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Abstract

In the abelian sandpile model, recurrent chip configurations are of interest as they are a nat-
ural choice of coset representatives under the quotient of the reduced Laplacian. We investigate
graphs whose recurrent identities with respect to different sinks are compatible with each other.
The maximal stable configuration is the simplest recurrent chip configuration, and graphs whose
recurrent identities equal the maximal stable configuration are of particular interest, and are
said to have the complete maximal identity property. We prove that given any graph G one can
attach trees to the vertices of G to yield a graph with the complete maximal identity property.
We conclude with several intriguing conjectures about the complete maximal identity property
of various graph products.
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1 Introduction

The abelian sandpile model has been convergently discovered numerous times by researchers
operating independently of each other, such as in [1] as an example of self-organized criticality, which
was introduced in [2]. The automaton model was invented to model stacked items at sites, which
would topple if a critical height was reached, and send the items to adjacent sites; for example, using
a lattice graph to model a plane, the abelian sandpile model could mimic a pile of sand on a flat
surface as it collapses under gravity to reach a certain stable state, and the destabilizing behavior
of adding additional sand analyzed. The analysis of these models have led to the generalization of
it for arbitrary locations and compositions of sites.

The abelian sandpile model, also referred to as the chip-firing game, on a directed graph G
consists of a collection of chips at each vertex of G. If a vertex v has at least as many chips as its
outdegree, then it can fire, sending one chip along each outgoing edge to its neighboring vertices.
This continues until no vertex can fire. Articles on chip-firing in the literature include [3], [4], [5],
[6], [7], and [8].

In Section 2, we establish the basic theory surrounding the chip-firing game, and define the
primary algebraic object associated with the model, the sandpile group, and the special role re-
current elements play in the group; examples of articles on the sandpile group in the mathematical
literature include [9], [10], and [11]. In Section 3, we investigate the graphs for which the simplest
recurrent element, the maximal stable configuration, is the identity of the sandpile group, re-
gardless of the choice of sink. The identity of the sandpile group is of particular interest, and has
been previously investigated in [12] and [13] for Z2 lattice graphs. In Section 4, we find necessary
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conditions for the property developed in Section 3, the complete maximal identity property.
In Section 5, we generalize the complete maximal identity property into the complete identity
property, investigating graphs for which the recurrent identity remains the same regardless of
the choice of sink. We consider the possible relationship between the complete identity property
and bipartite graphs. We conclude in Section 6 with some conjectures surrounding the recurrent
identity of sandpiles formed from graph products.

2 Preliminaries

We refer readers to [14] and [15] for detailed background on chip firing. Unless otherwise stated,
we restrict the chip-firing game to be on graphs which are simple, connected, and nontrivial (have
more than one vertex). Recall that a simple graph is an unweighted, undirected graph without
loops or multiple edges. A sandpile is a graph G that has a special vertex, called a sink. A chip
configuration over the sandpile is a vector of integers indexed over all non-sink vertices of G. In
standard convention, these numbers must be nonnegative integers, a discrete number of chips. A
chip configuration c, if explicitly stated to be over all vertices, not just all non-sink vertices, may
be used for convenience when the sink changes. The entry corresponding to the sink is simply
excluded from the vector.

In a sandpile, a vertex can fire if it has at least as many chips as its (out)degree, at which point
it sends chips along each edge to its neighboring vertices, with each edge transferring w, where w is
the weight of the edge (in an undirected graph, each edge has weight 1); the vertex that fires loses
the chips it fired. A vertex is said to be active if it can fire. The sink is not allowed to fire, nor are
its chips considered; hence a chip configuration for a sandpile does not have an entry corresponding
to the number of chips at the sink. A stable configuration is a configuration that has no active
vertices. If by a sequence of firings a chip configuration c can result in a stable configuration, that
stable configuration is called the stabilization and is denoted Stab(c). It has been proven in [15]
that if a stabilization exists, then it is unique for each chip configuration, regardless of the order
in which vertices are fired; moreover, regardless of the order in which vertices are fired, the chip
configuration will eventually result in the stable configuration, always taking the same number of
firings in total. It has also been shown in [15] that if a graph has a sink, or in other words is a
sandpile, then all chip configurations stabilize.

Definition 2.1. The maximal stable configuration mG is the chip configuration in which every
vertex v has dv − 1 chips, where dv is the degree of vertex v.

For a sandpile, a chip configuration c is called accessible if for all (stable) configurations d
there exists a configuration e such that Stab(d+ e) = c.

Definition 2.2. A chip configuration is called recurrent if it is accessible and stable.

Note that mG is recurrent, and is essentially the only chip configuration guaranteed to be
recurrent over all graphs and by far the simplest recurrent chip configuration.
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Example 2.1. The cycle graph on four vertices C4 may have its vertices indexed 0, 1, 2, and 3,
where v0 is the sink, as shown in Fig. 1a. This sandpile may have a chip configuration c = (2, 2, 0)
as shown in Fig. 1b. In c, vertices v1 and v2 are active. If v2 (highlighted in Fig. 1b) fires, the result
is chip configuration d = (3, 0, 1) as shown in Fig. 1c. In d, v1 is the only active vertex (highlighted
in Fig. 1c), and firing it results in the maximal stable configuration mG = (1, 1, 1) where in this
example G = C4 with sink at v0, as shown in Fig. 1d.

(a) C4 with sink at v0 (b) Configuration c =
(2, 2, 0)

fire v2===⇒

(c) Configuration d =
(3, 0, 1)

fire v1===⇒

(d) mG for G = C4

Figure 1: Chip-firing on C4

If one labels the vertices of a sandpile G as v1, . . . , vn, where the graph G may be weighted with
positive integer weights and directed, then the Laplacian of G is the n× n matrix ∆ = DT −AT,
where D is the diagonal matrix where Dii = dvi , and A is the adjacency matrix of G. That is, if aij
is the weight of the edge from vertex vi to vj , and di is the out-degree of vi,

∆ij =

{
−aij for i 6= j,

di for i = j.

The reduced Laplacian ∆′ of G is obtained by removing from ∆ the row and column cor-
responding to the sink. To explicitly refer to the reduced Laplacian with the sink at vi, the
notation ∆(i) is used. We can represent the firing of a non-sink vertex v as the subtraction of the
column of ∆′ corresponding to v from the chip configuration.

Example 2.2. The cycle graph on four vertices C4 has Laplacian

∆ =


2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2


and the reduced Laplacian, for sink v1, is

∆′ =

 2 −1 0
−1 2 −1
0 −1 2

 .
3



In order to view configurations before and after firing as equivalent, we define the sandpile
group of G to be the group quotient

S(G) = Zn−1/∆′Zn−1.

From the definition of the sandpile group, we see that |S(G)| = |∆′|, where |S(G)| denotes the
order of the sandpile group S(G) and |∆′| denotes the determinant of the reduced Laplacian. This
holds regardless of the choice of sink. By the Matrix-Tree theorem (see for example [16]), |∆′| is the
number of spanning trees of G. It is also shown in [15] that each equivalence class of S(G) contains
exactly one recurrent configuration, and that the recurrent configurations form an abelian group
with the operation being defined as the stabilization of the sum of two recurrent configurations.

A configuration c over graph G with n vertices is equivalent to another configuration d when
they lie in the same equivalence class in S(G), or in other words,

c ≡ d⇔ there exists v ∈ Zn−1 : c− d = ∆′v.

Notice that as ∆′ is non-singular by the Matrix-Tree theorem, the vector (∆′)−1(c − d) is the
unique solution to the equation c = d+ ∆′v, and thus

c ≡ d⇐⇒ (∆′)−1(c− d) ∈ Zn−1.

Of interest in the sandpile group is the identity element, which leads us to the definition of
the recurrent identity. It is a known result (see for example [15]) that the following definition is
equivalent to the group theoretic definition of the identity of the sandpile group.

Definition 2.3. The recurrent identity is the recurrent configuration equivalent to the all-zero
configuration.

Recall that each equivalence class contains exactly one recurrent configuration, and thus the
recurrent identity is well-defined, always existing uniquely.

Example 2.3. Let G = K3. We look at the sandpile of G with arbitrary sink s. We will show
that the recurrent identity c is equivalent to the all-zero configuration d, where our two chip
configurations are

c =

[
1
1

]
, d =

[
0
0

]
and the reduced Laplacian is

∆′ =

[
2 −1
−1 2

]
.

Now we notice that

(∆′)−1(c− d) =

[
2
3

1
3

1
3

2
3

] [
1
1

]
=

[
1
1

]
∈ Z2.
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c =
fire v1===⇒ fire v2===⇒ = d

Figure 2: Equivalence of the recurrent identity and the all-zero configuration

Hence, c ≡ d, and d can be obtained from c by unrestrictedly firing (see Section 3) the two
non-sink vertices once each. See Fig. 2 for a visual example of the firing sequence taking c to d,
and thus the equivalence of c and d.

The recurrent identity has been studied previously, including some limiting behavior for Z2

lattice graphs as in [12] and [13]. For example, the recurrent identity for the 128 × 128 and
198 × 198 square grids with a boundary sink, or a sink connected to all the boundary vertices, is
shown in Fig. 3. Many intriguing questions about the identity are still open.

(a) 128 × 128 square grid (b) 198 × 198 square grid

Figure 3: The recurrent identity of the 128 × 128 and 198 × 198 square grids, as shown in [15].
0, 1, 2, and 3 chips are displayed as orange, red, green, and blue, respectively.
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3 The Complete Maximal Identity Property

The maximal stable configuration is essentially the only configuration guaranteed to be recurrent
over all graphs and by far the simplest recurrent configuration. Furthermore, of interest among
the recurrent elements is the identity of the abelian group, the recurrent identity. Hence, it is of
interest to know for which graphs the maximal stable configuration is the recurrent identity.

Definition 3.1. A graph G is said to have the maximal identity property at a vertex s if, having
chosen s as the sink, the maximal stable configuration is the recurrent identity of the sandpile G.

Having fixed a sink, the graph G has the maximal identity property exactly when mG ≡ 0.
Both the maximal stable configuration and the all-zero configuration are stable, so despite the two
configurations being equivalent, neither could reach the other through a valid firing sequence unless
they are the same to begin with, which occurs with the connected graph on 2 vertices. Hence, we
introduce the ideas of backfiring and unrestricted firing.

To fire a vertex v is equivalent to subtracting a column of ∆′ corresponding to v, and similarly
to backfire v is equivalent to adding a column of ∆′ corresponding to v. Unrestricted firing
is when vertices are allowed to fire and/or backfire regardless of the number of chips they have.
Furthermore, the sink is allowed to fire, where firing the sink corresponds to backfiring all non-sink
vertices.

Lemma 3.1. A necessary and sufficient condition for a sandpile to have the maximal identity prop-
erty is for there to exist an unrestricted firing sequence that takes the maximal stable configuration
to the all-zero configuration.

Proof. The maximal stable configuration is always recurrent. An unrestricted firing sequence be-
tween the maximal stable configuration and the all-zero configuration exists if and only if the two
configurations are equivalent, which occurs if and only if the maximal stable configuration is the
recurrent identity, resulting in the maximal identity property. �

Another necessary and sufficient condition for a sandpile G to have the maximal identity prop-
erty is for Stab(mG +mG) = mG.

Definition 3.2. A graph is said to have the complete maximal identity property if for all
vertices v, it has the maximal identity property for sink v.

Example 3.1. Both the Petersen graph and the n-diamond ring for all positive integers n have
the complete maximal identity property (see Fig. 4 for the Petersen graph and the n-diamond ring
for n = 3, 4). The proofs are straightforward but tedious, and thus not included in this paper.

Proposition 3.2. All complete graphs Kn, all odd cycles C2n+1, and all trees have the complete
maximal identity property.
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(a) The Petersen graph (b) The 3-diamond ring (c) The 4-diamond ring

Figure 4: The Petersen graph and the n-diamond ring for n = 3, 4

Proof. Case 1: Kn. By symmetry, we only need to prove that mKn ≡ 0 for one sink of Kn.
We prove this via the unrestricted firing method described in Lemma 3.1. The configuration mKn

has n− 2 chips at each non-sink vertex. Backfire the sink n− 2 times to yield the all-zero configu-
ration.

Case 2: C2n+1. By symmetry, we only need to prove that mC2n+1 ≡ 0 for one sink of C2n+1.
We prove this via the unrestricted firing method. Note that mC2n+1 ≡ 1. Define the rank of a
vertex to be the edge length of the shortest path from the sink to that vertex. Fire both vertices
of rank n once. This results in a net movement on one chip to each of the vertices of rank n − 1,
ridding the vertices of rank n of chips. Now, as each vertex of rank n−1 has 2 chips, fire all vertices
with rank at least n− 1 twice to eliminate all chips from those vertices. Continue in this manner,
firing all vertices with rank n− k or higher k + 1 times. This results in the all-zero configuration.

Case 3: Trees. There is only one spanning tree of a tree, the tree itself. Hence, we apply the
Matrix Tree Theorem to find that there is only one equivalence class in the sandpile group. Thus,
there is only one recurrent element; as mG is always recurrent, it is the only recurrent configuration.
Therefore, mG must be the recurrent identity. Hence, regardless of the sink, the maximal stable
configuration is always the recurrent identity. �

The fact that a tree has a trivial sandpile group gives it a unique effect when added to other
graphs. The concept of adding a tree of size n to a vertex v ∈ G is simply taking any tree T on n+1
vertices and n edges, then taking the disjoint union of T and G, and finally merging a vertex of T
with vertex v. See Fig. 5 and Fig. 6 for an example on how trees are added to graphs. Notice
that adding the tree of size 0, a single vertex, does not change the graph. The following theorem
states how one can attach trees to any connected graph in the aforementioned manner to result in
a graph that has the complete maximal identity property.
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Figure 5: The Diamond
Graph

Figure 6: The Diamond Graph with a
tree of size 1 added to vertex v1

Theorem 3.3. Given any connected graph G, there exists infinitely many graphs derived from
adding trees to G that have the complete maximal identity property.

To prove Theorem 3.3, we need the following lemma.

Lemma 3.4. Let G be any graph. Let {Tv} be a family of trees labeled by vertices of G and let G′

be the graph obtained from G by adding each tree Tv to vertex v. Then G′ has the complete maximal
identity property if and only if the configuration c over G with dv + |Tv|−2 chips at all vertices v is
equivalent to the identity for all selections of sinks, where |Tv| is the number of vertices in the tree.

Proof. We first prove the if direction. Pick a sink s ∈ G ⊆ G′. Let c be the chip configuration in
the lemma statement. We observe that each tree Tv has size cv − (mG)v. As trees have a trivial
sandpile group, there exists an unrestricted firing sequence that moves all the chips of mG′ in Tv
to v. Each edge of Tv provides one additional chip to mG′ from mG, and thus once all the chips
are moved towards their attachment point v in G, we find that the configuration that results is
configuration c ≡ mG′ . As c ≡ 0G, there exists an unrestricted firing sequence that takes c to 0
in G. Use this same sequence on the chip configuration c over G′, except whenever vertex v in G
is fired, fire vertex v and all the vertices of Tv in G′. This results in 0G′ , thus illustrating that G′

has the maximal identity property for sink s. The choice of s was arbitrary, so it applies for all
vertices in G.

However, G′ also has the vertices in the trees that were added. We must prove that G′ has the
maximal identity property for these vertices as sinks. Pick a sink s ∈ G′ from tree Tv for arbitrary
vertex v ∈ G. Use the unrestricted firing sequence that took mG′ to 0 for sink v, to result in a
configuration equivalent to the maximal stable configuration that has all of the chips at vertex v.
As all trees have a trivial sandpile group, there exists a unrestricted firing sequence that takes all
the chips at vertex v to s, if only Tv is considered. Now, whenever vertex v needs to be fired, fire
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all vertices in G, and all vertices of Tv′ for all v′ 6= v. This allows all firings in Tv ⊂ G′ to work
inside G′. This demonstrates that mG′ ≡ 0, and thus that G′ has the complete maximal identity
property.

To prove the only if direction, assume G′ has the complete maximal identity property. Reversing
the unrestricted firing sequences used to move all the chips of mG′ in Tv to v, we find c ≡ mG′ as
the |Tv| − 1 chips Tv needs for the maximal stable configuration are taken away from v to result
in v having dv − 1 chips, the number of chips it needs for the maximal stable configuration. As G′

has the complete maximal identity property, c ≡ mG′ ≡ 0G′ . �

We now can prove Theorem 3.3.

Proof of Theorem 3.3. Say we have a graph G. By the Matrix-Tree Theorem, regardless of the
choice of sink, |∆′| is a constant integer. Say |∆′| = k. By Lemma 3.4, to prove the result it
suffices to find infinitely many configurations c, where c is over all vertices, such that c ≥ mG and
for all selections of sinks, c ≡ 0. We will create such a configuration as follows. For each vertex v,
let the number of chips on it be equal to a multiple of k that is greater than or equal to dv − 1.
This configuration can be represented by a vector kx, where x is a vector composed of nonnegative
integers. For a particular selection of sink, to prove that this configuration is equivalent to the
identity, we must show that there exists a vector y with integer entries such that

∆′y = kx.

But we know that |∆′| = k, so using the fact that the adjoint matrix of an integer matrix (which ∆′

is) has integer entries, we know that k(∆′)−1 has integer entries. Hence

y = k(∆′)−1x,

and as x has integer entries, y has integer entries. As there are infinitely many multiples of a
positive integer greater than a fixed value, there are infinitely many valid configurations c. Thus,
there exists infinitely many graphs consisting of the given graph with trees attached to it that have
the complete maximal identity property. �

Because we may add trees to graphs to give them the complete maximal identity property, we
wish to have a notion of irreducibility that eliminates such graphs which have trees added to them.
This leads us to the classical notion of a biconnected graph.

Definition 3.3. A biconnected graph is a graph that remains connected even if you remove any
single vertex and its incident edges.

In other words, for any two vertices in a biconnected graph, there exist at least two vertex-
disjoint paths that connect them.

A search over all biconnected graphs with 11 or fewer vertices found that asides from odd cycles
and complete graphs, there were only three and two biconnected graphs (up to isomorphism) with
8 and 10 vertices, respectively. These include the 2-diamond ring and the Petersen graph from
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Example 3.1. In addition, there are three other biconnected graphs with 12 vertices known to have
the complete maximal identity property, including the 3-diamond ring; however, the search over all
biconnected graphs with 12 vertices is too computationally intensive to complete.

The observed lack of any other biconnected graphs with an odd number of vertices that possess
the complete maximal identity property prompts the following question.

Question 3.5. Are the only biconnected graphs with an odd number of vertices that possess the
complete maximal identity property cycle graphs and complete graphs?

4 Necessary Conditions for the Complete Maximal Identity Prop-
erty

In order to create necessary conditions for the complete maximal identity property, we first
make the following definition.

Definition 4.1. A vector c ∈ Zn is compatible if for any sink vi we have

(c1, . . . , ci−1, ci+1, . . . , cn) ∈ ∆(i)Zn−1.

We observe that if a and b are compatible, then a± b is compatible.
Note that an equivalent definition is that for all sinks s ∈ G,

(∆(s))−1c′ ∈ Z|G|−1.

Lemma 4.1. If c is compatible and s = c1 + · · ·+ cn, then sei is compatible for all i.

Proof. Notice that if c ∈ Zn is in the image of ∆, then c is compatible. Since (c1, . . . , cn) is
compatible, then

(c1, . . . , ci−1, ci+1, . . . , cn) =
∑

j∈{1,...,n}\{i}

αj∆
(i)
j ,

where αj ∈ Z and ∆
(i)
j denotes the column of ∆(i) corresponding to vertex vj . Thenc1, . . . , ci−1,−

∑
j∈{1,...,n}\{i}

cj , ci+1, . . . , cn

 =
∑

j∈{1,...,n}\{i}

αj∆j

is in the image of ∆ and thus is compatible. Subtracting the two compatible vectors, then sei is
compatible for any i where s = c1 + · · ·+ cn. �

Clearly, I = {d | dei is compatible for any i} forms an ideal in Z. For a graph G with the
complete maximal identity property, we know k ∈ I, where k = |∆′| is the number of spanning
trees of G, and ∑

v∈G
(deg(v)− 1) = 2 · size(G)− |G| ∈ I,
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so their greatest common divisor is in I.
As Z is a principal ideal domain, for each graph G, I = (x) for some positive integer x.

Notice that x is the smallest positive element of I. This leads us to our definition of the minimal
compatibility number of a graph.

Definition 4.2. The minimal compatibility number of a graph is the positive integer x such
that (x) = I := {d | dei is compatible for any i}.

Lemma 4.2. The minimal compatibility number of a graph G is 1 if and only if G is a tree.

Proof. We first prove the only if direction. If the minimal compatibility number of a graph is 1,
then every chip configuration is in the integer image of the reduced Laplacian and thus equivalent
to each other. Hence, the sandpile group S(G) is the trivial group, so by the Matrix-Tree Theorem
G must have only 1 spanning tree, or in other words, is a tree itself.

For the if direction, a tree has a trivial sandpile group and thus every chip configuration is
equivalent to each other, meaning that each chip configuration is in the integer image of the reduced
Laplacian, and thus the minimal compatibility number of the tree is 1. �

Notice that dei is compatible if each least common denominator of the column of (∆′)−1 cor-
responding to vertex i for all sinks s divides d. Hence, d ∈ I if the least common denominator of
all entries of the inverses of all reduced Laplacians of a graph G divides d, and thus the minimal
compatibility number of a graph is the least common denominator of all entries of the inverses of
all reduced Laplacians of a graph G.

Proposition 4.3. If a non-tree graph G has the complete maximal identity property,

gcd
(∣∣∆′∣∣ , 2 · size(G)− |G|

)
> 1.

Proof. We will prove the contrapositive.
If for a non-tree graph G,

gcd
(∣∣∆′∣∣ , 2 · size(G)− |G|

)
= 1,

the graph does not have the complete maximal identity property, as if it did then

gcd
(∣∣∆′∣∣ , 2 · size(G)− |G|

)
= 1 ∈ I,

so the minimal compatibility number of G is 1, which by Lemma 4.2 means G is a tree, yielding a
contradiction. �

Proposition 4.4. If a graph G has the complete maximal identity property, then the minimal
compatibility number x satisfies x ≤ |G|2 − 2|G| for |G| > 2, and x = 1 if |G| = 2.

11



Proof. If |G| = 2, then G must be the connected graph with two vertices, which is a tree and thus
the result follows from Lemma 4.2.

We now assume |G| > 2. As
2 · size(G)− |G| ∈ I,

we have
x ≤ 2 · size(G)− |G|,

as x is the smallest positive element of I and 2 · size(G)−|G| > 0. This is because G is a connected
graph so size(G) ≥ |G| − 1, and thus 2 · size(G)− |G| ≥ |G| − 2 > 0.

The maximum value of size(G) of a graph with fixed order is |G|(|G|−1)
2 , so

x ≤ 2 · size(G)− |G| ≤
(
|G|2 − |G|

)
− |G| = |G|2 − 2|G|.

�

Proposition 4.5. The minimal compatibility number for both Kn and Cn is n.

Proof. We will show nei is compatible, with an irreducible firing vector (i.e. the elements have no
common factor). The firing vector for a configuration c is the vector (∆′)−1c, where each element
of the vector corresponds to how many times the corresponding non-sink vertex must fire from
the all-zero configuration to reach c. Note that the firing vector may not necessarily have integer
entries. As the reduced Laplacian is non-singular by the Matrix-Tree Theorem, the firing vector
is well-defined, existing uniquely as the firing vector that takes the all-zero configuration to any
configuration c. If nei is compatible, but the firing vector is irreducible, meaning all the entries are
integers which do not share a nontrivial common factor, then n′ei for all positive integers n′ < n
will not have a firing vector that has all integer entries; this is because that firing vector can be
obtained by multiplying the firing vector for nei by n′

n .
For the complete graph Kn, fire the sink and then backfire vi to result in n chips at vi. The

firing vector consists of -1 at all non-sink vertices except vi which is -2. Hence, this is an irreducible
firing vector, and x = n.

For the cycle graph Cn, we will first show that nei is compatible for all i. Notice that on the
cycle graph, one may select a proper connected subgraph (i.e. an “arc” of the circle) and fire all
of them, resulting in the outer vertices losing one vertex and the vertices adjacent to them but not
in the arc gaining a chip. This may be repeated for iteratively larger arcs, each time including one
more vertex on each end. Doing so enables us to send those chips an arbitrary distance away from
the ends of the original arc (as long as there are no self-intersection issues).

We will first look at odd n. From the sink, give each vertex a single chip by pairing vertices
equidistant from the sink, and having the sink fire chips to those two vertices. Then, pair vertices
equidistant from vertex v and fire their chips to vertex v. This results in vertex v having all n
chips, with no other vertex having chips. See Fig. 7 for an example of the described firing process.

Now we will look at even n. From the sink, give each vertex except the vertex diametrically
opposite the sink a single chip as before. Then, pair vertices equidistant from vertex v except
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⇒ ⇒

Figure 7: Example firing process for C7

the vertex diametrically opposite v and fire their chips to vertex v like before. This results in
vertex v having n − 1 chips, the vertex diametrically opposite the sink having -1 chips, and the
vertex diametrically opposite v having 1 chip. Then, fire chips from the sink and the vertex with 1
chip to v and the vertex diametrically opposite the sink, resulting in v having n chips and no other
vertex having chips. See Fig. 8 for an example of the described firing process.

⇒ ⇒ ⇒

Figure 8: Example firing process for C6

Finally, we will show that n is the smallest element in I. We will do this by showing the firing
vector for the case where the sink and v are adjacent is irreducible. Let the sink be vertex 1, with
the vertices labeled in order so that v is vertex n. First, fire vertex 1. Then, fire vertices 1 and 2.
After that, fire vertices 1, 2, and 3, and so on, with the final step firing vertices 1 through n − 1.
Notice that each step pushes a chip in the positive direction; the first step sends a chip to vertex 2,
the next step moves that chip to vertex 3, and so on. After all these steps, that chip will arrive at
vertex n. At the same time, each step gives vertex n a chip from the sink, vertex 1. Hence, after
these n − 1 steps, vertex n will receive 1 + (n − 1) = n chips, with no other vertex having chips.
During this process, vertex n− 1 was only fired once, and thus the firing vector is irreducible. �

5 The Complete Identity Property

Using the definition of compatibility, a graph has the complete maximal identity property if
and only if the maximal stable configuration is compatible. With this concept, the definition of
the complete maximal identity property can be generalized to simply when the recurrent identity
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for a particular sink is compatible for all sinks, as seen in the following definition of the complete
identity property.

Definition 5.1. A graph G is said to have the complete identity property if there exists a
chip configuration c on all the vertices such that for all choices of sink s, the configuration c with
respect to sink s is the recurrent identity for the sandpile of G at s.

If G has the complete identity property, cG is the chip configuration on all vertices that gives
the recurrent identity for all choices of sink s.

Note that if a graph G has the complete maximal identity property, it has the complete identity
property.

Odd cycle graphs have the complete maximal identity property, but even cycle graphs do not.
The generalization of the complete maximal identity property to the complete identity property
helps resolve this, as seen by Proposition 5.1.

Proposition 5.1. For any positive integer n, attaching a single tree of size 1 to any vertex in the
even cycle graph C2n results in a graph with the complete identity property.

Proof. Say G is the graph resulting from attaching a single tree of size 1 to any vertex in C2n. Let
vertex v0 be the vertex added to the even cycle graph and vertex v1 be the vertex connected to
it. Let the vertices of the cycle graph be numbered v1 through v2n in clockwise order. Notice that
vn+1 is diametrically opposite of v1. See Fig. 9a for an example of G, when n = 3.

We claim the common recurrent identity configuration cG is the configuration that has 0 chips
at v0 and vn+1, 2 chips at v1, and 1 chip everywhere else. Let this configuration be denoted as dG
for the proof. We will show that this configuration is the recurrent identity for all of the vertices.
See Fig. 9b for an example of dG, when n = 3.

(a) G when n = 3 (b) dG when n = 3

Figure 9: G and dG when n = 3

Case 1: sink at v0. To prove that the configuration dG is recurrent, take any stable configura-
tion and add chips to it to yield the configuration that has 2 more chips than dG at vn+1, which is
the configuration resulting from taking the maximal stable configuration and adding 1 chip to vn+1.
From here, we stabilize to reach dG. Vertex vn+1 fires, activating vn+1±1. Vertex vn+1±1 fires, ac-
tivating vn+1 again as well as vn+1±2. This process continues, sending the two chips originally
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at vn+1 to v1, which fires, activating the vertices all the way back to vn+1, and then repeats this
process again, giving the two chips to v0, thus reaching dG. Hence, dG is recurrent. Furthermore,
using the same reasoning, all the chips in dG may be moved to v0 as there are no chips at vn+1,
and the chips at vn+1±i (chips that are the same distance from vertex 1) may be paired together
and moved towards v1, and from there all the chips moved to v0 by firing the entire cycle graph as
many times as necessary.

Case 2: sink at v1. Follow the same procedure as v0, ending when the two chips reach v1.
Case 3: sink at vn+1. Follow a similar procedure but for the proof of dG being recurrent, add

chips to any stable configuration to yield the configuration that is the maximal stable configuration
with two extra chips at v1, and stabilize to yield dG.

Case 4: sink at vi for 2 ≤ i ≤ n. To prove that the configuration dG is recurrent, take any
stable configuration and add chips to it to yield the configuration that has 1 more chip than mG

at vn+i. Firing v0 immediately after each time v1 fires, the proof of the recurrence of dG proceeds
exactly like the case for the sink at v1, acting on the cycle graph.

To prove that dG is equivalent to the all-zero configuration, pair off vertices equidistant from vi
in the cycle graph and move their chips to vi, resulting in the configuration with v1 having 1
chip, vn+1 having -1 chips, and vn+i having 1 chip. Using this observation, we move the two chips
at v1 and vn+i away from each other until the chip from vn+i reaches vn+1, and thus the chip at v1

reaches vi, the sink. This results in the all-zero configuration, and thus dG is the recurrent identity
at v.

Case 5: sink at vi for n+ 2 ≤ i ≤ 2n. By symmetry, follow the same procedure as described
in case 4 for v2n+2−i where 2 ≤ 2n+ 2− i ≤ n.

This completes the proof. �

In order to create a graph from an even cycle graph that has the complete identity property,
we needed to add a single tree of size 1 to any vertex. This property is also seen in the case of
complete bipartite graphs, as the following theorem shows.

Theorem 5.2. For all positive integers m,n, attaching a single tree of size 1 to any vertex in the
complete bipartite graph Km,n results in a graph that has the complete identity property.

Proof. It suffices to show the result for when the additional edge and vertex is attached to one
of the m vertices, as the same proof would hold with m and n interchanged. Furthermore, we
may assume that m,n ≥ 2, as if any of them are 1, the resulting graph is a tree and thus has the
complete maximal identity property and hence the complete identity property by Proposition 3.2.

Say the additional vertex is a, the vertex it is attached to is b, the n vertices of one side of the
complete bipartite graph compose set C, and the m − 1 vertices in the set of m vertices of one
side of the complete bipartite graph that is not b compose set D. We claim cG is the configuration
with a having 0 chips, b having n chips, each vertex in C having m− 1 chips, and each vertex in D
having 0 chips. Let this configuration be denoted as dG for the proof. See Fig. 10 for an example
of the graph and the naming convention for the vertices.

We will separate into four cases depending on where the sink is.
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Figure 10: Example for m = 5, n = 7. Vertex 12 is a, vertex 0 is b, vertices 5 through 11 compose
set C, and vertices 1 through 4 compose set D.

Case 1: sink at a. From any stable configuration add chips to reach the configuration with b
having n chips, each vertex in C having m − 1 chips, and each vertex in D having n chips. We
then stabilize. This results in all vertices in D firing, then all vertices in C firing, then all vertices
in D firing again to result in b having 2n chips and C having 2m− 3 chips each. Then, firing b, all
vertices in C, and then all vertices in D results in a net loss of 1 chip at b, and this occurs as long
as b has at least n+ 1 chips to start the cycle, and the cycle starts with all vertices in C having at
least m−1 chips, which it does as m ≥ 2, so 2m−3 ≥ m−1. Hence, after n iterations of this cycle,
we eventually reach b having n chips, all vertices in C having 2m − 3 chips each, and all vertices
in D having 0 chips each. Fire all vertices in C and then all vertices in D to yield all vertices in C
having lost 1 chip each, and b having gained n chips. Follow the cycle previously shown to return b
back to having n chips. This process can thus result in a net loss of 1 chip at each vertex in C, as
long as all vertices in C had at least m chips to start with, giving it at least m − 1 chips when it
enters the other cycle. Cycling this process until it is no longer possible results in b having n chips,
all vertices in C having m− 1 chips each, and all vertices in D having no chips. This is dG, and it
is stable. Hence, dG is recurrent. Now, to prove that dG is the recurrent identity, fire all vertices
in C ∪D each m− 1 times to clear all vertices in C ∪D of chips, and then fire b, all vertices in C,
and all vertices in D until b is also clear of chips. The following table describes the firing sequence
of the stabilization in the proof of dG’s recurrence, tracking the chips at a, b, the number of chips at
each vertex in C (during the process, all of these vertices are indistinguishable and have the same
number of chips), and the number of chips at each vertex in D.
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a b C D Firing step

Sink n m− 1 n D,C,D fire
Sink 2n 2m− 3 0 b, C,D fire
Sink 2n− 1 2m− 3 0 Repeat firing b, C,D a total of n times
Sink n 2m− 3 0 C,D fire, b, C,D fire n times. Repeat until no longer possible
Sink n m− 1 0 Reached dG

Case 2: sink at b. From any stable configuration add chips to reach the configuration with a
having 0 chips, each vertex in C having m−1 chips, and each vertex in D having n chips. Stabilizing
this configuration results in first firing all vertices in D, resulting in all vertices in C having 2m− 2
chips each. Then, firing all vertices in C and then all vertices in D results in a net loss of 1 chip
at each vertex in C, and the cycle works as long as all vertices in C start with at least m chips so
that they can fire. Repeating this process, we find that the stabilization of the specified accessible
configuration is dG. Hence, dG is recurrent. Now, to prove that dG is the recurrent identity, fire
all vertices in C ∪D each m − 1 times to result in the all-zero configuration. The following table
describes the firing sequence of the stabilization in the proof of dG’s recurrence for sink at b.

a b C D Firing step

0 Sink m− 1 n D fires
0 Sink 2m− 2 0 C,D fire repeatedly until no longer possible
0 Sink m− 1 0 Reached dG

Case 3: sink in C. Say the sink is sC ∈ C, and let C ′ = C \ {sC}. From any stable
configuration add chips to reach the configuration with a having 0 chips, b having n chips, each
vertex in C ′ having m chips, and each vertex in D having n chips. We fire all vertices in C ′ to
yield b and each vertex in D having 2n− 1 chips each, both being active. Notice that we may fire b
and all vertices in D, and then all vertices in C ′, as long as b and all vertices in D have at least n+1
chips each, and without any requirement of the starting chips for all vertices in C ′, as they will
each get the m chips they need to fire. This process results in a net loss of 1 chip at each of b and
all vertices in D. Performing this operation until it is no longer possible, with n chips at b and
each vertex in D each, we then fire all vertices in D to yield dG. Hence, dG is recurrent. To prove
that dG is the recurrent identity, notice that dG is equivalent to the configuration that preceded
it in the proof of its recurrence, which had n chips at each of b and all vertices in D. Continuing
the procedure of firing b and all vertices in D and then all vertices in C, we can do this n times
to clear b and all vertices in D of chips, resulting in the all-zero configuration. The following table
describes the firing sequence of the stabilization in the proof of dG’s recurrence for sink in C.

a b C ′ D Firing step

0 n m n C ′ fires
0 2n− 1 0 2n− 1 b,D,C ′ fire repeatedly until no longer possible
0 n 0 n D fires
0 n m− 1 0 Reached dG
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Case 4: sink in D. Say the sink is sD ∈ D, and let D′ = D \ {sD}. From any stable
configuration add chips to reach the configuration with a having 0 chips, b having 2n chips, each
vertex in C having m− 1 chips, and each vertex in D′ having n chips. Notice that at this state b
and all vertices in D′ are active. Furthermore, firing these vertices and then a gives m − 1 chips
to each vertex in C, so as long as they each have at least 1 chip, they can fire. This results in b
and D′ regaining their n chips, and costing each vertex in C m chips, meaning that each vertex in C
has lost one chip in total. We perform this procedure m − 1 times to result in the configuration
with 2n chips at b and n chips at each vertex in D′. Firing b, a, and all vertices in D′ then
gives dG. Hence, dG is recurrent. To prove that dG is the recurrent identity, fire a and b to clear a
and b of chips, resulting in C having m chips. Backfire the sink m times to result in the all-zero
configuration. The following table describes the firing sequence of the stabilization in the proof
of dG’s recurrence for sink in D.

a b C D′ Firing step

0 2n m− 1 n b,D′, a, C fire m− 1 times.
0 2n 0 n b,D′, a fire
0 n m− 1 0 Reached dG

This completes the proof. �

By Proposition 5.1 and Theorem 5.2, we see that even cycles and complete bipartite graphs
both have the property that attaching a single tree of size 1, or a single edge and vertex, to any
vertex in the graph results in a graph with the complete identity property. In addition, adding a
single edge and vertex to a tree results in a tree, which has the complete maximal identity property
by Proposition 3.2, which implies the complete identity property. All of these three types of graphs
are bipartite. While not all bipartite graphs, or even regular bipartite graphs, have this property
(for example, the hypercube in 3 dimensions, which is isomorphic to C4 K2), a computer search
found that all connected graphs of 10 vertices or less which had this property were bipartite. This
motivates the following conjecture.

Conjecture 5.3. Let G be a connected graph. If for all vertices v ∈ G, attaching a single tree of
size 1 to v results in a graph with the complete identity property, then G is bipartite.

6 Conjectures on Graph Products

Recall that the Cartesian product, tensor product, and strong product are binary operations on
graphs that form a graph whose vertices are ordered pairs of vertices of the two daughter graphs.
For the Cartesian product, denoted , two vertices share an edge if in one of the daughter graphs
the two vertices share an edge and in the other the vertices are the same. For the tensor product,
denoted ×, two vertices share an edge if in both daughter graphs the two vertices share an edge.
The strong product, denoted , is the union of the Cartesian product and the tensor product. See
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(a) P3 (b) P3 P3 (c) P3 × P3 (d) P3 P3

Figure 11: The Cartesian, tensor, and strong products between two copies of P3

Fig. 11 for examples of the Cartesian, tensor, and strong products between two copies of the path
graph with 3 vertices P3.

Investigating the behavior of graph products with respect to the complete maximal identity
property, we find that in general, the strong product, Cartesian product, and tensor product all do
not preserve the complete maximal identity property. However, we do find some patterns.

Proposition 6.1. Let Pn be the path graph with n vertices. The strong product between P2 and Pk

has the complete maximal identity property if and only if k = 2 or k ≡ 1 (mod 3).

Proof. We will refer to the canonical labelling of the vertices of the graph P2 Pk as via the ordered
pairs (i, j) where i ∈ {0, 1} and j ∈ {0, 1, . . . , k − 1}. By symmetry, it suffices to prove the graph
has the maximal identity property for sinks with i = 0 and j ≤ k−1

2 .
We will prove the j = 0 case first. Starting with the maximal stable configuration, incrementally

fire all the vertices with second coordinate k − 1 until those have no chips, and then fire all the
vertices with second coordinate at least k − 2 until those have no chips, and so on. The resulting
configuration has 4k−6 chips at each of the two vertices with second coordinate 1. By symmetry, in
order for the two vertices with second coordinate 1 to have the same number of chips (eventually 0),
the number of times the vertices with second coordinate at least 1 can be fired must all be the
same. Fire all of these vertices k − 2 times. Then the three vertices connected to the sink each
have 2k − 2 chips. Fire all non-sink vertices 2k − 2 times to clear the graph of all chips.

Now we assume k ≥ 3. For 1 < j ≤ k−1
2 , we follow a similar process to result in the vertices

with second coordinate j− 1 having all the chips originally with second coordinate less than j, and
thus having 4j− 2 chips each. Similarly, the vertices with second coordinate j+ 1 have 4k− 4j− 6
chips each. Fire the vertices with second coordinate at least j+1 a total of k−2j−1 times each to
have the vertices with second coordinate j ± 1 having 4j − 2 chips each, and (1, j) having 4k − 8j
chips.

In order for the vertices with second coordinate not equal to j to all have 0 chips, they must all
be fired the same number of times. Hence, we essentially only have two operations: fire (1, j) or
fire all vertices with second coordinate not equal to j. From this, we can see that we can fire all the
non-sink vertices 4j − 2 times, resulting in all the non-sink vertices having no chips except (1, j)
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having 4k − 12j + 2 chips. Now notice that the smallest increment by which we can change the
number of chips at that vertex without changing the other vertices is to fire it twice and then fire
all the non-sink vertices once. Or, in other words, fire it once and backfire the sink once. This
results in a net loss of 6 chips. So for P2 Pk to have the complete maximal identity property we
must have that 4k − 12j + 2 ≡ 0 mod 6 for all values of j, or equivalently k ≡ 1 mod 3. If this
were not the case, we would be able to get the all-zero configuration with a fractional number of
firings, and as the reduced Laplacian is nonsingular, this is the unique firing vector needed, and
thus the maximal stable configuration is not equivalent to the all-zero configuration.

To prove that the other graphs do not have the complete maximal identity property, let k 6≡ 1
mod 3, and use the same process as before to arrive at (1, j) having 2 or 4 chips. Using the
fact that the reduced Laplacian is non-singular, there is a unique firing vector that results in this
configuration. However, it does not have integer entries, as the configuration with 6 chips at (1, j)
does not have all of its entries being multiples of 3, rather having all of the vertices with second
coordinate not equal to j being backfired once and (1, j) being backfired twice. Hence, the two
configurations resulting from k 6≡ 1 mod 3 are not equivalent to the identity, and thus do not have
the complete maximal identity property. �

After looking at whether Pi Pj has the complete maximal identity property for all values of i
and j where 1 ≤ i, j ≤ 100, we conjecture that the cases presented in Proposition 6.1 are the only
such graphs with the complete maximal identity property:

Conjecture 6.2. For i ≤ j ∈ Z>1, the only graphs Pi Pj which have the complete maximal
identity property are P2 Pj where j ≡ 1 mod 3 or j = 2, which yields K4.

Similarly, using the Cartesian product, the following proposition was proven.

Proposition 6.3. The Cartesian product between K4 and P2 has the complete maximal identity
property.

After looking at whether or not Ki Pj has the complete maximal identity property for all
values of i and j where 1 ≤ i, j ≤ 50, we conjecture that that the case presented in Proposition 6.3
is the only such graph with the complete maximal identity property.

Conjecture 6.4. For i, j ∈ Z>1, the only graph Ki Pj which has the complete maximal identity
property is K4 P2.

Proof of the j = 2, 3 cases. For j = 2, let the sink be (0,0). Instead of looking at abscissas of 0
through i − 1, by symmetry all the positive abscissas for a specified ordinate must fire the same
number of times (even if this were not true, the solution that follows would yield a non-integer
number of firings for each vertex, and as the reduced Laplacian is non-singular, no other firing
vector will yield the all-zero configuration, and thus the proof holds). So, we will combine the
vertices with the same ordinate and a positive abscissa together to yield a weighted cycle graph of
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4 vertices. The reduced Laplacian is

∆′ =

 i 1− i 0
1− i 2i− 2 1− i

0 1− i 2i− 2

 .
Thus, the firing vector v to reach the maximal stable configuration c is

v = (∆′)−1c = (∆′)−1

 i− 1
(i− 1)2

(i− 1)2

 =
1

i+ 2

 3i(i− 1)
(i− 1)(3i+ 2)
2(i− 1)(i+ 1)

 .
To have the complete maximal identity property, it suffices to show that for this particular sink, v
has integer entries. So

i+ 2 | gcd (3i(i− 1), (i− 1)(3i+ 2), 2(i− 1)(i+ 1)) .

We will first analyze i + 2 | 3i(i − 1). Notice that gcd(i, i + 2) = gcd(2, i) | 2. We also
have gcd(i+ 2, i− 1) = gcd(i+ 2, 3) | 3 and gcd(i+ 2, 3) | 3. Hence, we find that i+ 2 | 2 · 32. This
corresponds to integer values of i greater than 1 being 4, 7, and 16. Verifying that these hold for
the other two divisibility criteria, we find only i = 4 yields the complete maximal identity property.

For j = 3, we follow the same process for combining vertices. The reduced Laplacian is

∆′ =


i 1− i −1 0 0

1− i 2i− 2 0 1− i 0
−1 0 i+ 1 1− i 0
0 1− i 1− i 3i− 3 1− i
0 0 0 1− i 2i− 2

 .
The firing vector v to reach the maximal stable configuration c is

v = (∆′)−1c =
1

(i+ 1)(i+ 3)


2i(3i− 2)(i+ 3)

(3i− 2)(2i2 + 6i+ 1)
5i3 + 8i2 − 6i+ 1
5i3 + 11i2 − 5i− 1

(3i− 2)(i2 + 3i+ 1)

 .
This requires that

(i+ 1)(i+ 3) | gcd
(
5i3 + 8i2 − 6i+ 1, 5i3 + 11i2 − 5i− 1

)
which results in

(i+ 1)(i+ 3) | 3i2 + i− 2.

With i+ 1 | 3i2 + i− 2, the condition is equivalent to i+ 3 | 3i− 2, or i+ 3 | 11, or i = 8. But this
does not yield a vector with integer entries, so hence there are no solutions for j = 3. �
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