge if there exists a directed edge in the graph G between any vertex in the SCC
corresponding to u and any vertex the SCC corresponding to v.

There exists a path through G if and only if there is a path through G’. To see if a
desired path exists through G’, consider a topological sort of its vertices; that is, put its
vertices in an order ui,us,...,u; such that there exists a directed edge u; — wu; only if
i < j. This may also be thought of as a linear extension of a partially ordered set: we dictate
a full ordering on some partial ordering.

Now, we must move through the vertices in the order uy,us, ..., ux, otherwise we have
to go backwards at some point. Then it is clearly O(k) = O(N) time to check if there exists
an edge between u; and u;41 for every i, and also that the starting square is in the SCC
corresponding to uy. O

The main structure of Tarjan’s algorithm is a recursive depth first search (DFS), where
we define a stack for the order for the vertices to be checked in (first in, last out), then run
the iteration on each of a vertex’s unvisited neighbors. Here, we also label each vertex with
an index and a lowlink. The indices are labelled in the order in which the DFS uncovers
new vertices, and the lowlinks tell us the lowest index (including its own) we can reach from
that vertex in its DFS subtree. The end result is that points that all share the same lowlink
become strongly connected components. A subtle nuance is the lowlink tells us the lowest
index still on the stack.

The key idea is that the stack ensures that we only examine one “branch” of the DFS
tree at a time, and if we ever find an edge going across branches in the tree, we ignore it
since they can’t form an SCC.

For example, consider a simple example of three vertices A, B,C, with directed edges
A — C and B — C. Let’s say out DFS begins on vertex A. We assign A an index of 0
and lowlink of 0, then move to C' and assign it an index of 1. Since C' cannot go anywhere,
it must have a lowlink of 1 as well. Now when we continue the DFS with B, we assign it

On the Complexity of Generalized Roller Splat! 11

an index of 2, and want to assign it a lowlink of 1, since it can reach C. This is incorrect
however; B and C are not strongly connected. The difference is that whenever we encounter
a situation where we cannot move to an unvisited vertex (for example when we reach C),
we check if its lowlink matches its index. If so, we remove it from the stack. If its lowlink is
less than its index, we keep moving up the graph until we find a vertex whose index does
math its lowlink, then remove all vertices above it in the stack, who must now have the
same lowlink and form an SCC. Since C' has been removed, we would proceed up the graph,
checking A and remove it as well. Then B must be assigned a lowlink of 2 and given as its
own SCC.

This stack method also gives the interesting property that it doesn’t matter where the
DF'S starting points are chosen, or in what order. For example, if we instead began on ver-
tex C in the previous example, we would assign it an index of 0 and lowlink of 0, before
immediately removing that vertex as an SCC. Then we would proceed to either A or B.

Luckily, Tarjan’s algorithm also outputs SCCs in reverse topological order [Har11], so we
can skip the topological sort step and directly check the directed edges. Note that in the case
above, both orders CAB and CBA are valid topological sorts. STop CoveraGE (Algorithm
5 in Appendix A) is an implementation of Tarjan’s algorithm on the directed adjacency list
D, followed by a check of whether or not there exists an edge from u; to u; 41 for all i.

2.4 Pass Coverage
We end this section by discussing the following result.

Theorem 4. Given a board and a starting square, the problem of determining whether it is
possible to pass through every square in the board is in P.

As mentioned before, this follows as a direct corollary of the result of Tejada:

Theorem 5 (Tejada). Given a board, of which some (specified) squares have a collectible
object in them, and a starting square, the problem of determining whether it is possible to
collect every object by passing through its squares is in P.

The particular case of filling every square with a collectible object directly proves Theorem
4. His proof involved using the Movement Graph Representation H of the board and con-
tracting all SCCs to the reduced graph H’. Then, we can associate every pearl with two
movements, vertices in H’, and construct a 2-SAT formula that is satisfiable if and only if
all the pearls can be collected. Further details can be found in section 2 of his paper.

3 Intractability of Pass Coverage in Higher Dimensions

For three of the four problems discussed in the previous section, PASS REACHABILITY,
STOP REACHABILITY, and STOP COVERAGE, the polynomial time solution depends on the
efficient calculation of the stopping point graph G. Therefore, we may extend the graph
argument in section 2 to any number of dimensions: in fact, given a grid in d dimensions, we
may, in the worst case, calculate the potential stopping points in O(N?) time, and subse-
quently calculate the entire stopping point graph in O(N?¢) time by considering each pair of

12 Sebastian Zhu, William Yue, and Vincent Fan

potential stopping points at a time. As the algorithms are fundamentally polynomial-time,
each of these three problems will remain in P in higher dimensions. However, the same is
not the case with the fourth problem, PAss COVERAGE. On a 2-dimensional board, each
square is associated with at most two movement paths: a horizontal path passing through it
and/or a vertical path passing through it. This allowed Tejada to construct a polynomial-
time reduction from PASS COVERAGE to 2-SAT, thereby proving the tractability of the pass
coverage problem in two dimensions. This argument fails in higher dimensions: in k£ dimen-
sions, there may be as many as k movement paths associated with a square, and the k-SAT
problem has been shown to be NP-complete for £ > 3. In the same paper, Tejada showed
that the problem of collecting objects in boards of dimension greater than 2 is NP-complete.

The fact that each square in higher-dimensional grids can belong to more than two
movement paths hints at their NP-hardness through possible reductions from k-SAT. In this
section, we investigate the problem of determining, given a grid of dimension 3 or greater
and a starting square, whether every square of the grid can be traversed:

Theorem 6 (d-Dimensional Pass Coverage). Given a d-dimensional grid and a starting
square, the problem of determining whether it is possible to pass through every square in the
grid is NP-complete when d > 3.

First, we will show that this problem is in NP, before performing a reduction from 3-SAT
to show it is NP-hard. It suffices to prove that for any starting point, the optimal path to
traverse as many squares as possible is bounded in length by polynomial time, since this
means we can check that path in polynomial time. Consider the movement graph repre-
sentation H of the grid, which can be constructed in O(N?2?) time. Suppose that from the
starting location, the particle can travel to v = O(N?) vertices in H, corresponding to back
and forth movements. Then, the particle takes O(v) moves to get to any vertex it can reach.
Therefore, it takes only O(v?) = O(N??) moves to traverse all squares that can be reached,
and so it can be checked in polynomial time.

We now show that the problem of PAss COVERAGE in 3 dimensions is NP-complete
by performing a reduction from 3-SAT, which implies NP-completeness for all boards of
dimension at least 3 by setting all the other dimensions to 1. This is notably a different
problem from the problem formulation found in Tejada’s paper, that collecting given objects
on a board of dimension greater than 2 is NP-complete. As his construction provided insight
only for collecting specifically placed objects, his solution cannot be generalized to provide
a solution for traversing every square of a given board. This gives rise to the following
proposition, which we prove in this section:

Theorem 7 (3-Dimensional Pass Coverage). Given a 3-dimensional grid and a starting
square, the problem of determining whether it is possible to pass through every square in the
grid is NP-complete.

Proof. We perform a reduction from 3-SAT. Suppose that (V,C) is a specific instance of
3-SAT, where V' = {v1,vq,...,0,} and C = {c1,¢a,...,cn} are the variables and clauses
in the instance. We create a grid with a variable gadget for each variable v; € V and a
clause gadget for each clause ¢; € C. As we are required by the problem statement to fill in
every square, however, we will have four other gadgets responsible for passing through the
remainder of the grid after traversing the variable and clause gadgets.

We now begin our proof with a few definitions and an overview of our construction.

On the Complexity of Generalized Roller Splat! 13

3.1 Definitions and Structure of the Grid
A few definitions are in order before starting.

Definition 10 (Grid). The grid refers to the entire 3-dimensional object that we construct
in this section.

Definition 11 (Board). A board refers to any of nine 2-dimensional layers of the grid.
More specifically, since any grid will always measure 9 X m X n squares, a board refers to
any of the nine m X n layers.

Definition 12 (Particle). The particle is the 1 x 1 x 1 moving object within the grid that
serves as the “maximal sliding agent”.

Definition 13 (Block). A block is any 1 x 1 x 1 region in the grid that is occupied, so that
the particle cannot pass through it.

Definition 14 (Square). A square is any 1 x 1 X 1 region in the grid that is unoccupied, so
that the particle may pass through it. For the sake of consistency from Section 2, we choose
to keep the name “square” over the technically more correct “cube”.

Definition 15 (Movement). Describing movement in the grid can be difficult, so we pro-
vide some terminology. An “upward (or downward) movement between layers” signifies that
the particle is sliding from one board to another board, while maintaining the same coor-
dinates within the overall m x n configuration. An “upward (or downward) movement”,
without reference to layers, signifies that the particle is sliding within a single board in the
vertical direction. A “left (or right) movement” signifies that the particle is sliding within
a single board in the horizontal direction. Orientations for movement can be found with the
figures in Appendix B.

Definition 16 (Variables). For this paper, T; represents the negation of the variable v;.

Given a 3-SAT instance, our construction of the grid consists of nine 2-dimensional boards
stacked on top of each other, the first and last of which are completely filled “covers” and
act as boundary layers. The construction of the nine boards is shown in Figure 19, and dis-
cussed in Section 3.3. We provide an illuminating example as a means to discuss the proof
for Theorem 7, namely the 3-SAT instance (v1 V v2 V v3) A (T1 V U2 V T3). The construction
of the grid for this 3-SAT instance features nine 2-dimensional boards, each measuring 70
blocks long by 89 blocks wide; however, as will be seen, only a small minority of the grid is
used in setting the variable truth assignments. The remaining space is necessary for covering
the entirety of the board after traversing all the variable and clause gadgets. All six gadgets
are described in detail in Section 3.2, and all nine layers are described in detail in Section 3.3.

One notable feature of the grid is that, no matter what truth assignments the variables
v; have, every square in the grid can be reached except for at most m squares, one for each
clause ¢; € C. These m squares can only be reached by a suitable choice of truth assignments.
Therefore, a suitable variable assignment is both necessary and sufficient for the completion
of the grid. By assigning truth values to the v; so that the given 3-SAT instance is satisfied,
one will be able to use the grid to reach all of the m clause squares and therefore traverse
every square in the board. Conversely, by assigning truth values to the v; that do not sat-
isfy the instance, one will not be able to reach all m clause squares and traverse every square.

14 Sebastian Zhu, William Yue, and Vincent Fan

A valid traversal consists of two parts: first, the variable truth assignment traversal
(VTA traversal), and second, the pass coverage traversal (PC traversal). The VTA traversal
consists of the truth assignments of the variables, along with the traversal of all paths
associated with the truth assignments in the grid. The PC traversal consists of traversing
the remainder of the squares, except for the m clause squares, after the VTA traversal has
been completed. The motivation for using these two traversals in conjunction is that every
square in the grid except the m clause squares should be reachable no matter what truth
assignment is given to the variables. In this way, the reachability of every square in the grid
is dependent only on the truth assignments of the variables. Less rigidly, the squares other
than the clause squares should not matter; only the reachability of the clause squares should
determine the reachability of all the squares in the grid in order to ensure a proper 3-SAT
reduction.

3.2 Gadgets

We now introduce the gadgets present in our construction. Unless otherwise stated, an
instance of each gadget is contained entirely within one of the nine 2-dimensional boards.

Variable Gadget

The variable gadget ensures that each v; € V is assigned either true or false, but not
both. The relevant “variable selection” section of the gadget is shown in Figure 5. Note
that the variable gadget is not reachable during PC traversal, as PC traversal, by definition,
comes after the variable truth assignment phase, and therefore should not return back to
the variable gadgets. Thus, it must be possible to traverse the entire variable gadget during
VTA traversal. Indeed, while only one of the two paths in each gadget (the true path or
the false path) is selectable, both paths can be traversed before the selection. For example,
if we wish to assign “true” to a certain variable, the particle will first move downwards to
the red square, then make a movement upwards between layers to a layer above, then move
back down to the variable layer. Then, the particle moves back up to the green square and
can make the relevant selection by moving upwards between layers to the above layer and
going to the right, exiting the variable gadget and entering the clause gadgets. The opposite
may be performed to assign “false” to a variable.

After exiting the clause gadget, the particle will enter the variable return section of
the variable gadget. An example of variable return is depicted in Figure 6. The purpose of
variable return is to provide a path for the particle to reach the next variable gadget. As
before, the variable return section can also be entirely traversed during VTA traversal. After
returning down to the variable layer, for example through the green “true” path, we have
the opportunity once again to cover the squares above the red “false” square, by moving
downwards, then back up between layers (to pass through certain squares in the “false”
selection), then back down between layers and to the next variable selection. Once again,
the opposite may be performed if the “false” path was selected.

It is important to note that all variable gadgets are completely traversable during VTA
traversal, no matter what truth assignment is chosen; therefore, PC traversal is not neces-
sary for traversing these gadgets.

On the Complexity of Generalized Roller Splat! 15

Fig. 5: The variable gadget. Choosing the green path indicates assigning “true” to the vari-
able in question, and choosing the red path indicates assigning “false.” Note that since there
are layers above and below this layer, the paths are not dead-ends, and instead lead to the
clause gadgets.

Fig.6: A simplified version of the variable return part of the variable gadget. This part
allows the particle to travel to the next variable gadget after traversing the clause gadgets
for the previous variable. The corner at the red square allows the particle to travel upwards
in order to cover squares that are traversable only during VTA traversal.

Clause Gadget

The clause gadget ensures that for each clause v; V v; V vy, (negation of variables are sim-
ilar), the particle can only reach the corresponding clause square through the three variable
gadgets corresponding to v;, v, vi. Supposing that ¢ < j < k, v; will go up between layers
to a layer above and come back down directly onto the clause square, v; will go downwards
through the clause square, and vy will pass directly through the clause square to the right,
as shown in Figure 7. Of the three, only v; can stop on the clause square, meaning that it is

16 Sebastian Zhu, William Yue, and Vincent Fan

technically possible to travel from a lower-indexed variable path to a higher-indexed variable
path. However, there is no advantage to doing this, as the particle would be traversing a
later variable truth assignment without completing the current one. It would accomplish the
same task to simply finish the current truth assignment, then choose the truth assignment
of the later variable once the particle reaches it. Therefore, when traversing the smallest-
indexed variable v;, it is better to travel back along the same path and continue with the
variable. The paths are shown in Figure 7. Note that a particle traversing v; will also return
back to where it came in order to avoid PC traversal, and a particle traversing vy gets no
choice at all but to continue.

Clause Wall Gadget

The clause wall gadget is a wall separating adjacent clauses from each other. It is com-
pletely solid, except for 1 x 1 holes that allow passage to the next clause gadget after the
current one is finished. These holes are mostly necessary in VTA traversal, in order to allow
each variable path to continue to the next clause after the current one; in these cases, a hole
is simply placed at each spot where the particle would ordinarily hit the clause wall. It is
also used in PC traversal; however, its use there is very specific for type III wall gadgets,
discussed later.

The clause wall gadget ensures that two problems do not occur: first, it prevents the
particle from potentially reaching squares that are not part of the chosen truth assignment
path of the variable that it is currently traversing, during VTA traversal; second, it prevents
the particle from potentially retracing parts of VTA traversal from PC traversal. Its presence
simplifies the clause gadget construction by disconnecting the clause gadgets from each, so
that it suffices to focus on any one clause at a time instead of needing to consider all of
them at once.

Traversal Gadget

The traversal gadget is the primary gadget in the PC traversal. Inspired largely by the
minimal block construction of [PD18§], it consists of an n x 8 section, with four blocks placed
as shown in Figure 9. Also shown in the same figure is the traversal of this area using ar-
rows, beginning at the top left corner. Note that, by the figure, the particle may freely travel
within any given traversal gadget; also, if one places two traversal gadgets side-by-side, the
particle may travel from one traversal gadget to the other. By adjoining multiple traversal
gadgets side-by-side, it will always be possible to reach the top left corner of each gadget, so
this construction suffices to cover all possible starting positions and show that these traver-
sal gadgets do indeed provide coverage of all the squares.

Note that in order to reach some of the squares towards the right of the gadget, it is nec-
essary to travel leftwards from another gadget to the right in order to reach those squares.
This, however, will not prove to be a problem due to the fact that while we have presented
our traversal gadget as traversable from left to right and where the long paths (arrows)

On the Complexity of Generalized Roller Splat! 17

oy -

B | ==y
|
.
|| ||
||
||

Fig.7: A simplified version of the clause gadget. The three variable gadgets (v;, v;, vy from
top to bottom, with ¢ < j < k), with their true and false selections, can be seen at the
left side of the left figure. The particle, when traversing the topmost variable v;, will travel
to the pink square in the left figure, where it will then travel upwards between layers to a
layer above. The clause gadget in this new layer, shown in the right figure, will guide the
particle to the yellow clause square. Upon the particle’s return to the old layer, it will drop
to a new horizontal path that is above and to the right of its original path, shown by the
lavender square and the arrow. The particle, when traversing the middle variable v;, will
remain in the same layer, but will pass through the clause square vertically from above.
Upon the particle’s return, it will enter a new horizontal path above the previous path. The
particle, when traversing the bottommost variable vy, will simply pass through the clause
square horizontally and continue to the next clause gadget. Note that when the particle
traverses v;, it will stop on the clause square. This makes it possible to enter the traversal
of a different variable (i.e. v; or vy); however, since ¢ < j < k, this provides no advantage
to the particle. If the particle so wished, it could choose the truth assignment for v; or vy
later in VTA traversal that would lead to the same path, accomplishing the same task as
switching variable paths.

run vertically (horizontal), the gadget can also be rotated 90° to be traversable from top
to bottom and where the long paths run horizontally (vertical). Thus, all four walls of the
board in which they reside will be lined with traversal gadgets, allowing all squares to be
traversable. Our construction of the 3-dimensional grid will utilize both the horizontal and
vertical traversal gadgets, in order to prevent the particle from passing through the clause
squares present in the same layer as the traversal gadgets during PC traversal.

18 Sebastian Zhu, William Yue, and Vincent Fan

Fig.8: The clause wall gadget, as shown by the vertical walls in the middle of the board
(traversal holes in wall not shown). Each of the three boxes represents a clause. The holes
at the top allow travel from clause to clause during the PC traversal.

Fig.9: The traversal gadget, with the particle beginning in the top left square. The arrows
show that every square in an 8-square-long section can be traversed by placing four blocks
as shown in the figure.

Drop-Down Gadget

The drop-down gadget is used to traverse single squares that cannot be covered by the
traversal gadgets, within a layer. Note that ordinarily, the traversal gadgets would be suf-
ficient for the particle to traverse an entire layer, as seen in the previous section. However,
due to the fact that there are blocks present in the middle of traversal layers, suitable ad-
justments were made to accommodate such changes. As a result, squares that were before
traversable using the traversal gadgets could no longer be reached. Any square that is part
of both a vertical and horizontal movement path in VTA traversal within a single layer
cannot be covered by traversal gadgets, as an attempt to do so would cause the particle to
return to VTA traversal. One example of this is the square returning from the clause square
in the variable v; in a clause v; Vv; Vv with ¢ < j < k. Another example is the holes in the
clause wall gadgets, since the clause wall gadgets prevent vertical traversal of these squares.

On the Complexity of Generalized Roller Splat! 19

The drop-down gadget can only be accessed in one layer of the grid; however, each
gadget spans as many as 7 layers. At each drop-down square in the access layer (later called
the drop-down layer), the particle will stop on that square and “drop down” (i.e. move
downwards between layers) to reach the target squares. Note that due to the sparsity of
these squares, there is no problem with installing enough corners to be able to drop down
into the required squares. (That this actually does work is shown in section 3.6.) Finally,
due to the presence of a ditch layer at the bottom of the grid, dropping down any of the
drop-down gadgets will cause the particle to land in a square surrounded on five sides by
blocks. This forces to particle to retrace its steps; thus this gadget does not interact with
any layer other than the drop-down layer and the ditch layer.

Fig.10: Example of drop-down gadgets within a layer. The drop-down squares are shown
in orange, and they are present at corners where the particle can stop and drop down into
them.

Fig. 11: Cross section of drop-down gadgets, showing all nine layers. The second row (from
the top) is the layer shown in Figure 10 (the orange drop-down squares correspond to each
other), and the vertical tunnels show the depth of the gadgets, passing through the entire
grid down to the bottom.

Wall Gadget

The wall gadget is a modification in the traversal gadget, necessary in our construction
of the grid. It consists of a 2-square-wide and 1- or 2-square-deep hole in the side of the
wall to allow an extra movement path that would ordinarily not be allowed by the traversal
gadget, as shown in Figures 12, 13, and 14. Note that this addition does not break the

20 Sebastian Zhu, William Yue, and Vincent Fan

traversal gadget, as it still allows all other movement paths to remain the same.

The purpose of the wall gadget is threefold: first, to allow a transition between the
vertical and horizontal traversal gadgets at a corner (two per clause gadget); second, to
cover the rest of a path ordinarily induced by a traversal gadget that was partially blocked
off by a block in the middle of the board (one per clause gadget); third, to cover squares
that are impossible to cover by drop-down gadgets or by traversal gadgets. The wall gadgets
used for these purposes are named type I wall gadgets, type II wall gadgets, and type III
wall gadgets, respectively. Examples of all three uses are shown in Figures 12, 13, and 14.

Fig.12: The type I wall gadget, present in the lower left and lower right corners. Two
paths are shown to enter the horizontal traversal gadgets from the vertical traversal gadgets
(starting at the top left corner of the figure). Moving from the horizontal traversal gadgets
to the vertical traversal gadgets is trivial, as the vertical traversal gadgets can be directly
accessed from the horizontal traversal gadgets.

Fig. 13: The type II wall gadget, as can be seen in the lower right corner. Due to the presence
of a block in the middle of the board, the wall gadget is necessary to cover the bottom part
of the upper path that was blocked by the block. Note also the shrunken traversal gadget at
the wall gadget, where consecutive blocks are only two spaces apart instead of three. This
occurs only once when a wall gadget is present, and as it is shown that all squares are still
traversable in the figure, it does not pose a problem to the overall structure.

On the Complexity of Generalized Roller Splat! 21

Fig. 14: The type III wall gadget, in the left and right walls. The figure shows part of the
v; clause gadget in a clause v; V v; V v with ¢ < j < k, after the particle has moved
upward between layers. In the middle of the board is a square previously unreachable by
PC traversal (pink), since the block above it prevents the particle from reaching it via the
horizontal traversal gadgets, and since a drop-down gadget cannot be used due to the fact
that the downward motion between layers is used by the clause gadgets; this wall gadget
provides the traversal of this square. The green square shows a variable hole present in the
layer below, which is why we require the two-square-deep wall gadget to avoid this square.
Having only a one-square-deep wall gadget would allow the particle to drop down at the
green square and return to VTA traversal. The light gray squares signify that there are
blocks in the layer below this layer, but not in this layer. As with all wall gadgets, the
traversal gadgets are not affected by this addition (in fact, the wall gadget provides an extra
traversable horizontal row), and a path to the next traversal gadget is also shown. Finally,
note the four-block gap between some blocks of the vertical traversal gadgets, contrary to the
normal 3-block gap presented in the traversal gadget section. This necessary modification
will be explained in Section 3.4.

3.3 Layers

There are nine layers of 2-dimensional boards that constitute our construction. In this
section we will identify and explain each layer of the grid. The complete construction for the
example 3-SAT instance (vi Vvs Vus)A(T1 VU2 VT3) is shown in Appendix B at the end of the
paper. A general construction of a grid for any 3-SAT instance will be discussed in Section
3.5, using the terminology introduced in this section. Note that the order in which the layers
are introduced is not necessarily the order in which they appear in the construction; refer
to Appendix B for the order of the layers.

Note that, in the figures in Appendix B, the squares are colored with many different
colors. We have included different colors in order to more clearly indicate the parts of our
construction and their functions. While there is only one color to represent a block (dark
gray), there are ten other colors that all represent empty squares, but may represent sections
that serve different functions in the construction.

22 Sebastian Zhu, William Yue, and Vincent Fan

Cover Layers

These are the two boundary layers on the top and bottom of the grid, and both are
identical and very boring. They are there only to ensure that the particle remains within
the construction.

Variable Layer

The variable layer is where the variable assignments are made. The particle traverses the
variable layer, eventually reaching a variable gadget for each variable in the 3-SAT instance.
As stated before, each variable gadget is designed so that each truth path is traversable
before choosing the truth assignment for the variable, so that the particle can visit each
square before entering the next variable gadget. The variable gadget connects directly to
the main layer, where the clause gadgets reside. At the end of each truth assignment path
in the clause gadgets, the particle will return to the variable layer and traverse the next
variable gadget.

Starting
Gadget

Variable Return

Variable
Selection

Variable Return

Variable
Selection

Fig. 15: A high-level overview of the variable layer.

Main Layer

On the Complexity of Generalized Roller Splat! 23

The main layer is one of two layers containing the clause gadgets, the other being the
main II layer. Serving as the bulk of the grid’s complexity, the variable layer connects di-
rectly to this layer. After making a variable truth assignment, the particle will then traverse
the clause gadgets in this layer and the main IT layer (see below) in order to reach the clause
squares associated with the variable. Although much of this layer is open space, the paths
along the clause gadgets are accessible only from the variable layer. This accomplishes two
things: first, any move leaving the clause gadget will cause the particle to move directly
from VTA traversal to PC traversal, so it is in the particle’s interest to not stray from the
designated path. Second, it prevents the particle from returning to VTA traversal after com-
pleting it and moving to PC traversal, thus avoiding potential problems with selecting the
same variable multiple times. In addition, there are a few wall gadgets present in this layer.
The type I wall gadgets in the corners of each clause gadget ensure a smooth transition
from the vertical traversal gadgets to the horizontal traversal gadgets, while the type II wall
gadgets provide a means to traverse certain squares blocked off from the normal traversal
gadget due to a block present in the middle of the board.

There are also special “elevator” squares in this layer, colored dark blue in the con-
struction in Appendix B. Elevator squares in the corner of each clause designate squares to
be used to travel from the main layer to the main II layer, and an elevator square in the
upper right corner of this layer allows the particle to travel to layers above the main II layer.

Main II Layer

The main II layer is one of two layers containing the clause gadgets, the other being the
main layer. As its name suggests, it serves as a supplement to the main layer. The purpose
of the main II layer is to hold one of the three clause paths for each clause (specifically, the
first of the three variables). As with the main layer, this layer is lined with traversal gadgets
so that the entire layer can be traversed during the PC traversal. One notable difference
is the impossibility of using drop-down points at certain squares, due to the fact that the
clause gadgets require the downward motion between layers to successfully operate. As such,
type III wall gadgets were added to be able to traverse these squares in the same layer. In
addition, “variable” blocks have been placed where the variable squares would be present
in the main layer, in order to ensure that the particle will stop on the variable squares in
the main layer when moving upward between layers from the variable layer.

Because of the additional type III wall gadgets, there were extra complications that arose,
such as the particle potentially being able to return to VTA traversal. To avoid this possibil-
ity, extra drop-down gadgets have been placed in this layer. Usually, a particle traversing a
type III wall gadget will reach the left wall, in which case a 1 x 1 hole in the wall will suffice
to force the particle to retrace its steps. However, in some type III wall gadgets, traversing
them will instead cause the particle to land on the right side of a variable block. Because
moving downward between layers to the main layer would then allow the particle to retrace
VTA traversal, a drop-down gadget beginning in this layer is placed on such squares. This
ensures that the particle cannot retrace VTA traversal.

The main II layer also has elevator squares. The elevator squares in the corners of each
clause gadget designate squares to be used to travel down to the main layer, and an elevator

24 Sebastian Zhu, William Yue, and Vincent Fan

square in the top right corner of this layer allows the particle to travel to layers above this
layer.

N\ [N\ (N N\)
Q
)
8
s
[
)
8
K
Q
)
8
s
\ /J U J \\ J \\ /A J
Entrance Clause Clause Wall Clause Exit

Fig. 16: A high-level overview of the main layer.
Drop-Down Layer

The drop-down layer is the layer where all the drop-down squares in the grid are present.
Containing the beginning of the drop-down gadgets, the drop-down square are spaced far
enough apart that the gadget does not break. Specifically, the drop-down squares beginning
in this layer are all above (between layers) either the variable column, a clause column, or
a clause wall gadget (which are all at least 6 squares apart). Furthermore, on each of these
columns, there is at most one drop-down gadget in every vertical traversal gadget. Thus,
the closest drop-down squares to any given drop-down square is at least six squares away
horizontally and eight squares away vertically.

Ditch Layer

The ditch layer is the ending layer of the drop-down gadgets. It consists of only solid
blocks, except for 1 x 1 holes at the end of each drop-down gadget. The purpose of this
layer is to prevent the particle from re-entering VTA traversal from PC traversal via the
drop-down gadgets by trapping them at the bottom of the grid in holes surrounded on five
sides by solid block. Thus, a particle traversing a drop-down gadget is forced to retrace its
steps and end up back on the square on which it started.

Slab Layers

The slab layers are two layers in the grid: one between the drop-down layer and the main
IT layer (the slab II layer), and one between the main layer and the variable layer (the slab
I layer). They act as a “sandwich” of the main and main II layers, serving to contain the
particle within the clause gadgets as it traverses these gadgets. Similar to the ditch layer,
they are completely solid except for 1 x 1 holes at the drop-down squares; this is to allow
the particle to travel all the way through each layer from the drop-down layer to the ditch
layer. In addition, the slab I layer will also have holes for the variable truth selection paths,
since it is between the variable layer and the main layer.

On the Complexity of Generalized Roller Splat! 25

3.4 Modification of Gadgets in the Grid

In order to correctly construct the grid, it is necessary to modify the vertical traversal
gadgets in the grid. Below, we explain the change, its reasoning, and the impact it has on
traversal.

Vertical traversal gadgets containing horizontal movement paths that are part of VTA
traversal will contain an extra square (i.e. be expanded by a square; see Figure 17). This is
necessary in order to avoid passing horizontally through rows that are part of VTA traversal.
However, this also causes one row per traversal gadget (specifically, the row containing VTA
traversal) to be untraversable by the vertical traversal gadgets. The squares in this row will
thus be covered by the horizontal traversal gadgets. Since each clause will only contain at
most three variables, any general grid will function exactly the same as our example. As no
modifications were made to the horizontal traversal gadgets, every column will be traversed
by the horizontal traversal gadgets. Along with the wall gadgets, this ensures that all the
squares in the VTA traversal in the main and main IT layers (except the clause squares) are
also covered by PC traversal.

Fig. 17: The modified vertical traversal gadget. The row of colored squares shows the row
in which an extra block of width has been added to the gadget. Consequently, the row
of colored squares cannot be traversed by a horizontal movement in the vertical traversal
gadgets. The light blue squares are traversable vertically in the vertical traversal gadgets,
and the orange squares will be traversable by the horizontal traversal gadgets.

3.5 Construction of the Grid

In this section, we make a general construction of a suitable grid given any 3-SAT in-
stance. The main ideas of the construction have already been highlighted in the gadgets and
layers section, and by the use of our example 3-SAT instance. We combine all of these ideas
in this section. Note that the two cover layers are composed of only solid block, and will

26 Sebastian Zhu, William Yue, and Vincent Fan

not be discussed further in this section.

We begin with the main layer. Given a 3-SAT instance with n variables vy, va, ..., v,
and m clauses, the main layer will consist of m clause gadgets placed side-by-side. Each
variable will occupy a horizontal band in the main layer across all the clause gadgets, so
that no two variables will intersect with each other. (Refer to Figure 18.) Since each clause
will have at most three variables associated with it, the overall structure of each clause
gadget will be the same as the example. The only modification, then, to each clause gadget
will be the height of each gadget. Since each variable or its negation (i.e. either of v; or
7;) is included at most m times in all the clauses, it will move upwards at most m times.
(Recall that in a clause v; V v; Vv with ¢ < j < k, the particle will move up by one vertical
traversal gadget after completing either v; or v;, but not v.) Thus, we may allot a height of
m+ 1 vertical traversal gadgets to each truth assignment of each variable, one for it to begin
in and one for each of the possibilities of it being necessary to move up by one traversal
gadget. Note that such an addition does not affect VTA traversal in any way relative to our
example: the horizontal traversal gadgets will still cover the majority of the space, with the
vertical traversal gadgets responsible for covering the squares along the single clause column
in each clause gadget. Since each clause will still contain the same number of variables, we
may ignore all variables that are not present in that clause and consider only the three
that are, effectively reducing any general construction to our example. This completes the
construction of the main layer.

an Yo Y e N AR S N e
2
2
s
K3
2
g
o o (3 o L3 (3 L3
[d [J [d [d [d [d [d
L] L] L] L] L] L] L]
]
g
— |

Entrance Clause Clause Wall Clause Clause Wall Clause Exit

Fig. 18: A high-level overview of a general main layer.

We next construct the main II layer. The construction is largely the same as the main
IT layer in our example; however, we must take into account any type III wall gadgets that
we may need upon adding more variables and clauses. We begin the construction by placing
all the traversal gadgets and clause wall gadgets at the same coordinates as they were placed
in the main layer. We may also place blocks directly over the variable truth assignments
that feed into the main layer to ensure that the particle will stop on the desired square in
the main layer when coming up from the variable layer. For each clause v; V v; V v, with
i < j < k, we then build the path for v; from the main layer up into the main II layer, then
back down to the clause square, as described in the clause gadget section. This completes
the clause gadgets. For each clause, we need to decide where the type III wall gadgets and
drop-down gadgets will go. Two type III wall gadgets (as described in the wall gadgets

On the Complexity of Generalized Roller Splat! 27

section) are necessary for each clause: one to reach the unreachable square in the clause
gadget at v; as described in the wall gadget section, and one for the square immediately
above the clause square in the main layer (since this is also normally unreachable in PC
traversal). No wall gadget will be responsible for more than one of the former case, since
the particle will always be in a higher vertical traversal gadget within the main and main IT
layers after traversing through v;. The only potential issue, then, is one wall gadget being
potentially responsible for more than one of the latter case. This, however, does not pose a
problem, since the wall gadget is perfectly capable of allowing passage through multiple of
the squares above the clause squares without causing problems; the particle will only stop
once it reaches either the far left wall, in which case a 1 x 1 hole in the wall will force it to
retreat, or once it reaches one of the blocks above the variable truth assignments, in which
case a drop-down gadget will be present on that square in order to prevent the particle from
potentially retracing VTA traversal by moving back down to the main layer. There is a third
square that the particle can use to travel between the main II and main layers: the square
that the particle initially arrives on in the main II layer after coming from the main layer.
However, note that this square is covered by the horizontal traversal gadgets, since there is
no vertical movement in VTA traversal passing through this square. Thus, this completes
the construction of the main II layer.

The rest of the layers follow naturally from the construction of the main and main II
layers. To construct the variable layer, connect the ending squares in the main layer (i.e.
the green and red squares at the far right, indicating the end of the variable truth assign-
ment for that particular variable) to the next variable with the variable gadget, in the same
manner as in our example. One may always construct a path to the next set of variable truth
assignments, which are more than 8 blocks away from the left wall. The starting variable
gadget is exactly the same as our example, except that its length will vary depending on
the 3-SAT instance.

To construct the drop-down layer, note that drop-down squares are either on the vari-
able column, a clause column, or a clause wall gadget column in this layer. Thus, we may
make a “snake” through this layer that begins at the elevator square and passes through
every drop-down point on a corner, allowing the particle to stop on that square and drop
down. (Our example shows an easy way of doing this.) This is achieved by making a path for
each column of drop-down squares, advancing to the next column once the current column
is finished.

The final three layers are now easily constructed. To construct the slab II layer, place
holes at only the drop-down gadgets beginning in the drop-down layer and the elevator
square, and cover the rest of the board with solid block. To construct the slab I layer,
place holes at all drop-down gadgets and the variable squares, and cover the rest of the
board with solid block. To construct the ditch layer, place holes at all drop-down gadgets,
and cover the rest of the board with solid block. This completes the construction of our
grid, given any 3-SAT instance.

3.6 Proof of VTA Traversal

Refer to Appendix B for the relevant construction.

28 Sebastian Zhu, William Yue, and Vincent Fan

The particle begins in the purple square on the variable layer. At any stopping point
within the variable layer, the slab I and ditch layers prevent the particle from moving be-
tween layers, so it is confined to the variable selection. Then, if we want to choose true for
a given variable, we first move to the red square, go up, then come back down. In particular,
this is to cover the red square present in the slab I layer that we cannot otherwise reach.
Then, we move to the green square and proceed up to the main layer, as we are stopped by
the block present in the main II layer.

One of the key ideas in constructing a suitable VTA traversal is that VTA traversal
must stay within the VTA traversal path. This is because it is impossible to return to VTA
traversal from PC traversal, discussed in more depth in the next section.

In the main and main II layers, in order to continue through VTA traversal, there is
a well-prescribed path that must be taken. If the current variable or its negation does not
appear in a clause, the path will pass right through that clause gadget and enter the next
clause gadget. If it does appear, depending on which variable it is, it will take a different
path. As discussed in the clause gadget section, a particle passing through each path will
pass through the clause square and then return to its original path, with correct traversal
(attempting to do anything else will cause the particle to either enter PC traversal or to
traverse a later variable without finishing the current one). Thus, the particle will traverse
each variable, reaching the clause squares for the clause associated with that variable (or its
negation), and passing through all other clauses.

Finally, note that the variable gadgets are designed so that every square can be traversed
in the gadgets. This will be essential in traversing all squares in the grid, since the gadgets
are not part of PC traversal. (Note that traveling upwards between layers at the variable
return squares will cause the particle to end up in the main II layer; thus, traveling upwards
between layers at this point doesn’t allow extraneous VTA traversal.) Traversing all clause
squares during VTA traversal is equivalent to choosing a truth assignment for the vari-
ables that satisfies the 3-SAT expression. Since the clause squares cannot be reached via PC
traversal (discussed more in the next section), it is necessary that one choose a satisfactory
truth assignment in order to traverse every square in the grid. The next section shows that
it is also sufficient.

3.7 Proof of PC Traversal

This proof consists of two parts: one, that all necessary squares can be traversed (so
that a suitable choice of variable truth assignments is sufficient to totally traverse the grid);
two, that it is not possible to return to VTA traversal at any point (so that a suitable choice
of variable truth assignments is necessary to totally traverse the grid). This ensures that the
purpose of PC traversal is solely to cover every square, except for the clause squares and
those necessary to be covered during the VTA traversal.

PC traversal runs through every layer that is not a cover layer; thus, we will consider
PC traversal over each layer. The layers that require the most attention are the main and
main II layers; in fact, the entirety of PC traversal is focused on covering every square in

On the Complexity of Generalized Roller Splat! 29
these layers, other than the clause squares.

We first show that all squares in the main layer in PC traversal lead only to other
squares in PC traversal. Because of the presence of a wall between each clause gadget, it
suffices to prove this for each clause gadget. At most three variables will feed into each clause
gadget, meaning that each of the clauses function essentially the same way. As is shown in
our example, there is no way to reach any of the paths associated with VTA traversal from
the traversal gadgets. Note that the only possible ways to do so would be to travel to the
right, passing through the variable squares, or to travel upwards, through the clause square.
Both are designed to be impossible. The other way is to potentially pass through the spaces
in the walls, but again by design that is impossible. This is elucidated in the previous sec-
tion, modification of gadgets. Therefore, in the main layer it is impossible to travel from PC
traversal to VTA traversal.

Next, we show the same in the main II layer. While this layer has many similar ele-
ments to the main layer, there are also some notable differences that complicate analyzing
this layer. Most notably, in certain circumstances there will be wall gadgets in PC traversal
from the right side of the layer all the way to the left side of the layer, meaning that these
will need to be analyzed separately since they cross the walls in the middle, although the
analysis is not particularly difficult. Simply note that these wall gadgets either land into a
square surrounded on five sides by blocks (and therefore the only way out is to retrace the
path, thereby remaining in PC traversal), or onto a block in the main IT layer, under which
block is a variable square. The former case is immediate; the latter case is solved by the
existence of a drop-down gadget, beginning in the main II layer, where the particle meets
the block. This ensures that any downward movement between layers by the particle will
land into the ditch layer, forcing the particle to retreat its steps, and upward movement
between layers is prohibited due to the presence of the slab II layer immediately above.
Vertical movement at this square will lead to the horizontal traversal gadgets, as shown in
our example. Finally, horizontal and vertical movement within the main IT layer leads only
to the traversal gadgets. This is evident by the construction in our example, and is true for
any general grid.

The next step is to show that it is not possible to travel from the main II layer
into the main layer and subsequently land in VTA traversal, and vice versa. Much
of this, however, is clear from the construction. Since the main II layer traversal gadgets are
identical in shape and position to the main layer traversal gadgets, any given stopping point
in one layer would lead to the corresponding stopping point in the other layer, and thus this
interaction does not affect traversal in any way. In addition, using only the traversal gadgets
and not the wall gadgets, the particle can only stop on either the top or bottom of a block in
the center of either board. (Such a block is there for VTA traversal purposes, meaning that
one of the four squares directly adjacent to this block is a VTA traversal stopping point.)
By construction, the wall gadgets in the horizontal traversal gadgets prevent entrance into
VTA traversal vertically from PC traversal, meaning that none of the stopping points on
the top or bottom will be part of VTA traversal. Finally, since horizontal VTA traversal
components are at least 6 blocks apart (i.e. in different vertical traversal gadgets), traveling
between the main IT and main layers in this way will not cause the particle to land in a
position where it may return to VTA traversal. The only other PC traversal stopping points
in the main II layer are either part of a type III wall gadget or next to a variable block. In

30 Sebastian Zhu, William Yue, and Vincent Fan

the former case, the corresponding squares which are traversable in the main II layer are
blocks in the main layer, meaning that travel from the main II layer to the main layer is
impossible in this case. In the latter case, the existence of a drop-down gadget ensures that
attempted movement between layers from the main II layer to the main layer will only end
up in the ditch layer.

Finally, we show that all squares in both layers can indeed be covered by PC
traversal (except for the clause squares). The horizontal traversal gadgets do most of our
work in the main layer. The only squares that they cannot cover are the drop-down squares
and certain other squares. These other squares, all in the same column as a clause square,
cannot be traversed by the horizontal traversal gadgets because it would allow the par-
ticle to return to VTA traversal. The vertical traversal gadgets provide the traversal for
the majority of these squares. Note that because the vertical traversal gadgets have been
modified with the extra square, one square per traversal gadget will be left out under this
traversal, one of which will be a clause square; drop-down gadgets are used to cover these
squares (except for the clause square). All squares are thus traversable in the main layer.
The horizontal traversal gadgets do most of the work in the main II layer as well, missing
only drop-down squares and certain other squares. These other squares are comprised of the
same types of the squares as in the main layer (i.e. those in the same column as the clause
squares). Once again, the vertical traversal gadgets and the drop-down gadgets will cover
almost all of these squares. However, there is one square per clause gadget that cannot be
traversed by either the traversal gadgets or the drop-down gadget; this square is the square
where the particle would land on to return to the main layer after coming back from the
clause square during VTA traversal. To pass through this square, wall gadgets in the right
side of the board allow horizontal passage through the square. We therefore conclude that,
except for the clause squares, our grid allows the particle to pass through every square in
both the main and main IT layers.

The remaining part of the proof is fairly easy. To reach the drop-down layer, the par-
ticle will use the elevator square in the top right of the main layer. The particle can then
use the “snake” to pass through every square in the drop-down layer, as well as be able to
descend on each of the drop-down squares. This ensures that all the squares in the slab IT
layer are traversable, and that all the squares in the slab I layer, except for the variable
squares that are traversed as part of VTA traversal, are traversable in PC traversal. All
the PC traversal squares in the variable layer are part of drop-down gadgets, and the
drop-down gadgets all end in the ditch layer. This confirms that all squares in the grid,
except for the clause squares and the squares exclusively traversed in VTA traversal, are
traversable in PC traversal.

The combination of Sections 3.5, 3.6, and 3.7 offer the proof of the intractability of PASS
COVERAGE in dimensions of three or greater. O

On the Complexity of Generalized Roller Splat! 31

4 Conclusion

In this paper, we explored the recurring ice-sliding motif. In section 2, we provided
pseudocode implementations to solve four 2-dimensional variants, and in section 3, we con-
structed a novel reduction from 3-SAT to show that the higher dimensional case of PASs
COVERAGE is NP-complete. In the future, we would like to explore combinatorial questions
such as determining the minimum number of blocks required to achieve PAss COVERAGE
on a 3-dimensional grid, which may be related to the domination number of grid graphs.
We would also like to explore further variants of the problem, perhaps involving multiple
agents sliding in turns or incorporating pushable blocks. Further research in the field of the
ice-sliding motif might include considering the game on a torus (allowing wrap-around move-
ment) or king grid (allowing diagonal movement), which allow for more complex movement
patterns.

5 Acknowledgements and Credits

Acknowledgements

We would like to thank:

Our mentor, Chun Hong Lo, for his valuable feedback and guidance
MIT PRIMES for giving us this research opportunity

Our friend Stephanie Yang, for helping us with some graphics

Our parents, for their continued support of this project

Credits

While every student contributed to each aspect of the project, specific emphases are noted
below:

— Sebastian:

Section 3 write-up

Theoretical work for algorithms
Theoretical work for 3-SAT reduction
2D graphics

— William:

Section 2 write-up

Theoretical work for algorithms
Theoretical work for 3-SAT reduction
Code implementation

— Vincent:

Introduction

Theoretical work for algorithms
Research and citations

Code implementation

32 Sebastian Zhu, William Yue, and Vincent Fan

References

3dt. https://www.amazon.com/Sequential-Educational-Professional-Gifts-Green-Transparent/
dp/BO6XJLD5CH.

ADGV15. Greg Aloupis, Erik D Demaine, Alan Guo, and Giovanni Viglietta. Classic nintendo
games are (computationally) hard. Theoretical Computer Science, 586:135-160, 2015.

BC39. W. W. Rouse Ball and H. S. M. Coxeter. Mathematical Recreations and Essays. The
Macmillan Company, 1939.

cli. http://www.clickmazes.com/newtilt/ixtilt.htm.

CooTl. Stephen A. Cook. The complexity of theorem-proving procedures. Proceedings of the
third annual ACM symposium on Theory of computing - STOC 71, 1971.

DHHO04. Erik D Demaine, Michael Hoffmann, and Markus Holzer. Pushpush-k is pspace-complete.
In Proceedings of the 8rd International Conference on FUN with Algorithms, pages 159—
170. Citeseer, 2004.

DHLNO03. Erik D Demaine, Susan Hohenberger, and David Liben-Nowell. Tetris is hard, even to
approximate. In International Computing and Combinatorics Conference, pages 351—
363. Springer, 2003.

FBO02. Gary William Flake and Eric B Baum. Rush hour is pspace-complete, or “why you
should generously tip parking lot attendants”. Theoretical Computer Science, 270(1-
2):895-911, 2002.

Harll. Paul Harrison. Robust topological sorting and tarjan’s algorithm in python, 2011.

Jaf06. Arthur M Jaffe. The millennium grand challenge in mathematics. Notices of the AMS,
53(6), 2006.

PD18. Andre Fabbri Julien Moncel Aline Parreau et al. Paul Dorbec, Eric Duchene. Ice sliding
games. International Journal of Game Theory, 47:487-508, 2018.

RW90. Daniel Ratner and Manfred Warmuth. The (n? — 1)-puzzle and related relocation prob-
lems. Journal of Symbolic Computation, 10(2):111-137, 1990.

snoa. Snowpoint gym. https://bulbapedia.bulbagarden.net/wiki/Snowpoint_Gym.

snob. Snowpoint temple. https://bulbapedia.bulbagarden.net/wiki/Snowpoint_Templel

Tar72. Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on com-
puting, 1(2):146-160, 1972.

Tejl4. Pedro J Tejada. On the complexity of collecting items with a maximal sliding agent.
2014.

TWO06. John Talbot and Dominic Welsh. Complexity and Cryptography. Cambridge University

Press, first edition, 2006.

https://www.amazon.com/Sequential-Educational-Professional-Gifts-Green-Transparent/dp/B06XJLD5CH
https://www.amazon.com/Sequential-Educational-Professional-Gifts-Green-Transparent/dp/B06XJLD5CH
http://www.clickmazes.com/newtilt/ixtilt.htm
https://bulbapedia.bulbagarden.net/wiki/Snowpoint_Gym
https://bulbapedia.bulbagarden.net/wiki/Snowpoint_Temple

Appendix A

This appendix contains pseudocode for the algorithms in Section 2.

Algorithm 1 Finds all the stopping points

1: procedure FINDSTOPPINGPOINTS(Integer m, Integer n, List of Barrier Coordinates
By)

2: B < m x n boolean array > construct array B with true wherever a barrier is
3: for b € B; do
4: Blb;][by] < true > the Coordinate b is in location (b, by)
5: end for
6: let S be a new list of Coordinates > S will contain all the stopping points
7: for i < 0,m — 1 do
8: for j < 0,n—1do
9: if —BJi][j] then > run through every point, make sure it’s not a barrier
10: a < false
11: if (=0)V@i=m—-1)V(j=0)V(j=n—1)then b checks if it is on
the edge
12: a + true //or if it is next to a barrier
13: else if B[i — 1][j] vV B[i + 1][j] V Bli][j — 1] vV B[i][j + 1] then > or if it is
next to a barrier
14: a < true
15: end if
16: if a then
17: S.add(z, j) > then add it to the list of stopping points
18: end if
19: end if
20: end for

21: end for
22: return S
23: end procedure

Algorithm 2 Helper method that runs a BFS to find if there is a path between two
points in a directed graph D

1: procedure ISREACHABLE(Coordinate s, Coordinate e, Map{Coordinate, List of Coordinates)
D)
2: let V' be a map from Coordinate to Boolean > create a map of whether each vertex
has been visited
V.put(s, true);
let @ be a Queue of Coordinates > create a queue for the order to check the
vertices in (first in, first out)
Q.add(s);
while @ is not empty do
¢ <+ Q.dequeue
N «+ D.get(c)

34

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

Sebastian Zhu, William Yue, and Vincent Fan

for n € N do
if V does not contain key n then
if n = e then
return true
end if
Q.add(n)
V.put(n, true)
end if
end for
end while
return false
end procedure

Algorithm 3 Stop Reachability

1:

== = e e
Ll N

15:
16:

17:
18:
19:
20:
21:
22:

23:
24:
25:

procedure STOPREACHABILITY (Coordinate s, Coordinate e, Integer m, Integer n, List
of Barrier Coordinates By)
B < m x n boolean array > create the barriers array again
for b € B; do
Blb,|[by] < true
end for
S «+findStoppingPoints(m, n, By) > use method to get list of stopping points
let D be a new map from Coordinate to a List of Coordinates
for pe S do
14— Py
J Dy
let N be a new list of Coordinates
if (i #0) Vv (-BJ[i][j]) then
for x <+~ i—2,—-1do
if x = —1 then > if it never hits a barrier, it hits the wall so add that
coordinate to the list of neighbors
N.add((0, 7))
else if B[z][j] then > otherwise it hit a barrier, so add the stopping
point next to it to the list of neighbors, then break out of the for loop
N.add((z + 1,7))
break
end if
end for
end if
end for > run this procedure for the three other directions. Similarly, run this
procedure for the coordinate s to ensure it is a key in adjacency list D
D.put(p, N) > add the neighbors to the adjacency list
return isReachable(s, e, D)
end procedure

Algorithm 4 Pass Reachability

1:

procedure PASSREACHABILITY (Coordinate s, Coordinate e, Integer m, Integer n, List
of Barrier Coordinates By)

e e e el e el el

S U U

27:
28:
29:

)
T2

On the Complexity of Generalized Roller Splat! 35

B < m x n boolean array
for b € B; do
Blb,][b,] < true
end for
S +findStoppingPoints(m, n, By)
let D be a new map from Coordinate to a List of Coordinates
for p € S do
14— Py
J Dy
let N be a new list of Coordinates
if (i #0) vV (—=B[i][j]) then
forzr +i—2,—1do
if x = —1 then
N.add((0,7))
else if Bz][j] then
D.add((z + 1,4))
break
end if
¢+ (x+1,7) > modification to include if it runs over the target square
if e = c then
D.add(e)
end if
end for
end if
end for > run this procedure for the three other directions. Similarly, run this
procedure for the Coordinate s to ensure it is a key in adjacency list D
D.put(p,N)
return isReachable(s, e, D)
end procedure

Algorithm 5 Stop Coverage

10:
11:
12:
13:
14:

1 < 0 > index assigned to vertices, will increment every time a new vertex is looked at
let I be a new map from Coordinate to Integer
let L be a new map from Coordinate to Integer
let O be a new map from Coordinate to Boolean > associate each coordinate with an
index, a lowlink, and a boolean for whether or not its on the stack
let S be a new Stack of Coordinates
let SCC be a new List of List of Coordinates > strongly connected components
procedure TARJANITERATION(Coordinate c) > recursive method, one iteration of
Tarjan
I.put(c, i) > assign initial values for index, lowlink, remove from stack
L.put(c, 1)
O.put(c, true);
1 1+1
S.push(c)
N = D.get(c) > D is the same adjacency list from previous sections
for n € N do

36

15:

16:
17:

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

38:
39:
40:
41:
42:
43:
44:

45:

46:
47:
48:
49:
50:
51:
52:

53:
54:

Sebastian Zhu, William Yue, and Vincent Fan

if I does not contain the key n then > if the neighbor hasn’t been looked at (no
index assigned) iterate Tarjan on it
tarjanlteration(n)
m = min(L.get(c), L.get(n)) > then set the new lowlink to be the min of
current lowlink and lowlink of neighbor

L.put(c,m)
else if O.get(n) then > otherwise, if the neighbor is already on the stack
m = min(L.get(c), I.get(n)) > change the lowlink to the new min lowlink
L.put(c,m)
end if
end for
if L.get(c) = I.get(c) then > if the lowlink matches the index
let nSCC' be a new List of Coordinates > create a new scc

let v be a new vertex
do: > then keep popping vertices from the top of the stack until we reach the
current vertex
n + S.pop
nSCC.add(v)
while (c is not n)
SCC.add(nSCC)

end if
for ¢ € D.keySet do > for each vertex, iterate Tarjan if it hasn’t been already
if I does not contain key ¢ then
tarjanIteration(c)
end if
let R be a Map from Coordinate to Integer > our list sccs always returns in

reverse topological sort, no matter what now map each coordinate to the integer index
of the scc in the list
for i + 0,SCC.size—1 do
s+ SCC.get(i)

for v € s do > if the vertex is in the scc, put it in the reduction map
R.put(v,1)
end for
end for
let Rp be a new map from Integers to Sets of Integers > now construct the

reduced graph, denoted Rp
for e € D.entrySet do © for each pair in the original directed adjacency list of
coordinate to neighbors
s < e.getKey
N <+ e.getValue
¢+ R.get(s) > get the SCC index corresponding to the original coordinate
if Rp does not contain key ¢ then
Rp.put(c,new set)
end if
C + Rp.get(c) > add the SCC indices corresponding to each neighbor to the
set of neighbors in the reduced graph
for e € N do
¢ < R.get(e)

55:
56:
57:
58:
59:

60:
61:
62:
63:
64:
65:

On the Complexity of Generalized Roller Splat! 37

C.add(c)
end for
end for
r < true
for : + 1, Rp.size—1 do > if there ever isn’t a vertex down the chain in the
topological sort, set it to false
if Rp.get(i) does not contain i — 1 then
r < false
break
end if
end for
return r

Appendix B

This section gives the construction for (vy V vy V v3) A (U1 VT2 V T3). Moving from a higher
page number to a lower page number in this section signifies “upward movement between
layers,” and vice versa. Figure 19 below can also be referenced for the order of the layers.
Moving up and down or left and right within a single page signifies “upward (or downward)
movement” and “left (or right) movement,” respectively.

Vaf' I‘a ble
€y

er

Fig.19: The order/orientation of the layers. Top and bottom cover layers not shown.

On the Complexity of Generalized Roller Splat! 39

Fig. 20: Top Cover Layer. Dark gray represents a solid block.

40 Sebastian Zhu, William Yue, and Vincent Fan

Fig. 21: Drop-Down Layer. Any square that is not dark gray is an empty square (i.e. there is
no block in that square). White represents an ordinary traversable space, orange represents
a drop-down point into the main layer, light blue represents a drop-down point into the
main IT layer, and dark blue represents an “elevator square” to reach this layer from lower
layers.

On the Complexity of Generalized Roller Splat! 41

Fig. 22: Slab II Layer.

42 Sebastian Zhu, William Yue, and Vincent Fan

Fig. 23: Main II Layer. Light gray squares represent blocks present in the layer immediately
below (main layer) but not in this layer, yellow squares represent clause squares in the
layer immediately below (main layer), pink squares represent traversals along a variable
truth assignment between the main and main II layers, and green and red squares represent
variable squares in the layer immediately below (main layer).

On the Complexity of Generalized Roller Splat! 43

Fig. 24: Main Layer. Green squares represent the “true” state of variables from the variable
layer below, red squares represent the “false” state of variables from the variable layer below,
and yellow squares represent clause squares. Note that a traversal along the sides of this
layer will not pass through the yellow squares, among other squares.

44 Sebastian Zhu, William Yue, and Vincent Fan

Fig. 25: Slab I Layer.

On the Complexity of Generalized Roller Splat! 45

Fig. 26: Variable Layer. The purple square represents the starting square, the green squares
represent the “true” state of each variable, and the red squares represent the “false” state
of each variable.

46 Sebastian Zhu, William Yue, and Vincent Fan

Fig. 27: Ditch Layer. Each drop-down square ends in this layer.

On the Complexity of Generalized Roller Splat! 47

Fig. 28: Bottom Cover Layer.

	On the Complexity of Generalized Roller Splat!

