
1

On the Finiteness of a Special Family of Polynomials

Xiaohan Ye

Abstract. In this paper, we study a family of polynomials with
the property that f(x) is a factor of f(xm) for some integer m > 1.
We prove that there is a finite number of such polynomials over Q
with fixed degree and find a connection between these polynomials
and cyclotomic polynomials.

1. Introduction

In this paper, we explore a family of polynomials with the property that f(x)
is a factor of f(xm) for a some positive integer m > 1 (we call such polynomials
FPP polynomials, see §2.1 below). The initial spark of this project comes from
a problem in the admission test of the Ross Program in 2019. The problem
asks for a list of all monic polynomials with degree less than or equal to 4 that
satisfy f(x) | f(x2) .

However, our general situation is more profound, interesting and, of course,
more difficult. For a given m, we discover that the number of such polynomials
over C with degree less than or equal to a given n is finite. But surprisingly, if
we only consider polynomials with rational coefficients, we can prove a stronger
finiteness theorem without fixing the power m.

Theorem 1.1. There is a finite number of FPP polynomials over Q with degrees
less than a certain value.

To prove those results, we make a connection to graph theory. For any FPP
polynomial with complex coefficients, we can associate it with a graph. Us-
ing this graph representation, we reach the conclusion that the roots of such
polynomials are all roots of unity. This result helps us prove the finiteness of
FmPP polynomials over C with any given m and degree n.
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To prove Theorem 1.1, we use the facts that the degree of the minimal polyno-
mial of any root of f must be bounded by the degree of f and that the minimal
polynomial of a root of unity has a known degree. Then, we find a connec-
tion between such polynomials and cyclotomic polynomials. We also find some
interesting results in number theory that comes along as by-products of our
exploration of this family of polynomials (see Corollary 4.1.3 and Corollary
4.4.2 in Section 4).

2. Preliminary

2.1. Basic Definitions.

We start by giving several basic definitions.

Definition 1. Let K be any field, and K[x] the ring of polynomials over K.
For any polynomial f(x) ∈ K[x], we say f(x) is of factor-power property, or
FPP (we can also call f(x) a FPP polynomial), if f(x) is monic and there
exists some positive integer m > 1 such that

f(x) | f(xm).

If we want to specify the power m, we say f(x) is of factor-m-power property,
or FmPP .

Definition 2. A FmPP/FPP polynomial f(x) is defined to be F-reducible if
it can be expressed as the product of some lower-degree FmPP/FPP polyno-
mials. Otherwise, it is defined to be F-irreducible.

Definition 3. Given a positive integer n, we define the collection of FPP
polynomials, Fm(K)n, Fm(n,K), F (K)n and F (n,K) as follows:

Fm(K)n = {f ∈ FmPP (K) | deg(f) = n}
Fm(n,K) = {f ∈ FmPP (K) | deg(f) ≤ n}
F (K)n = {f ∈ FPP (K) | deg(f) = n}.
F (n,K) = {f ∈ FPP (K) | deg(f) ≤ n}.

With those definitions, we can prove some direct consequences:

Proposition 2.2. f(x) = x and f(x) = x− 1 are FmPP polynomials for any
positive integer m.

This is obviously true since x | xm and x− 1 | (x− 1)m for any positive integer
m.

Proposition 2.3. If a FPP/FmPP polynomial f(x) is F-irreducible then
f(x) = x or x - f(x).
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Proof: If f(x) 6= x and x | f(x), suppose f(x) = g(x) · xk, where k is a
positive integer and x - g(x). Because f(x) is FPP/FmPP , we know that
f(x) | f(xm). It follows that g(x) · xk | g(xm) · xkm. Since g(x) - xkm, we
know that g(x) | g(xm). Therefore, g(x) is also a FPP/FmPP polynomial.
Hence, for f(x) to be F-irreducible, f(x) = x or x - f(x), which proves the
proposition. �

Proposition 2.4. |F (n,C)| is infinite.

Proof: Consider the polynomial f(x) = x − ζm, where ζm is a mth root of
unity. We know that ζmm = 1, and it follows that ζm+1

m = ζm. Then we can
infer that f(x) is a Fm+1PP polynomial, that is, x− ζm | xm+1 − ζm. This is
because if x− ζm = 0, then xm+1 − ζm is also 0. Therefore, however big m is,
the polynomial x− ζm is always a FPP polynomial with complex coefficients.
Hence, there is an infinite number of FPP polynomials over C with degrees
less than or equal to n. �

2.5. Algebraic Number Theory.

Now we go through some algebraic number theory that will be used later in
our paper.

Algebraic fields are fields whose elements are all algebraic numbers, where an
algebraic number is a root of a non-zero polynomial with rational coefficients.
A field extension K/F is algebraic if every element in K is algebraic over F ,
that is, if every element in K is a root of a non-zero polynomial with coefficients
in F . All finite field extensions are algebraic.

These concepts then lead to the definition of number fields, which are finite
field extensions of Q, the field of rational numbers. In this paper, we will
mainly use one specific type of number field—the cyclotomic field, which is a
number field obtained by adjoining a complex primitive root of unity to Q. A
primitive nth root of unity ζn is a root of unity for n that is not a root of unity
for some k smaller than n. That is, if z = ζn, then zn = 1 and zk 6= 1 for
k = 1, 2, 3, · · · , n− 1.

The degree of the cyclotomic field extension [Q(ζn) : Q] = ϕ(n), where ϕ(n)
is Euler’s totient function. Also, a cyclotomic field is the splitting field of
the cyclotomic polynomial whose zeros are precisely the primitive nth roots of
unity. A cyclotomic polynomial has integer coefficients and is irreducible over
Q (i.e. cannot be written as the product of two positive-degree polynomials
with rational coefficients).
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There is a well-known connection between number field extensions and irre-
ducible polynomials over Q, which is established by the notion of minimal
polynomial. Let α be any algebraic number over F . The minimal polynomial
of α over F is the monic polynomial of least degree among all polynomials in
F [x] having α as a root.

Recall that if f(x) ∈ F [x] is irreducible, then F [x]/(f(x)) is a field. More
specifically, if f(x) is the minimal polynomial of α over F , we have: F (α) =
F [X]/(f(x)). Using this property, we can determine a field by the minimal
polynomial of its generator. Let K/F be a finite algebraic field extension, f(x)
the minimal polynomial of α, an element of K. If α is a generator of K over
F , then K = F (α) = F [X]/(f(x)).

3. Connection to Graph Theory

Now we set up a correspondence between the set of all F-irreducible FmPP
polynomials with complex coefficients and a set of directed graphs with certain
properties. We exclude the case f(x) = x here. Notice that if f(x) 6= x then
x - f(x), otherwise f(x) will be F-reducible.

Case 1: f(x) is an F-irreducible FmPP polynomial without multiple roots.

Suppose f(x) = (x−α1)(x−α2) · · · (x−αn), where α1, α2, · · · , αn are distinct
non-zero complex numbers. We construct a directed graph Gf := (Vf , Ef )
according to f(x) in the following way. First we let the vertices of Gf be
α1, α2, · · · , αn. Apparently, |Vf | = n. Then, we draw a directed edge from αi
to αj if and only if (x− αi) | (xm − αj) (1 ≤ i, j ≤ n), i.e. αi

m = αj .

Proposition 3.1. Gf has the properties:

(1) For all i, there is one and only one arrow that starts from αi.
(2) There is one and only one directed cycle in every component of Gf .
(3) Gf is weakly connected (i.e. Gf only has one component).

Proof of property 1:

We first prove that every vertex must be the source of some arrow. Because
f(x) | f(xm), we know that (x − α1)(x − α2) · · · (x − αn) | (xm − α1)(xm −
α2) · · · (xm − αn), and (x − αi) | (xm − α1)(xm − α2) · · · (xm − αn), where
i ∈ {1, 2, · · · , n}. Because (x − αi) is irreducible, it follows that there exists
j ∈ {1, 2, · · · , n} such that (x− αi) | (xm − αj). Therefore, every vertex is the
source of some arrow.
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Then, we prove that there could only be one arrow that starts from a vertex.
Suppose there are two or more arrows that start from αi, and two of the targets
of these arrows are αj and αk. From our construction of Gf , we have αj = αmi
and αk = αmi , so αj = αk. Since the vertices in Gf all represent distinct
numbers, we know that αj and αk are the same vertex. Therefore, the arrows
that start from αi are the same arrow. Hence, there is one and only one arrow
that starts from any vertex in Gf . �

Proof of property 2:

Let C be a component of Gf . If C is an isolated vertex, we know that there
is only one arrow in C and that arrow forms a loop, so property 2 is true in
this case.

If C contains two or more vertices, we first prove that there is at least one
directed cycle in C.

Pick an arbitrary directed path p in C. Suppose the last vertex of the path
is αl. Consider all the vertices along the path except αl. Given property 1,
which is obviously true by our definition of Gf , we know that every vertex
along the path except αl is already the starting point of an arrow. Therefore,
these vertices could only be the targets of some other arrows in C. In other
words, there could only be incoming arrows pointing to the path other than
the path that leads to αl. Consider the incoming arrows (if there is any) and
the paths they form. By the same logic, the starting points of those incoming
arrows can only be the targets of other arrows. It follows that every incoming
path is a directed path and has the same direction as p, which means that there
is a directed path from every vertex in C to αl. On the other hand, αl itself
is the source of one and only one arrow. The arrow (αl, αk) will always form
a directed cycle with the directed path from αk to αl. Therefore, there is at
least one directed cycle in every component.

Then, we prove that there is at most one directed cycle in C.

Suppose there are two or more directed cycles in the component C. Consider
directed cycles c1 and c2. Notice that every vertex in c1 and c2 is already the
source of one arrow. If c1 and c2 are in the same component, there must be a
directed path from some vertex α1 in c1 to some vertex α2 in c2. Consider the
first and the last arrow of this path. We know that one of them is the source
of two or more arrows, which contradicts property 1.

Therefore, there is one and only one directed cycle in every component of
Gf . �
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Proof of property 3:

We prove that if Gf is composed of multiple components, then f(x) is F-
reducible.

Let C be a connected component of Gf that consists of the set of ver-
tices {αl, αl+1, · · · , αl+k}, where {l, l + 1, · · · , l + k} ⊂ {1, 2, · · · , n}. By
the construction of Gf , we know that for all i, there exists a j such that
(x − αi) | (xm − αj), where i, j ∈ {l, l + 1, · · · , l + k}. This means g(x) =
(x − αl)(x − αl+1) · · · (x − αl+k) is also a FmPP polynomial. Similarly, every
component of Gf represents a FmPP polynomial. Because f(x) is the prod-
uct of all the polynomials corresponding to the components of Gf , we know
that f(x) is F-reducible. Therefore, if f(x) is F-irreducible, Gf only has one
component, i.e. it is weakly connected. �

Case 2: f(x) is a FmPP polynomial that has multiple roots. We claim that
such polynomials must be F-reducible.

Suppose f(x) = (x−α1)(x−α2) · · · (x−αn), where α1, α2, · · · , αn are complex
numbers that are not necessarily distinct. Assume f(x) is F-irreducible, and
we know that α1, α2, · · · , αn are all non-zero roots. We can still construct a
slightly modified version of the graph (Vf , Ef ).

We let the vertices of Gf be α1, α2, · · · , αn. Apparently, |Vf | = n. We draw a
directed edge from αi to αj if and only if (x − αi) | (xm − αj) (1 ≤ i, j ≤ n),
i.e. αi

m = αj . We stipulate that every vertex can only be the source of one
arrow.

To avoid the complexity that comes with multiple roots, we add the following
three rules.

1) If αl is a multiple root and αml = αl, we draw an arrow from αl to itself to
form a loop.

2) Suppose αl is a multiple root with the multiplicity of k. αl = αl+1 = · · · =
αl+k−1. Let αml = αr. Without loss of generality, we first draw an arrow from
αl to αr. Let a0 be the arrow that starts from αl+1. If αr is not a multiple root,
then the target of a0 is also αr. This means (x − αl)2 | (xm − αr). However,
the polynomial xm − αr has no multiple root since αr 6= 0. Hence, αr is also a
multiple root of f(x). We stipulate that the target of a0 is not αr, but αr+1,
which is a vertex that equals αr numerically. Using the same method, we know
that the multiplicity of αr is greater than or equal to k. We can guarantee that
all the arrows starting from multiple roots end at different vertices.
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3) Suppose both αs1 = αs2 = · · · = αsp and αr1 = αr2 = · · · = αrq are
multiple roots of f(x) and αmri = αsi , where i ∈ {1, 2, · · · , q}. Since there are
multiple options for drawing arrows from αri to αsi , we stipulate that if there
is a directed path from αsj to αrj for some j ∈ {1, 2, · · · , q}, we draw an arrow
from αrj to αsj . In other words, we want to form a cycle as soon as possible.

Proposition 3.2. Gf has the properties:

(1) For all i, there is one and only one arrow that starts from αi.
(2) There is one and only one directed cycle in every component of Gf .
(3) Gf has multiple components.

Proof of property 2:

We have proved that if αl has the multiplicity of k and there is an arrow from
αl to αr, then the multiplicity of αr is greater than or equal to k. Without
loss of generality, assume there is a directed path from α1 to αr with vertex
sequence (α1, α2, α3 · · · , αr). If the multiplicity of α2 is greater than that of
α1, there must be another path with vertex sequence (α2, α3, · · · , αr). If we go
on with this process, we get multiple paths that end at distinct vertices that
all represent αr.

Consider the arrows that start from αr. If those arrows end at αi where 1 ≤
i ≤ r, they form cycles with the paths from αi to αr, and we know that
αi, αi+1, · · · , αr (all the vertices in the cycle) have the same multiplicity. Since
the paths from αj to αr (1 ≤ j ≤ r) are all disconnected with each other,
it follows that there is one and only one cycle in every component. In other
words, property 2 still holds true here. �

Proof of property 3:

We know from the proof of property 2 that the paths from αj to αr (1 ≤
j ≤ r) are all disconnected with each other, which means there are multiple
components in Gf . �

Since every component in Gf represents a FmPP polynomial and the product
of those polynomials is exactly f(x), it follows that f(x) is F-reducible. Hence,
this case should not be taken into consideration.

Here are two examples of Gf :

Example 3.2.1. The graph on the left corresponds to the F2PP polynomial
f(x) = (x2 − 1)2.
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1 1

-1-1

1 1

-1-1

Since f(x) = (x2 − 1)2 has multiple roots, the construction of Gf involves the
use of all three rules mentioned above. According to Rule 1, we draw a self-
loop from 1 to itself instead of an arrow from 1 to the other 1. The second rule
ensures that the graph on the right is not a possible alternative. Rule 3 has
the same effect as Rule 1 in this case because making a self-loop is the fastest
way to form a cycle.

Example 3.2.2. The graph below corresponds to the F3PP polynomial f(x) =

(x−a)(x−b)(x−c)(x−d)(x−e)(x−f), where a = ei
1

360π, b = ei
1

120π, c = ei
1
40π,

d = ei
3
40π, e = ei

9
40π, f = ei

27
40π.

a b c d

ef

4. The Finiteness of FPP Polynomials

Theorem 4.1. |Fm(n,C)| is finite.

Proof: To prove this theorem, we only have to prove that the number of
F-irreducible n-degree FmPP polynomials is finite. Assume f(x) is such an F-
irreducible n-degree FmPP polynomial and f(x) = (x−α1)(x−α2) · · · (x−αn),
where α1, α2, · · · , αn ∈ C. As in Section 3, we exclude the case where f(x) =
x and make the same assumption that α1, α2, · · · , αn are all non-zero roots.
Notice that if any of α1, α2, · · · , αn is zero, the only possible case is where
f(x) = x, otherwise f(x) will be F-reducible.

Lemma 4.1.1. α1, α2, · · · , αn are all roots of unity and their powers as roots of
unity are less than or equal to mn − 1.

Proof of Lemma 4.1.1: We construct a graph Gf that corresponds to f(x).
According to property 2 from the last section, there is one and only one directed
cycle in Gf .

First, we consider the vertices in a cycle. Suppose the sequence of arrows
(αi, αi+1), (αi+1, αi+2), · · · , (αi+k−1, αi+k), (αi+k, αi) form a directed cycle.

By definition of Gf , we know that αi+k = αmi+k−1 = αm
2

i+k−2 = · · · = αm
k

i and
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αmi+k = αi. Hence, αm
k+1

i = αi, and αi is a tth root of unity where

t = mk+1 − 1.

Because αi can be selected arbitrarily, we know that every vertex in the cycle
is a tth root of unity. Therefore, every number in a cycle is a root of unity.

Then, we look at the vertices that are not in a cycle. According to property 2,
these vertices are all connected to the vertices in a cycle. Consider a directed
path p that connects a vertex not in a cycle with a vertex in a cycle. Given
property 1, we know that p is directed toward the cycle. Let αj be an arbitrary
vertex on p, and αi the endpoint of the path. αi is in the cycle, so αi is a root
of unity. Meanwhile, αm

r

j = αi for some positive integer r, so αj is also a root
of unity. Thus, every vertex not in a cycle is also a root of unity.

Suppose the length of the directed cycle in Gf is s. From the proof above,
we know that the vertices in that cycle are all (ms − 1)th root of unity, and
vertices not in the cycle are roots of unity with powers less than or equal to
mn−s · (ms − 1) = mn − mn−s since the length of p is less than or equal to
n− s. Therefore, the powers of α1, α2, · · · , αn as roots of unity have an upper
bound mn − 1, which completes the proof of Lemma 4.1.1. �

We know that for a F-irreducible f(x), Gf contains one directed cycle. Because
the length of that cycle is less than or equal to n, the powers of α1, α2, · · · , αn as
roots of unity are less than or equal tomn−1. Since the powers of α1, α2, · · · , αn
as roots of unity have an upper bound, there is a finite number of ways to
choose α1, α2, · · · , αn and to construct f(x). In other words, the number of
monic F-irreducible n-degree FmPP polynomials is finite.

Because n is given, we know that the number of F-irreducible FmPP polyno-
mials with degrees less than or equal to n is also finite. On the other hand,
since every F-reducible polynomial is the product of F-irreducible polynomials
of smaller degrees, we know that the number of F-reducible FmPP polynomials
with degrees less than or equal to n is also finite. Therefore, the number of all
FmPP polynomials with degrees less than or equal to n is finite, i.e. |Fm(n,C)|
is finite. �

Corollary 4.1.2. |Fm(n,Q)| is finite.

This is obviously true because Fm(n,Q) ⊂ Fm(n,C).

Corollary 4.1.3. For any given positive integers m and n, n | ϕ(mn − 1).

This result comes from the computation of the number of FmPP polynomials
with a given degree n over C. For given positive integers m and n, we want
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to calculate the number of FmPP polynomials with degree n. Suppose f(x) =
(x − α1) · · · (x − αn) is a FmPP polynomial. To start, we consider the case
where α1, α2, · · ·αn are in the same cycle. It follows that α1, α2, · · ·αn are all
(mn − 1)th roots of unity. To simplify the problem, we let α1, α2, · · ·αn be
primitive (mn − 1)th roots of unity. (If they are non-primitive roots of unity,
the length of the cycle might be less than n.) We know that there are ϕ(mn−1)
ways to choose an αi, where 1 ≤ i ≤ n. Once αi is selected, the whole cycle is

determined. Notice that choosing αmi , or αm
2

i , · · · , or αm
n−1

i will bring us the
same cycle. To remove the duplicates, we divide the total number ϕ(mn − 1)
by n to get the final answer. Since we can construct this cycle for any given m
and n, we know that n divides ϕ(mn − 1).

Corollary 4.1.4. Let f(x) be a F-irreducible FmPP polynomial with degree
n. If the roots of f(x) form a cycle of length n in Gf and n = ϕ(mn− 1), then
f(x) is a (mn − 1)th cyclotomic polynomial.

Suppose f(x) = (x−α1)(x−α2) · · · (x−αn). We know that αi is a (mn− 1)th

root of unity for all i ∈ {1, 2, · · · , n}. If αi is a non-primitive (mn − 1)th root
of unity, we assume that αi is a primitive kth root of unity. We know that k |
mn−1. It follows that (k,m) = 1. Thus, αmi , α

m2

i , · · · , αmn−1

i are all primitive
kth roots of unity. On the other hand, k | mn− 1 indicates that ϕ(k) | ϕ(mn−
1) = n. Because there are n elements in the set {αi, αmi , αm

2

i , · · · , αmn−1

i } and
there are only ϕ(k) primitive kth roots of unity to choose from, we know that
there must be repeats in the set, which contradicts our assumption that f(x)
is F-irreducible. Therefore, αi is a primitive (mn − 1)th root of unity, and
α1, α2, · · · , αn are precisely the n primitive (mn−1)th roots of unity. It follows
that f(x) is a (mn − 1)th cyclotomic polynomial.

Now we explore FmPP polynomials over Q. Because being a FmPP polynomial
with rational coefficients is a stricter restriction, we want to prove a stronger
theorem on the finiteness of such polynomials with a fixed degree and varying
m.

Theorem 4.2. |F (n,Q)| is finite.

Proof: Assume f(x) ∈ Q[x] is an F-irreducible n-degree FPP polynomial
and f(x) = (x − α1)(x − α2) · · · (x − αn), where α1, α2, · · · , αn ∈ C. Suppose
f(x) | f(xm), where m is a positive integer. We pick a root αt and let the
minimal polynomial of αt over Q be p(x). p(x) | f(x), so the degree of p(x)
is less than or equal to that of f(x), that is, deg(p(x)) ≤ deg(f(x)) = n. We
then construct a quotient ring: K = Q[x]/(p(x)). It follows that [K : Q] =
deg(p(x)). Because p(x) is the minimal polynomial of αt over Q, we have
Q[x]/(p(x)) ∼= Q(αt). Thus, [Q(αt) : Q] = [K : Q] = deg(p(x)) ≤ n.
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On the other hand, we know that according to Lemma 4.1.1, α1, α2, · · · , αn
are all roots of unity, so they are all primitive roots of unity for some powers.
This means Q(αt) is a cyclotomic field. Suppose αt is a primitive kth root of
unity and we have: [Q(αt) : Q] = ϕ(k). Therefore, ϕ(k) ≤ n. We now prove
that k has an upper bound that only depends on the value of n.

Suppose the prime factorization of k is k = pa11 pa22 · · · parr =

r∏
i=1

paii , where

p1, p2, · · · , pr are distinct prime numbers. We know that n ≥ ϕ(k) = k(1 −
1
p1

)(1− 1
p2

) · · · (1− 1
pr

) =

r∏
i=1

pai−1
i (pi−1). It follows that pi ≤ n+1. Meanwhile,

we have: k ·
r∏
i=1

(pi − 1) =

r∏
i=1

paii (pi − 1) ≤ n ·
r∏
i=1

pi. Hence, we know that

k ≤ n ·
r∏
i=1

pi
pi − 1

≤ n ·
∏

pi≤n+1

pi
pi − 1

< n · 2n. This indicates that k has

an upper bound that only depends on the value of n. Suppose k ≤ k0. To
construct f(x) of degree n, we just need to select n primitive roots of unity
with powers less than or equal to k0 as the roots of f(x), and then check
whether the coefficients of f(x) are rational.

Because there is a finite number of ways of choosing each root of f(x) and the
degree of f(x) has an upper bound n, we know that the number of such FPP
polynomials in Q[x] is finite, i.e. |F (n,Q)| is finite. �

Corollary 4.2.1. There exists a positive integer M such that for any m,

FmPP (n,Q) ⊂
M⋃
i=1

FiPP (n,Q).

The proof of this corollary is self-explanatory since we have already proved that
regardless of the value of m, the number of FPP polynomials with rational
coefficients is finite.

Theorem 4.3. F (n,Q) = F (n,Z)

Proof: Let f(x) = (x− α1)(x− α2) · · · (x− αn) be a FPP polynomial with
rational coefficients. First we consider the case where x - f(x). α1, α2, · · · , αn
are all non-zero roots in this case. Suppose pi(x) is the minimal polynomial of
αi, where 1 ≤ i ≤ n. We know that pi(x) | f(x). Let p(x) :=

∏
i pi(x) where the

product runs over all distinct pi(x), so p(x) | f(x). Meanwhile, since the roots
of p(x) cover all αi’s, we have f(x) | p(x). Thus, f(x) = p(x). This means
f(x) is a product of cyclotomic polynomials. Since cyclotomic polynomials
have integer coefficients, we know that f(x) must have integer coefficients. If
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x | f(x), we know that f(x) is either in the form of xk or it is a product of xk

and cyclotomic polynomials. In this case, f(x) also has integer coefficients. �

Theorem 4.4. f(x) ∈ Q[x] has FPP if and only if it is a product of xk and
cyclotomic polynomials.

Proof: The claim that f(x) ∈ Q[x] has FPP only if it is a product of xk

and cyclotomic polynomials results directly from the proof of Theorem 4.3.
We only need to prove that every cyclotomic polynomial is FPP . Suppose
Φk(x) = (x−β1)(x−β2) · · · (x−βn) is a cyclotomic polynomial and its roots are
the primitive kth roots of unity. We know that βki = 1 for any i ∈ {1, 2, · · · , n},
which means βk+1

i = βi. Hence, x − βi | xk+1 − βi. It follows that Φk(x) is a
Fk+1PP polynomial and is thus FPP . Therefore, If f(x) is a product of xk

and cyclotomic polynomials, it must be a FPP polynomial. �

Corollary 4.4.1. If Φk(x) is a cyclotomic polynomial, its roots are all in the
same cycle in GΦk

.

This is obviously true since all the roots are primitive kth roots of unity.

Corollary 4.4.2. If Φk(x) is a cyclotomic polynomial with degree n, then
n = ϕ(k). (i.e. The converse of Corollary 4.1.4 is also true.)

We know that GΦk
is a cycle of length n. Since the number of primitive kth

roots of unity is ϕ(k), we know that n = ϕ(k).

From Theorem 4.3 and 4.4, we can reach the conclusion that a F-irreducible
FPP polynomial with integer coefficients is a cyclotomic polynomial. Since
there is a known number of cyclotomic polynomials given an upper bound
on its degree, we can calculate the number of FPP polynomials with integer
coefficients and a given degree.
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