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Abstract

Bar visibility graphs were adopted in the 1980s as a model to represent traces, e.g.,

on circuit boards and in VLSI chip designs. Two generalizations of bar visibility graphs,

rectangle visibility graphs and bar k-visibility graphs, were subsequently introduced.

Here, we combine bar k- and rectangle visibility graphs to form rectangle k-visibility

graphs (RkVGs), and further generalize these to higher dimensions. A graph is a

d-dimensional RkVG if and only if it can be represented with vertices as disjoint

axis-aligned hyperrectangles in d-space, such that there is an axis-parallel line of sight

between two hyperrectangles that intersects at most k other hyperrectangles if and only if

there is an edge between the two corresponding vertices.

For any graph G and a fixed k, we prove that given enough spacial dimensions, G has a

rectangle k-visibility representation, and thus we define the minimal embedding dimension

(MED) with k-visibility of G to be the smallest d such that G is a d-dimensional RkVG.

We study the properties of MEDs and find upper bounds on the MEDs of various types

of graphs. In particular, we find that the k-visibility MED of the complete graph on m

vertices Km is at most m/(2(k + 1)), of complete r-partite graphs is at most r + 1, and

of the mth
hypercube graph Qm is at most d2m/3e in general, and at most b

p
m e for

k = 0, m 6= 2.
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1 Introduction

Bar visibility graphs were introduced in the 1980s as a way to model circuit traces in VLSI
chip designs (Lodi and Pagli, [12]). A graph G is a bar visibility graph if there is a one-to-one
correspondence between each of its vertices and horizontal bars, such that there is an unobstructed
vertical line of sight between two bars (i.e., a vertical line segment between the two bars not
intersecting other bars) if and only if there is an edge between the corresponding vertices in G.

Note that the bars and visibility lines form a planar graph drawing of G.

In their 1997 paper On Rectangle Visibility Graphs [2], Bose et al. introduced rectangle visibility
graphs as “a graph in the plane so that the vertices of the graph are rectangles that are aligned
with the axes, and the edges of the graph are horizontal or vertical lines-of-sight”. Previously,
though using di↵erent terminology, Stephen Wismath established in his 1989 thesis [15] that all
planar graphs are rectangle visibility graphs (i.e., have rectangle visibility representations).

Dean et al. introduced bar k-visibility graphs in 2007 [6] as a generalization in which the visibility
line between the bars are relaxed from being unobstructed to being obstructed by at most k other
bars. Hartke et al. published Further Results on Bar k-Visibility Graphs [11], and in combination
these two papers established that the maximum number of edges in a bar k-visibility graph on
n vertices is (k + 1)(3n � 4k � 6). Dean et al. further proved that the thickness of every bar
1-visibility graph is at most 4, and Chang et al. [3] proved that the thickness of a bar k-visibility
graph is at most 3k + 3.

Others, such as Babbit et al. [1], have studied k-visibility on other types of visibility
representations. Here we define a rectangle k-visibility graph to be a graph that can be
represented with vertices as disjoint axis-parallel rectangles, where there is an edge between two
vertices if and only if there is an axis-parallel lines of sight between the corresponding rectangles
which is obstructed by at most k other rectangles. By the above, as edges corresponding to
horizontal as well as vertical visibility lines form bar k-visibility graphs, the number of edges and
the thickness in such a graph are at most 2(k + 1)(3n � 4k � 6) and 6k + 6, respectively. In
particular, the respective thickness of rectangle 0- and 1-visibility graphs are at most 2 and 8.

Prior research has further generalized rectangle visibility graphs into 3 dimensions, where they
are referred to as box visibility graphs [8]. Here we consider a generalization of rectangle
k-visibility graphs into higher dimensions, and in particular, study the minimum dimension needed
to represent various graphs with k-visibility for a fixed k. For example, as discussed above, the
minimal embedding dimension (MED) of a planar graph given k = 0 is at most 2.

We study such MEDs on general graphs in Section 3. Among other things, we show that the
MED of a connected graph G on n vertices is at most

⌃
n

2

⌥
, that the MED of a disconnected

graph G is the maximum of 2 and the MEDs of its connected components, and that MEDs are
subadditive under the Cartesian product.

We then move on to specific graphs. We cover complete graphs in Section 4, where we establish
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that MEDs can be arbitrarily large and that the MED of the complete graph on m vertices Km

is at most max
⇣l

m�22(bk/2c+1)
2(k+1)

m
+ 1, 3

⌘
. In Section 5 on multipartite graphs we find that the

MED of a complete r-partite graph is at most r+1. Finally, Section 6 is devoted to hypercubes;
we show that the MED of Qm is at most

⌃
2
3m

⌥
, and at most b

p
m e for k = 0,m 6= 2.

2 Terminology

We define a d-dimensional rectangle visibility graph (RVGs) to be a graph where vertices can be
represented as (closed hyper-)rectangles in d dimensions, and edges as all axis-parallel lines of
sight between (i.e., unobstructed line segments connecting) these (hyper-)rectangles. We also
define the following variants:

• An ✏�visibility graph (RVG✏) imposes a positive thickness to the line of sight between
rectangles, such that the rectangles must overlap by a positive amount in all (d � 1)

orthogonal dimensions of the line of sight. In contrast, a strong visibility graph (RVGs)
allows visibility lines with zero thickness, thus zero overlap in orthogonal dimensions.

• A rectangle k-visibility graph (RkVGs, RkVG✏) allows the line of sight to be obstructed by
up to k other rectangles.

• A unit rectangle visibility graph (URVGs, URVG✏, URkVGs, URkVG✏) imposes the
restriction that all (hyper-)rectangles have the same dimensions (typically unit
hypercubes).

Unless explicitly stated, we use the term rectangle to mean d-dimensional hyper-rectangle. As a
special case, a box is a 3-dimensional rectangle.

The minimal embedding dimension (MED) of a graph G is the smallest number of spacial
dimensions d for the graph to be a specific one of the above. We denote by
M s(G), µs(G),M s

k
(G), µs

k
(G),M ✏(G), µ✏(G),M ✏

k
(G) and µ✏

k
(G) the MEDs of G as a RVGs,

URVGs, RkVGs, URkVGs, RVG✏, URVG✏, RkVG✏, and URkVG✏, respectively.

Example 1. µs

1(C4) = 2 is the smallest number of dimensions in
which we can represent C4 as a unit rectangle 1-visibility graph
with strong visibility.

Additionally, we use the following conventions:

• G will be a graph. (We do not consider the null graph on zero vertices.)
• n := |V (G)| � 1 is the number of vertices (i.e., size) of G.

• The ✏ or s su�x may be omitted, in which case the statement applies to both strong or
✏�visibility.
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Example 2. “G is an M(G)-dimensional RVG” means that “G is an M s(G)-dimensional
RVGs and G is an M ✏(G)-dimensional RVG✏”.

• All occurrences of [ µ

M
] can be consistently replaced by either µ or M.

Example 3. “G is an [ µ

M
] (G)-dimensional (U)RVG” means that “G is an

µ(G)-dimensional URVG and G is an M(G)-dimensional RVG”.

3 General Graphs

3.1 Existence of the minimal embedding dimensions

Here we will prove that the minimal embedding dimension is well-defined, i.e. that every graph
has a minimal embedding dimension. To that end, we first show how to think of a representation
of a d-dimensional (U)RkVG in terms of its projections to the axes.

Definition 4. A graph G is an interval graph if there is a one-to-one correspondence between
its vertices and a set of (closed) intervals, such that two intervals overlap if and only if there is
an edge between the corresponding vertices in G.

A unit interval graph, more commonly known as an indi↵erence graph, is an interval graph that
can be represented with unit intervals.
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G1

G2

G

Figure 1: A graph G represented as a 2-dimensional RkVG, with projected
intervals in each dimension corresponding to vertices in interval graphs G1 and G2

Lemma 5. A graph G with n vertices is a d-dimensional (U)RkVGs
, where k � n � 2, if and

only if there exist d (unit) interval graphs G1, . . . , Gd of G on the same vertex set as G such

that no edge is contained in all of G1, . . . , Gd and two vertices u, v 2 G are adjacent if and only

if they are adjacent in all but exactly one of G1, . . . , Gd.

Proof. We note that k � n � 2 is the same as “infinite” visibility, as at most n � 2 rectangles
can obstruct a visibility line between any two rectangles.

First we go from a d-dimensional (U)RkVGs G to corresponding (unit) interval graphsG1, . . . , Gd.

Consider the projections of all rectangles onto each of the axes of Rd. Let Gi be the (unit)
interval graph formed by the projection onto the ith axis. Two rectangles cannot overlap in all
of these projections, lest they would themselves overlap. In other words, no edge can be in all of
G1, . . . , Gd.

I↵ two rectangles can see each other via a visibility line in the direction of the ith axis (1  i  d),
their respective projections do not overlap on the ith axis, but overlap on all other axes j | (1 

j  d). In other words, two vertices G are adjacent if and only if they are adjacent in all but
exactly one of G1, . . . , Gd.

Then to reconstruct the original rectangles if we have a set of (unit) interval graphs G1, . . . , Gd,

we can simply take the arrangement of rectangles for which the (unit) rectangle projections onto
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the axes correspond to the (unit) interval representations of G1 through Gd.

With this in mind, we now construct a representation of any graph G as a (U)RkVG by specifying
its projections.

Theorem 6. Every graph has a minimal embedding dimension as a (U)RkVG. Specifically, for a

graph G on n vertices, [ µ

M
]
k
(G)  n.

Proof. Let G’s vertex set be [n] = {1, 2, . . . , n}), and let

Si(u) =

8
>><

>>:

[0, 1] if u = i
⇥
2
3 ,

5
3

⇤
if (i 6⇠G u) _ (u < i)

⇥
4
3 ,

7
3

⇤
if (i ⇠G u) ^ (u > i)

for i, u 2 [n]. (“⇠G” denotes the adjacency relation in G.)

· · ·

)
{Si(u) | (i 6⇠G u) _ (u < i)})

· · ·

)
{Si(u) | (i ⇠G u) ^ (u > i)})

Si(i)

Figure 2: The n unit intervals {Si(v) | v 2 [n]}) (with artificial elevations added for illustration)

Let Gi be the (unit) interval graph formed by Si. Note that

(a) In Si’s range, there is no interval strictly between two other intervals,
(b) any two intervals Si(u), Si(v) | u, v 6= i overlap,
(c) if u 6⇠ v, intervals Si(u) and Si(v) do not overlap for i 2 {u, v}),

(d) if u ⇠ v ^ u < v, intervals Si(u) and Si(v) overlap for i = u but not for i = v, d and
(e) all overlaps are positive.

By (a), no rectangle can block a visibility line between two others, and by (e), strong vs. ✏-visibility
doesn’t matter, so we can use Lemma 5.

By (c) and (d), no edge is in all of the Gi’s. By (b) and (d), if u ⇠ v, they are adjacent in all
but one Gi representation. Finally, by (c), if u 6⇠ v, they are not adjacent in two Gi’s.

Thus, by Lemma 5, G is a d-dimensional (U)RkVG.

3.2 Basic Properties

We now make the following observations about minimal embedding dimensions:
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Lemma 7. Given a graph G on n vertices, Mk(G)  µk(G).

Proof. Any representation of G as a URkVG in µk(G) dimensions is also a valid representation
of G as RkVG, thus Mk(G)  µk(G).

Lemma 8. Given a graph G on n vertices, [ µ

M
]✏
k
(G)  [ µ

M
]s
k
(G).

Proof. Given a representation of G as a (U)RkVG, let �i be the smallest nonzero di↵erence
between coordinates along the ith of sides of any two of its hyperrectangles. Expand the rectangles
by a margin of �i

3 in each dimension i.

No new visibility lines have been created or destroyed, as the overlaps between the rectangles have
not changed in any dimension. Moreover, any two rectangles that previously had any overlap
now have a positive overlap. Thus, we now have a representation of G as a (U)RkVG✏, and
[ µ

M
]✏
k
(G)  [ µ

M
]s
k
(G) as desired.

Lemma 9. A graph G is a d-dimensional (U)RkVG if and only if d � [ µ

M
]
k
(G).

Proof. The former implies the latter by definition.

The latter implies the former because we can take a representation of G in Mk(G) dimensions,
place it in d-dimensional space, and thicken it by 1 unit in the remaining (d� [ µ

M
]
k
(G))

dimensions.

3.3 Minimal Embedding Dimensions of General Graphs

Theorem 10. Let G be a connected graph on n vertices. Then, Mk(G) 
ln
2

m
.

Proof. Let S = {v1, . . . , vn}) be the vertices of G, where, WLOG, vn shares an edge with vn�1 if
n � 2. We divide S into subsets of at most 4 vertices, such that Sm =

�
v4m�3, . . . , vmin(n,4m)

 
)

for m 2
⇥
1,
⌃
n

4

⌥⇤
. Let Gm be the induced subgraph formed by vertices in Sm. Note that if���S

d
n
4 e

��� � 2, G
d

n
4 e

has at least one edge.

Let S1, . . . ,Sdn�2
4 e

be orthogonal 2-dimensional spaces, and if n ⌘ 1 (mod 4)_n ⌘ 2 (mod 4),

let S
d

n
4 e

be an additional orthogonal 1-dimensional space. We will construct a rectangle visibility

representation of G by constructing its projections onto these spaces.

The projection of Sm onto Sm will be one of the arrangements in Figure 3, such that the visibility
graph formed between the green rectangles is Gm (all possible values of Gm are covered in
Figure 3).
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O O O O O

O O O O O

O O O O

O

O

Figure 3: All possible projections of vertices v4m�3, . . . , vmin(4m,n) into Sm

Let Tm be the complimentary set S \ Sm. We project every other vertex vi 2 Tm onto the same
2-dimensional subspace Sm in such a way that each projection covers the central point O, and
either overlaps or is adjacent to each vertex in vj 2 Sm. Some possible projections are illustrated
in Figure 4.

O O O O O

O O O O
O

Figure 4: Sample projections of an additional vertex vi, overlapping a central point O and either
overlapping or adjacent to each of v4m�3, . . . , vmin(4m,n)

We use the following rules:

• If i < j, the projections of vi and vj will not overlap; this counts as being disjoint in one
dimension.

• If i > j, the projections of vi and vj will overlap if and only if vi ⇠ vj. If not, this counts as
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being disjoint in a second dimension, thus precluding any axis-parallel visibility line between
the corresponding rectangles.

We note that every vertex vi 2 Tm overlaps with point O in Sm, thus there are no more disjoint
projections than those described here.

By construction, we now have a representation of G where all pairs of vertices (vi, vj) are disjoint
in one dimension if they are adjacent, and in two dimensions if they are non-adjacent. Moreover,
there does not exist any third vertex vk that blocks visibility between vi and vj (in particular in
S
d

k
4e

at O for k /2 Si, Sj), so no rectangle can block a visibility line. By Lemma 5, this means

that we have a valid representation of G in
⌃
n

2

⌥
dimensions.

3.4 Graph Composition

We now look at relationships between the MEDs and various graph products.

3.4.1 Disjoint Union

We find the minimal embedding dimensions of the disjoint union of two graphs:

Lemma 11. Let G1, G2 be graphs with disjoint vertex sets, and

D = max ([ µ

M
]
k
(G1), [

µ

M
]
k
(G2)).

If D � 2, the minimal embedding dimension of their disjoint union is [ µ

M
]
k
(G1 tG2) = D.

Proof. We will separately prove that [ µ

M
]
k
(G1 tG2)  D and that [ µ

M
]
k
(G1 tG2) � D.

[ µ

M
]
k
(G1 tG2)  D

By Lemma 9, representations exist for each of G1 and G2 in D dimensions. By
placing both of these representations in the same D-space in such a way that that
they are non-overlapping in at least 2 dimensions, i.e., “diagonally”, we ensure that
there exists no visibility lines between any vertex in G1 and any vertex in G2. Thus,
this is a valid representation of G1 tG2 in D-space, as desired.

[ µ

M
]
k
(G1 tG2) � D

It su�ces to show that [ µ

M
]
k
(G1)  [ µ

M
]
k
(G1 t G2), as this would by symmetry

imply that [ µ

M
]
k
(G2)  [ µ

M
]
k
(G1 tG2), and these give [ µ

M
]
k
(G1 tG2) � D.

Take a representation of G1 t G2 in [ µ

M
]
k
(G1 t G2) dimensions. By removing all

vertices of G2, we are not creating any new edges (unobstructing potential visibility
lines) in G1 as by definition no edge exists between any pair of vertices u 2 G1, v 2

G2. This means that [ µ

M
]
k
(G1)  [ µ

M
]
k
(G1 tG2).

Thus, [ µ

M
]
k
(G1 tG2) = D, as desired.
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It easily follows that

Corollary 12. Given graphs G1 and G2, the minimal embedding dimension of their disjoint union

is

[ µ

M
]
k
(G1 tG2) = max ([ µ

M
]
k
(G1), [

µ

M
]
k
(G2), 2).

By repeatedly appylying Corollary 12, we obtain

Corollary 13. Given two or more graphs G1, . . . , Gm,

[ µ

M
]
k
(G1 t . . . tGm) = max ([ µ

M
]
k
(G1), . . . , [

µ

M
]
k
(Gm), 2).

From Theorem 6 and Corollary 13, we obtain:

Corollary 14. Let m  n be the size of the largest connected component of a graph G on n

vertices. Then,

µk(G)  max(2,m).

From Theorem 10 and Corollary 13, we obtain:

Corollary 15. For a graph G on n vertices, where the largest connected component has m  n

vertices,

Mk(G)  max
⇣
2,
lm
2

m⌘
.

3.4.2 Cartesian Product

By looking at the projections onto smaller axis-parallel subspaces in general, we now show that
the MED is subadditive under the Cartesian product [13] of multiple graphs.

Theorem 16. The minimal embedding dimension of the Cartesian product of two graphs G1

and G2 as (U)RkVGs is bounded by

[ µ

M
]
k
(G1⇤G2)  [ µ

M
]
k
(G1) + [ µ

M
]
k
(G2).

Proof. Let S1 and S2 be orthogonal [
µ

M
]
k
(G1) and [ µ

M
]
k
(G2) dimensional spaces in [ µ

M
]
k
(G1)+

[ µ

M
]
k
(G2) dimensions. Take representations of G1 and G2 in S1 and S2, respectively. For

any two rectangles r1 and r2 in these respective representations, let Rr1,r2 be the rectangle in
[ µ

M
]
k
(G1) + [ µ

M
]
k
(G2) dimensions of which r1 and r2 are projections. Note that there is an

immediate bijection between {Rr1,r2 | r1 2 S1, r2 2 S2}) and vertices in G1 and G2, namely, for
any Rr1,r2 , take the vertices corresponding to r1 and r2, respectively.

No two rectangles Rs1,s2 and Rt1,t2 overlap for any s1 6= t1, s2 6= t2, lest their projections would
overlap in both of S1 and S2. If this were so, they would be the same in both projections, and
therefore be the same rectangle.
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Figure 5: The Cartesian product of two graphs,
represented as the Cartesian product of their representations

Take the (U)RkVG of these rectangles. Given two adjacent rectangles, assume WLOG that the
visibility line between these two rectangles is parallel to S2; then in S1 the projection of these two
rectangles as well as any of the  k rectangles that obstruct the visibility line overlap, and thus
are the same projected rectangle. The projection of these two rectangles onto S2 are adjacent,
obstructed by the projections of the same  k other rectangles. Conversely, if two rectangles
in the projection onto S1 are the same and in S2 are adjacent or vice versa, the rectangles are
adjacent.

Therefore, this is a valid representation of G1⇤G2 in [ µ

M
]
k
(G1) + [ µ

M
]
k
(G2) dimensions, as

desired.

By repeatedly applying Theorem 16 on multiple graphs, we obtain:

Corollary 17. The minimal embedding dimension of the Cartesian product of multiple graphs

G1, . . . , Gm as a (U)RkVG is bounded by

[ µ

M
]
k
(G1⇤G2⇤G3⇤ · · ·⇤Gm)  [ µ

M
]
k
(G1) + [ µ

M
]
k
(G2) + [ µ

M
]
k
(G3) + · · ·+ [ µ

M
]
k
(Gm).

3.4.3 Rooted Product

We’ll now show a similar result for the rooted product [10].
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Definition 18. Let G be a graph on n vertices, and let H be a sequence of n rooted graphs
H1 . . . Hn. The rooted product of G by H, denoted G(H), is the (unrooted) graph obtained by
identifying the root of Hi with the ith vertex of G for all i 2 [n].

Definition 19. Given a representation of a graph as an RkVG, and a side S of (open set with
boundary) an axis-parallel (d�1)-dimensional hyperplane, the expansion of the representation by
a distance L is formed by moving all the hyperrectangles’ corners in S by a distance L orthogonally
away from the hyperplane.

Figure 6: An expansion of an RVG representation

The expansion of a representation of a graph is another representation of the same graph, as all
relationships are preserved.

Definition 20. Given a representation of a graph G as an RkVG and a vertex v 2 G, the inflation
of the representation at v by distance L is formed by expanding it on each side of a hyperplane
containing a face of R not itself containing R, where R is the rectangle corresponding to v.
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Figure 7: An inflation of an RVG representation

Theorem 21. The minimal embedding dimension of the rooted product as a RkVG is bounded

by

max

✓
Mk(G),max

H2H

(Mk(H))

◆
 Mk(G(H))  Mk(G) + max

H2H

(Mk(H)).

Proof. For the lower bound, to establish that Mk(G)  Mk(G(H)), we take any representation
of G(H) in Mk(G(H)) dimensions. By definition, there’s a naturally induced copy of G in G(H).

Assume for the sake of contradiction that removing all vertices not in the induced G from G(H)

adds a visibility line to G. Consider the path formed by the vertices corresponding to the rectangles
in G(H) that this line intersects. This path must leave the induced G, a contradiction as it would
self-intersect on its way back to G.

Then, to establish that 8Hi 2 H, Mk(Hi)  Mk(G(H)), note that the natural copy of Hi in
G(H) is only connected to the rest of G(H) at one vertex, so G(H) is Hi(Gi) for some sequence
of rooted graphs Gi. Thus, Mk(Hi)  Mk(Hi(Gi)) = Mk(G(H)), as desired.

For the upper bound, by Lemma 9, we can take representations of H1, . . . , Hn in
d = max

H2H

(Mk(H)) dimensions. Rescale and translate all representations such that the

rectangles corresponding to the roots are all unit size and centered at the origin. Let L be the
smallest side length such that all representations fit inside an L⇥ · · ·⇥ L| {z }

d

bounding rectangle.

As described in Definition 20, now inflate the representation of Hi around the root vertex by
(i � 1) ⇥ L for all i 2 [n], such that no rectangles beside the root vertex overlap between the
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representations.

Finally, take a representation of G in Mk(G) dimensions. For all i 2 [n] and for v 2 Hi, take the
rectangle in Mk(G) + max

H2H

(Mk(H)) dimensions whose projection in the first Mk(G) dimensions

is the representation of the ith vertex of G, and whose projection in the last max
H2H

(Mk(H))

dimensions is the representation of v 2 Hi. We claim that these rectangles form a representation
of G(H).

Since all the roots of H have the same projection in the last max
H2H

(Mk(H)) dimensions, their

visibilities are those of their projections in the first Mk(G) dimensions; namely, the edges of G.

Any rectangle that does not correspond to a root does not overlap with rectangles in the last
max
H2H

(Mk(H)) by construction, and thus only sees those rectangles with which it overlaps in the

first Mk(G) dimensions and sees in the last max
H2H

(Mk(H)), as desired.

3.4.4 Corona Product

We now look at the corona product, introduced by Frucht and Harary [9].

Definition 22. The corona product of two graphs G and H, denoted G � H, is obtained by
taking one copy of G and n = |V (G)| copies of H, and by connecting the ith vertex of G to each
vertex of the ith copy of H for all i 2 [n].

Remark 23. For H = (H 0)i2[n] (i.e., H 0 repeated n times), where H 0 is H with an added
universal root vertex (i.e., a root vertex connected to every other vertex of H), G�H = G(H).

Theorem 24. The minimal embedding dimension of the corona product of two graphs G and

H as a RkVG is bounded by

Mk(G)  Mk(G�H)  max(Mk(G),Mk(H)) + 1.

Proof. By Remark 23 and Theorem 21, we have

Mk(G)  Mk(G(H)) = Mk(G�H),

where H is as in Remark 23.

We now show Mk(G � H)  max(Mk(G),Mk(H)) + 1 by finding a max(Mk(G),Mk(H)) +

1-dimensional representation of G�H.

By Lemma 9, we can take representations of G and H in max(Mk(G),Mk(H)) dimensions.
Shrink the representation of H until it is smaller than any one of the rectangles in the
representation of G, and thicken both representations orthogonally by one unit into the dth

dimension, where d = (max(Mk(G),Mk(H)) + 1).

Take n copies of H’s representation, corresponding to the n rectangles in the representation of
G, and place them at di↵erent heights above the latter in the dth dimension, such that each copy
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is exactly above its corresponding rectangle and no copies can see each other. As desired, any
rectangle in G’s representation now has a visibility line to every rectangle in exactly one copy of
H’s representation, with no visibility lines to or between other copies of H; moreover, visibilities
are maintained within each of the original representations.

4 Complete Graphs

We now construct an arrangement of rectangles where every rectangle can see every other
rectangle, thus giving the complete graph.

4.1 Upper Bound

Lemma 25. The complete graph on 2(d � 1)(k + 1) + 22(bk/2c + 1) vertices,

K2(d�1)(k+1)+22(bk/2c+1), is a d-dimensional RkVG for d � 3.

Proof. Figure 8, adapted from Figure 3 of [8], shows 22 rectangle projections, with one region
in the center where all rectangles overlap in both their x and y coordinates. If for i from 0 to
21 we place a corresponding rectangle with thickness 0 < ✏ < 1 in 3-dimensional space at height
z = i above this plane, such that its projection to the plane is the rectangle labeled i, we thus
obtain a 0-visibility representation of K22, as in Figure 9.
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0 0
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22

3 3

33

4 4

44

5 5

55
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66
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77

8 8

88
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99
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1010

11 11

1111

12 12
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13 13

1313

14 14
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15 15

1515

16 16

1616
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1717
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1818
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1919

20 20

2020

21 21

2121

Figure 8: Projections of 22 rectangles, adapted from Figure 3 of [8]
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Figure 9: The 22 rectangles stacked on top of each other, seen from above the top right
relative to Figure 8

If we place a rectangle of thickness k = ✏

bk/2c+1 for 0 < ✏ < 1 at height i + j

bk/2c+1 for all

i 2 {0, . . . , 21}) and j 2
�
0, . . . ,

⌅
k

2

⇧ 
), we now have a k-visibility representation of K22(bk/2c+1),

where all rectangles are visible from any direction (top, bottom, and all four sides), as seen in
Figure 10. (A visibility line between two rectangles with di↵erent projections passes throught
at most bk/2c other rectangles with the same projection as each of the former and the latter
rectangle).
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Figure 10: 22(bk/2c+ 1) rectangles stacked, representing K22(bk/2c+1) with k = 4

We thicken this representation by one unit into each of the remaining (d� 3) dimensions.

Finally, in each dimension except the 3rd (along whose axis in which we stack our 22(bk/2c+ 1)

rectangles), we add k + 1 hyperrectangles in both directions from the center, at increasing
distances and with increasingly large hyperfaces facing the center, such that each hyperrectangle
has k-visibility to every other rectangle; i.e., such that the added rectangles in each dimension
surround the entire representation up to that point. (See Figure 11 for an example).
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Figure 11: Representation of K2(d�1)(k+1)+22(bk/2c+1) with k = 4, d = 3

Along the ith axis, there are 2(k + 1) rectangles surrounding the center and the rectangles
corresponding to prior axes, for a total of 2(d� 1)(k + 1) rectangles surrounding the center. As
all rectangles, big and small, are k-visible to each other, we have a representation of
K2(d�1)(k+1)+22(bk/2c+1).

This gives a bound for the minimal embedding dimension of the complete graph:

Corollary 26. The minimal embedding dimension of the complete graph on m vertices Km as a

RkVG is bounded by

Mk(Km)  max

✓⇠
m� 22(bk/2c+ 1)

2(k + 1)

⇡
+ 1, 3

◆
.

4.2 Growth of Mk(Km)

Lemma 27. For some fixed k, let

c2 = 4k + 5

ci =

✓
ci�1

2

◆
+ 1 | i � 3.

Then, Kc2d�2
cannot be represented in d dimensions with all visibility lines parallel.

To prove this lemma, we apply a technique used by Fekete et al. in Theorem 4 of [7].

Proof. We use induction on d.

Base case: d = 2
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Assume for the sake of contradiction that such a representation exists, and assume
WLOG that all visibility lines are vertical. Flatten all rectangles so that they are
horizontal line segments. We now have a bar k-visibility representation, as defined
in the introduction, of Kc2 = K4k+5. However as shown by Hartke et al. in Further

Results on Invisibility Graphs [11], this is impossible, as desired.

Inductive step: d� 1 ) d

We assume for the sake of contradiction that such a representation exists, and assume
WLOG that all visibility lines are parallel to the first axis. As all rectangles overlap
in every other dimension, there is then a line ` parallel to the dth axis that passes
through all c2d�2 rectangles.

Translate the coordinate system such that the origin lies on `. Each rectangle has
two faces orthogonal to the dth axis, one on each side of `. Let Fn and F 0

n
be the

coordinates along the dth axis of the corresponding faces for the nth rectangle, where
Fn is negative and F 0

n
is positive.

As shown by F.R.K Chung in On unimodal subsequences [4], every sequence of
�
a

2

�
+1

numbers has a subsequence of length a with one local maximum. Thus there exists
a subsequence

�
r1, . . . , rc2d�3

�
among our c2d�2 rectangles such that the sequence⇣

�Fr1 , . . . ,�Frc2d�3

⌘
, has one local maximum.

Likewise, among these c2d�3 rectangles there is a sub-subsequence
�
s1, . . . , sc2d�4

�

such that the distance from ` to the second face of each orthogonal rectangle,⇣
F 0

s1
, . . . , F 0

sc2d�4

⌘
, form another unimaximal progression.

Note that in the dth dimension, if rectangles si and sk overlap for i < j < k, rectangle
sj contains their overlap. Thus, the visibility lines between these rectangles are those
of their projections into the first (d� 1) dimensions. Thus, by induction, this is not
possible.

Theorem 28. The range of [ µ

M
]
k
(Km) over m for fixed k is the set of nonnegative integers, N0.

Proof. Let r = R

0

@c2d�2, c2d�2, . . . , c2d�2| {z }
d

1

A (adopting the notation from Lemma 27), where R

denotes the multicolor Ramsey number function. Assume for the sake of contradiction that Kr is
representable in d dimensions. Color each edge of Kr by the axis parallel to its visibility line. As
this is a coloring with d colors of the edges of Kr, there is a monochromatic Kc2d�2

, contradicting
Lemma 27. Thus, Kr is not representable in d dimensions.

Thus, no finite number of dimensions can represent Km for all m 2 N, so [ µ

M
]
k
(Km) takes on

arbitrarily large values, and it su�ces to show that [ µ

M
]
k
(Km+1)  [ µ

M
]
k
(Km) + 1.
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Assume that we have a representation of Km in [ µ

M
]
k
(Km) dimensions. Add an extra dimension,

thicken all the rectangles by 1 unit in this dimension, and replace one rectangle with two copies
shifted by �

2
3 and 2

3 into the new dimension, respectively. Then, as all visibilities are maintained
and the two copies can see each other, we have a representation of Km+1 in [ µ

M
]
k
(Km) + 1

dimensions, as desired.

5 Complete Multipartite Graphs

To construct complete multipartite graphs, we arrange the rectangles in a “crosshatch”.

Lemma 29. The complete (d� 1)-partite graph, Km1, ...,md�1
, is a d-dimensional RkVG.

Proof. Take an m1 ⇥ m2 ⇥ · · · ⇥ md�1 lattice in (d � 1)-space. For every axis, take all
axis-orthogonal (d� 2)-spaces that pass through some of the lattice points. Cut all these spaces
o↵ to get axis-orthogonal (d�2)-dimensional hyperrectangles surrounding the lattice points. Add
a small thickness to each of these spaces in their respective orthogonal dimensions.

For example, given d = 3,m1 = 6,m2 = 8 we get the right hand side of Figure 12, and given
d = 4,m1 = 6,m2 = 8,m3 = 5 we get the configuration in Figure 13.

Note that any pair of rectangles corresponding to spaces orthogonal to the same axis do not
intersect, but rectangles corresponding to di↵erent axes do.

Figure 12: A representation of the 3-dimensional RVG K6,8
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Figure 13: An overhead orthographic projection of a representation of the 4-dimensional RVG
K6,8,5

Now we extend the figure into the dth dimension by adding a small thickness, and finally add a
distinct height to each of them.

As any two rectangles corresponding to the same axis are not k-visible to each other, but any
other two rectangles are, we have a representation of Km1,...,md�1

.

This gives a bound for the minimal embedding dimension of the complete multipartite graph:

Corollary 30. The minimal embedding dimension of the r-partite graph as a RkVG is bounded

by

Mk(Km1, ...,mr)  r + 1.

6 Hypercubes

6.1 k-Visibility

Hypercubes are bipartite graphs. In the representation of (unit) rectangle k-visibility bipartite
graphs for k > 0, we have to avoid rectangles seeing through other rectangles, as we would then
create a triangle (e.g., rectangle A sees B sees C sees through B to A), which is not allowed in
bipartite graphs.

Page 22 of 36



Minimal Embedding Dimensions of Rectangle k-Visiblity Graphs Espen Slettnes

Lemma 31. The minimal embedding dimension of the hypercube graph on 2m vertices, Qm, as

a (U)RkVG, respectively, is bounded by

[ µ

M
]
k
(Qm) 

⇠
2

3
m

⇡
.

Proof. Figure 14 shows a representation of Q3 in 2 dimensions, so Mk(Q3) = µk(Q3) = 2.

Figure 14: A (U)RkVG representation of the hypercube graph Q3 in 2 dimensions

Since [ µ

M
]
k
(Q1) = 1, by Corollary 17 we get

[ µ

M
]
k
(Qm) = µk

0

BB@Q3⇤ · · ·⇤Q3| {z }
b

m
3 c

⇤ Q1⇤ · · ·⇤Q1| {z }
m�3b

m
3 c

1

CCA

 µk(Q3) + · · ·µk(Q3)| {z }
b

m
3 c

+ µk(Q1) + · · ·+ µk(Q1)| {z }
m�3b

m
3 c

= 2
jm
3

k
+
⇣
m� 3

jm
3

k⌘

=

⇠
2

3
m

⇡

Remark 32. If a bipartite (U)RkVG has n vertices for k > 0, there can be at most (n � 1)

vertical visibility lines in its representation, as its edges can form no triangles, and thus cycles.
Similarly, there are at most (n � 1) horizontal visibility lines, and thus at most 2(n � 1) total
edges.

As Q4 is bipartite, and has 16 vertices and 24·4
2 > 2(16 � 1) edges, it cannot be represented in

d = 2 dimensions. Thus, Lemma 31 is tight for m  4, k > 0.

Page 23 of 36



Minimal Embedding Dimensions of Rectangle k-Visiblity Graphs Espen Slettnes

6.2 0-Visibility

We now move on to 0-visibility, where as opposed to our previous construction, we do not have
to worry about “collinear” rectangles.

Our 0-visibility representations of hypercubes can be placed in ”grids”. In the representation of
Q6 shown in Figure 15, we can see that the rectangles are organized in a 23 ⇥ 23 grid.

Figure 15: A 2-dimensional RVG representation of Q6, the hypercube graph
on 26 vertices, with a “grid-like structure”

In order to construct representations of hypercube graphs, we will first show how to construct
the “columns”, then show how to combine them into the full grid.

6.2.1 Gray Code

Before we proceed, we need to introduce the Gray code.

Definition 33. Gray code is a reordering of the binary numeral system such that two successive
values di↵er in only one bit (binary digit) [14].

Like standard numbering systems (e.g., binary), Gray code representations of a number are
implicitly padded with an infinite numbers of 0’s on the left, and any number i is represented
with a finite number of 1’s. The number zero is represented with only 0’s.
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Given the Gray code representation of a non-negative integer i, the representation of (i + 1) is
formed by flipping the least significant digit (i.e. the first one from the right) that introduces no
redundancy with prior numbers.

In the following discussion, we will denote by Gi,j digit #j of the Gray code representation of i,
counting from the right such that Gi,0 is the least significant digit.

Example 34. The (four digit) Gray code representation of numbers 0 through 15 are shown in
Figure 16.

#

0 0000 1000 15

"

1 0001 1001 14

2 0011 1011 13

3 0010 1010 12

4 0110 1110 11

5 0111 1111 10

6 0101 1101 9

7 0100 1100 8

!

Figure 16: The Grey code representations of numbers 0 through 15

We will make use of the following properties of Gray code:

• It is the “reflective binary code”, where the representation of numbers 0, . . . , (2k � 1) are
repeated in reverse order for numbers 2k, . . . , (2k+1

� 1), except that the k’th digit is 1

instead of 0 (with digit #0 being the rightmost). In other words,

8 i < 2k ^ j < k, Gi,j = G2k+1�1�i,j.

• G2i,j+1 = G2i+1,j+1 = Gi,j.

• Gi,0 = 0 , i ⌘ {0, 3}) (mod 4).

6.2.2 Minimal Embedding Dimension as a URkVG

First we construct unit rectangle “columns”:

Lemma 35. The d-dimensional RVG formed by cubes of side length 2 centered at points of the

form

((d+ 2)i, Gi,0, Gi,1, Gi,2, . . . , Gi,d�2)

for 0  i  2d � 1 is Qd.
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Proof. We use induction on d.

Base case: d = 0

This case trivially holds, as a single point is a valid representation of Q0 in
0-dimensional space.

Inductive step: d ) d+ 1

For any rectangle centered at a point of the form

((d+ 2)i, Gi,0, Gi,1, . . . , Gi,d�2)

in d-space, we obtain two adjacent rectangles in d+ 1 space with vectors

((d+ 3)i, Gi,0, Gi,1, . . . , Gi,d�2, Gi,d�1)

=((d+ 3)i, Gi,0, Gi,1, . . . , Gi,d�2, 0)

and
⇣
(d+ 3)

��
2d+1

� 1
�
� i

�
, G(2d+1�1�i),0, G(2d+1�1�i),1, . . . , , G(2d+1�1�i),d�1

⌘

=
�
(d+ 3)

��
2d+1

� 1
�
� i

�
, Gi,0, Gi,1, . . . , Gi,d�2, 1

�
,

respectively.

By induction, all rectangles whose center coordinates end with 0 form a hypercube
in d-space, likewise all rectangles whose center coordinates end with 1 form another
hypercube in d-space. Since there can be no other visibility lines, they form a Qd+1

in d+ 1-space.

This construction for d = 3 is shown in Figure 17.

Figure 17: A 3-dimensional URVG representation of Q3.

The x, y, and z axes are colored red, green, and blue, respectively.
The o↵set of the center of each cube from the x axis is indicated
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Now we arrange such “columns” into a grid:

Theorem 36. The hypercube graph on 2d
2
vertices, Qd2 , is a d-dimensional URVG.

Proof. For any tuple (i0, i1, . . . , id�1) with 0  ij  2d � 1 for all j 2 {0, 1, . . . , d� 1}), take
cubes of side length 2, where each cube is centered at the sum of the vectors

�
(d+ 2)i0, Gi0,0, Gi0,1, . . . , Gi0,d�3, Gi0,d�2

�
,

�
Gi1,d�2, (d+ 2)i1, Gi1,0, . . . , Gi1,d�4, Gi1,d�3

�
,

�
Gi2,d�3, Gi2,d�2, (d+ 2)i2, . . . , Gi2,d�5, Gi2,d�4

�
,

...
�
Gid�2,1, Gid�2,2, Gid�2,3, . . . , (d+ 2)id�2, Gid�2,0

�
,

�
Gid�1,0, Gid�1,1, Gid�1,2, . . . , Gid�1,d�2, (d+ 2)id�1

�
.

There are 2d
2
such tuples.

If we fix all but one of i0, i1, . . . , id�1, the corresponding rectangles form a Qd by Lemma 35.
Since there can be no other visibility lines, they form a Qd2 .

If we shrink this construction by a factor of 2, all the cubes become unit cubes. We see this
construction applied to d = 0 through d = 3 in figures 18, 19, 20, and 21, respectively.

Figure 18: A 0-dimensional URVG representation of Q0

Figure 19: A 1-dimensional URVG representation of Q1

Figure 20: A 2-dimensional URVG representation of Q4
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Figure 21: A 3-dimensional URVG representation of Q9

We then obtain the following corollary:

Corollary 37. The minimal embedding dimension of the m-dimensional hypercube graph as a

URVG is bounded by

µ(Qm) 
⌃p

m
⌥
.

6.2.3 Minimal Embedding Dimension as a RkVG

We proceed similarly for normal rectangles, again by first constructing rectangle “columns”:

Lemma 38. The d-dimensional RVG formed by rectangles with opposite vertices ai and bi, where

d � 2, 0  i < 2d+1
� 1, and

ai =

2

666666664

(d+ 4)i

�Gi,d�2Gi,d�1 + 2Gi,d�2 +Gi,d�1

Gi,0

Gi,1
...

Gi,d�3

3

777777775

, bi =

2

666666664

(d+ 4)i+ 4

Gi,d�2 �Gi,d�1 + 4

Gi,0 + 4

Gi,1 + 4
...

Gi,d�3 + 4

3

777777775

,

is Qd+1.

Proof. We use induction on d.

Base case: d = 2
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The resulting graph is shown in Figure 22.

Figure 22: A 2-dimensional RVG representation of Q3

Inductive step: d ) d+ 1

Let ji = i+ 2

⇠
i

2

⇡
, ki = 1 + i+ 2

�
i

2

⌫
.

Note that for all i,

• ji and ki are consecutive,
• the Gray code representation of ji ends with the digit 0,
• the Gray code representation of ki ends with 1,

• Gji,r = Gki,r = Gi,r�1 for all r 2 Z+.

For the rectangle with opposite vertices ai, bi in d-space, we obtain two adjacent
rectangles with respective opposite vertices at (cji , dji) and (cki , dki), where

cji =

2

66666666664

(d+ 5)ji
�Gji,d�1Gji,d + 2Gji,d�1 +Gji,d

Gji,0

Gji,1

Gji,2
...

Gji,d�2

3

77777777775

=

2

66666666664

(d+ 5)ji
�Gi,d�2Gi,d�1 + 2Gi,d�2 +Gi,d�1

0

Gi,0

Gi,1
...

Gi,d�3

3

77777777775

,

dji =

2

66666666664

(d+ 5)ji + 4

Gji,d�1 �Gji,d + 4

Gji,0 + 4

Gji,1 + 4

Gji,2 + 4
...

Gji,d�2 + 4

3

77777777775

=

2

66666666664

(d+ 5)ji + 4

Gi,d�2 �Gi,d�1 + 4

4

Gi,0 + 4

Gi,1 + 4
...

Gi,d�3 + 4

3

77777777775
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and

cki =

2

66666666664

(d+ 5)ki
�Gki,d�1Gki,d + 2Gki,d�1 +Gki,d

Gki,0

Gki,1

Gki,2
...

Gki,d�2

3

77777777775

=

2

66666666664

(d+ 5)ki
�Gi,d�2Gi,d�1 + 2Gi,d�2 +Gi,d�1

1

Gi,0

Gi,1
...

Gi,d�3

3

77777777775

,

dki =

2

66666666664

(d+ 5)ki + 4

Gki,d�1 �Gki,d + 4

Gki,0 + 4

Gki,1 + 4

Gki,2 + 4
...

Gki,d�2 + 4

3

77777777775

=

2

66666666664

(d+ 5)ki + 4

Gi,d�2 �Gi,d�1 + 4

5

Gi,0 + 4

Gi,1 + 4
...

Gi,d�3 + 4

3

77777777775

,

respectively.

By the inductive hypothesis, all rectangles of the first type as well as all rectangles of
the second type form a Qd+1 in d-space. Since there can be no other visibility lines,
they form a Qd+2 in d+ 1-space.

Again we arrange such “columns” into a grid:

Theorem 39. The hypercube graph Qd2+d is a d-dimensional RVG for d � 2.

Proof. For any tuple (i0, i1, . . . , id�1) with 0  ij  2d+1
� 1 for all j 2 {0, 1, . . . , d� 1}), take

a rectangle with opposite corners at

d�1X

j=0

2

66666666666664

0 1

1 0

01 0

1
. . .
. . . . . .

0
1 0

1 0

1 0

3

77777777777775

j

·

2

666666664

(d+ 4)i

�Gi,d�2Gi,d�1 + 2Gi,d�2 +Gi,d�1

Gi,0

Gi,1
...

Gi,d�3

3

777777775
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and

d�1X

j=0

2

66666666666664

0 1

1 0

01 0

1
. . .
. . . . . .

0
1 0

1 0

1 0

3

77777777777775

j

·

2

666666664

(d+ 4)i+ 4

Gi,d�2 �Gi,d�1 + 4

Gi,0 + 4

Gi,1 + 4
...

Gi,d�3 + 4

3

777777775

.

There are 2d
2+d such tuples.

If we fix all but one of i0, i1, . . . , id, the corresponding rectangles form a Qd+1 by Lemma 35.
Since there can be no other visibility lines, they form a Qd(d+1) = Qd2+d.

This construction is applied to d = 2 and d = 3 in figures 23 and 24, respectively.

Figure 23: A 2-dimensional RVG representation of Q6
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Figure 24: A 3-dimensional RVG representation of Q12

This gives

Corollary 40. For all m 6= 2, the minimal embedding dimension of the m-dimensional hypercube

graph as a RVG is bounded by

M(Qm) 
⌅p

m
⌥

(where bxe denotes x rounded to the nearest integer).

Remark 41. The minimal embedding dimension d of hypercube graphs Qm as RVGs include the
following:

• M(Q0) = 0. A representation of Q0 in 0 dimensions is shown in Figure 18.

• M(Q1) = 1. A representation of Q1 in 1 dimension is shown in Figure 19. Q1 cannot be
represented in 0 dimensions, since there is no room for two “rectangles”.

• M(Qi) = 2 | i 2 {2, . . . , 6}). A Q6 in 2-space is shown in Figure 23. Q5, Q4, Q3

and Q2 can be obtained by repeatedly removing the right or top half of the boxes in
these configurations, thus ending up with 25, 24, 23 and 22 rectangles in each respective
representation.

None of these graphs can be represented in 1-space, where the only thing that can be
represented is paths. Thus, the minimal embedding dimension of Q2 through Q6 is d = 2.

• M(Qi) = 3 | i 2 {8, . . . , 12}). A representation of Q12 in 3-space is shown in Figure 24.
There are 163 = 4096 boxes in this representation, corresponding to n = 212 = 4096

vertices in Q12.
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Q11, Q10, Q9 and Q8 can be obtained by repeatedly removing the top half of the boxes in
these configurations, thus ending up with n = 211, 210, 29, and 28 boxes in each respective
representation.

Given m � 8, the number of edges in Qm is
m

2
· 2m � 4 · 2m = 4n.

Dean and Hutchinson found that a bipartite 2-dimensional RVG on n � 4 vertices has at
most 4n� 12 edges [5].

Since Qm is bipartite, and 4n > 4n� 12, it follows that Qm�8 is not representable in 2
dimensions. Thus, the minimal embedding dimensions of Q8 through Q12 are all d = 3.
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