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Abstract

The current standard cosmology model is the ΛCDM model, encodes indepen-

dent, time-dependent evolution of baryons, radiation, and cold dark matter, as

well as time-independent dark energy in the form of a cosmological constant that

accelerates the expansion of the universe. Current measurements of the Hubble

constant from model-dependent sources demonstrate statistical significances of

over 4σ from model-independent measurements, suggesting that physics beyond

ΛCDM exists.

In this project, the ΛCDM model was changed in order to reduce this Hubble

constant disagreement. We propose the Interacting Dark Sector (IDS) model,

which introduces decay-type interactions between cold dark matter and dark en-

ergy; this decay is proportional to the CDM density parameter but is restricted

at early, CDM-dense times to preserve present-day CDM density.

Then, a Markov chain Monte Carlo sampling algorithm was used to determine

the probability distributions and best-fit values for different density parameters

and for the Hubble Rate. The results for datasets with Riess et al. (2019)

H0 suggest a relationship between decaying dark energy and reduced Hubble

tension; however, the results generally suggest that IDS is highly unlikely to

solve the Hubble tension given our current understanding of the universe.
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1 Introduction

1.1 Motivation

1.1.1 Historical Background

Einstein’s original formulation of his field equations included a dark energy term

in the form of a cosmological constant Λ to allow for a flat a static universe. This

addition was quite arbitrary, but did not violate any physical laws because Λ,

being a constant, did not affect energy conservation. Hubble’s discovery of the

universe’s expansion prompted Einstein to remove Λ from his field equations,

going as far as to call the original addition of Λ his “biggest blunder”.

The development of a dark matter theory occurred generally independently from

that of a dark energy theory. Throughout the 20th century, observation evidence

from galaxy rotation curves to the mass of the Oort cloud consistently pointed to

the existence of some form of matter which does not interact electromagnetically,

thus the name dark matter. Multiple theories about the size and velocity of dark

matter were proposed and explored: low-mass, relativistic “hot dark matter”;

high-mass, nonrelativistic “cold dark matter”; and “warm dark matter”, which

has properties that lie between those of the other two. In the end, cold dark

matter (CDM) prevailed; it is currently widely-accepted as the most likely form

of dark matter and is the form of dark matter present in the ΛCDM model.

For decades, Λ was assumed to be 0 by most scientists. The idea of a nonzero

Figure 1: Graph of the observed rotation velocities at different radii in Messier
33 (Triangulum Galaxy) vs. predicted rotation velocities with only visible mat-
ter - this discrepancy suggests the existence of dark matter
Credit: Mario De Leo / CC BY-SA

Λ once again arose in 1998, when observations of distances to high redshift
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type Ia supernovae determined that their measured distances are shorter than

those predicted [17], leading to the idea that ȧ is increasing, which required the

re-addition of Λ. While there had been no evidence of whether Λ was actually

constant, it was generally accepted to be so and the ΛCDM model quickly gained

status-quo status.

Since then, as the amount of cosmological data has increased, the ΛCDM model

has been supported numerous times, mostly through indirect measurements of

early-universe density parameters and their extrapolated present-day density

parameters. These early-universe measurements often come from time of pho-

ton decoupling, the time approximately 370, 000 years after the big bang and

at redshift z = 1090 when photons first started to be able to travel freely, in-

dependent of interference from baryons. Cosmic microwave background (CMB)

patterns originate from the photons that started freely travelling at photon

decoupling.

CMB power spectra and gravitational lensing measurements from the NASA

Wilkinson Microwave Anisotropy Probe (WMAP) [7] and the ESA Planck Satel-

lite [11] are both well-supported by the ΛCDM model; in other words, cosmo-

logical density parameters predicted by the ΛCDM model in conjunction with

WMAP and Planck data are within ranges specified by direct measurements.

Figure 2: CMB map from the NASA Wilkinson Microwave Anisotropy Probe,
2010
Credit: NASA WMAP

Furthermore, Planck constraints from ΛCDM describe redshift and cosmological

distance datapoints from baryon acoustic oscillations (BAO), patterns in baryon

density caused by matter-radiation interactions in the early universe measured

from 1.5 million galaxies in the redshift range 0.2 < z < 0.7, to within 1σ [1].

BAO measures properties of the sound horizon at decoupling, at distance rd, the
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Figure 3: CMB map from the ESA Planck Satellite, 2018
Credit: ESA Planck Satellite

total distance sound has travelled since decoupling. Many other datasets that

describe CMB, such as the South Pole Telescope Sunyarv-Zel’dovich (SPT-SZ)

survey, which measures the amount of Inverse Compton Scattering distortion of

CMB, fit ΛCDM well [2].

Figure 4: Illustration of baryon acoustic oscillations measurements from galax-
ies; distances between galaxies are directly related to CMB radiation patterns
Credit: Chris Blake and Sam Moorfield

1.1.2 Disagreements with ΛCDM

Despite its wide range of support, model-independent measurements of the Hub-

ble rate disagree significantly with ΛCDM. Such measurements involve the com-

putation of the Hubble rate using measured redshift and a local measurement of

luminosity or angular diameter distance. The apparent magnitudes of Cepheid

and Mira variables, pulsating stars that are known as standard candles due to
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their well-defined period-luminosity relations, could be used to determine dis-

tances to their host galaxies. Gravitational lensing and masers could similarly

be used to determine distances. The most well-known instance of local determi-

nation of the Hubble constant involved Cepheid variables and determined the

Hubble rate to within 1.19% uncertainty as H0 = 74.03± 1.42 km s−1 Mpc−1,

4.4σ away from 6.6 ± 1.5 km s−1 Mpc−1, the value predicted by ΛCDM and

Planck CMB [16]. Other methods of distance determination yielded similar

Hubble rates of 73.3± 4.0 km s−1 Mpc−1 [8], 73.3+1.7
−1.8 km s−1 Mpc−1 [21], and

73.9± 3.0 km s−1 Mpc−1 [14].

These discrepancies strongly suggest that physics beyond ΛCDM exists.

1.2 Basic Theory of the Expanding Universe

In the static universe of special relativity, spacetime is described by the Minkowski

metric, defined as

ηµν =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (1)

This metric converts measurements to the invariant spacetime interval

ds2 = −ct2 + x2 + y2 + z2, (2)

where c is set to 1 via change of units. In an expanding, isotropic universe, we

adopt a comoving coordinate system, where the scale factor a(t) = r(t)/r(0) is

defined as the ratio between an arbitrary distance at time t and said distance

at present t = 0. For a flat universe (which is well-supported by observations),

the Minkowski metric, expressed in the comoving coordinate system, becomes

the Friedmann-Robertson-Walker (FRW) metric,

gµν =


−1 0 0 0

0 a2(t) 0 0

0 0 a2(t) 0

0 0 0 a2(t)

 . (3)
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For an isotropic universe approximated as a perfect fluid, the energy-momentum

tensor is

Tµν =


E 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 . (4)

Einstein’s field equations describe relationship between the universe’s geome-

try in terms of the Ricci tensor Rµν and the Ricci scalar R and the energy-

momentum tensor, in curved spacetime:

Rµν −
1

2
R = 8πGTµν . (5)

The 0-0 component of Einstein’s Equation leads to the Friedmann Equation,

which describes the time-dependency of the scale factor and density:(
ȧ

a

)2

= 8πGρ. (6)

Conservation of energy and momentum with the energy-momentum tensor and

an equation of state P = wρ derived from statistical mechanics, where w = 1/3

for radiation and w = 0 for baryons and cold dark matter, yield differential

equations for the time-evolution of baryon, radiation, and cold dark matter

density:

ρ̇b + 3Hρb = 0

ρ̇c + 3Hρc = 0

ρ̇r + 4Hρr = 0

(7)

Recent observations have suggested that the ȧ is increasing, leading to the addi-

tion of a dark energy term in the form of a cosmological constant Λ. We define

Ωb,c,r = ρb,c,r/ρcrit, where ρcrit = 3H2/8πG is the density necessary to maintain

a static and flat universe. Similarly, we define ΩΛ = Λ/3H2. These equations,
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when combined with the differential equations, lead to

dΩb
da

+ 3
Ωb
a

= 0

dΩc
da

+ 3
Ωc
a

= 0

dΩr
da

+ 4
Ωr
a

= 0

dΩΛ

da
= 0,

(8)

where present-day Ωb0,c0,r0,Λ0 satisfy

Ωb
a3

+
Ωc
a3

+
Ωr
a4

+ ΩΛ = 1. (9)

This leads to a relationship between the present-day Hubble rate H0 and the

Hubble rate H at scale factor a,

H2 = H2
0

(
Ωb0
a3

+
Ωc0
a3

+
Ωr0
a4

+ ΩΛ0

)
(10)

Since the Hubble constant is related to the scale factor a, observational masure-

ments of the Hubble constant rely on the comoving distance χ(a), the distance

light travels in an expanding coordinate system, of an observable object. All

Hubble constant measurements are made indirectly by measuring three quanti-

ties related to χ(a): the redshift

z =
λobs − λemit

λobs
, (11)

the angular diameter distance

dA =
`

θ
= aχ(a), (12)

and the luminosity distance

dL =

√
4πF

L
=
χ(a)

a
. (13)

1.2.1 Past Works

Much research has been done in the area of resolving Hubble rate tensions using

modifications on the behaviours of dark matter and dark energy. The examples
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listed in the forthcoming section only cover the three which are closest in topic

to this project.

Many past works in this field involved altering the equation of state constant of

dark energy and have provided strong support for dark energy density increasing

over time [18]. von Marttens et al. (2019) [20] proposed and investigated a class

of dark sector1 interaction models. Miller (2019) [12] tested specific interaction

models within said class of dark sector interactions that are strictly proportional

to the total density of CDM and dark energy, and found that the density of CDM

dominates this interaction. Furthermore, the results of Miller (2019) give strong

support for dark sector interactions.

Much is still unknown about the properties of the dark sector. The purpose of

this project is to investigate whether a new model that includes an interaction

which is proportional to the amount of CDM at late times but decays to zero

at early times would provide a better fit of data.

2 Methods

2.1 Overview

We seek to alter the dark energy density parameter differential equation of the

ΛCDM model. By conservation of energy, any change in dark energy density

must involve some sort of energy transfer to or from other species. In other

words,
dΩΛ

da
+
dΩb
da

+
dΩc
da

+
dΩr
da

= 0. (14)

We determine that cold dark matter is the most logical candidate for this en-

ergy transfer, as baryons and radiation are relatively well-understood. Since

they interact electromagnetically, some sort of energy transfer would likely be

observable, making baryonic or radiative interactions highly unlikely. Our con-

servation of energy equation then becomes

− dΩΛ

da
=
dΩc
da

. (15)

1Dark matter and dark energy are together referred to as the dark sector.
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We denote Q = −dΩΛ/da. The evolution equations then become

dΩb
da

= −3Ωb
a

dΩr
da

= −4Ωr
a

dΩc
da

= −3Ωc
a

+Q

dΩΛ

da
= −Q.

(16)

Q was defined to be proportional to the density parameter Ωc at recent times

but drop for high values of Ωc at early times. This situation is assumed in

order to prevent the difference in the decay of Ωc, which had a high value in

the early universe, from drastically altering the current Ωc value, as it is loosely

constrained by observations. In order to achieve these bounds, a dimensionless

proportionality parameter γ0 was incorporated, and a function γ(a) propor-

tional γ0 was defined. Furthermore, Q was defined to be proportional to this

parameter, in the form

Q =
3Ωcγ(a)

a
. (17)

The factor of 3/a multiplied to Q is quite arbitrary, but it was added to preserve

the general form the Ωc evolution equation.

A function that could describe the evolution of γ(a) with time would depend

on the times concerned. In this project, we integrate from the present time to

times as early as recombination2, a = 1/1090, to compare sample parameter

values with early-universe data, a process detailed in Implementation. We want

a function γ(a) that is loosely defined to behave according to
γ(a)

γ0
→ 0 when a→ 1/1090

γ(a)

γ0
→ 1 otherwise.

(18)

One such function is defined and named the Interacting Dark Sector (IDS)

2BAO and CMB data originate from recombination, while HST and Supernovae data
describe somewhat later times, albeit still in the early universe.
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model. Q and γ(a) of the IDS model behave according to

γ(a) =
1 + tanh Ωc

Ωc1

2

Q =
3Ωc

(
1 + tanh Ωc

Ωc1

)
2a

(19)

Here, Ωc1 is the density parameter at some constant scale factor a1 between the

present time and recombination. Since γ0 is very small, to reduce computation

cost, we approximate Ωc/Ωc1 ≈ a3
1/a

3, the expression given by the ΛCDM

model. Therefore,

Q =
3Ωc

(
1 + tanh

a31
a3

)
2a

. (20)

We let a1 = 1090−3/2. This value of a1 would allow Q to approach 0 only at

values close to a = 1/1090. This can be seen in Figure 5, a log-log graph of

γ(a)/γ0 vs. a.

3.0 2.5 2.0 1.5 1.0 0.5 0.0
log(a)

8

6

4

2

0

log (a)
0

Figure 5: Graph of log(γ(a)/γ0) vs. log(a) with IDS

We define

Ωtot ≡ Ωb + Ωc + Ωr + ΩΛ =
H2

H2
0

. (21)

To get a better idea of how much Q affects the evolution of density parameters,

Ωc, ΩΛ, and Ωtot were graphed against log a, for nine different values of γ0.

We denote the present-day values of Ωb, Ωc, Ωr, and ΩΛ as Ωb0 , Ωc0 , Ωr0 , and

ΩΛ0 and define Ωm0 ≡ Ωb0 + Ωc0 + Ωr0 = 0.3032. Other present-day parameter
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values are h = 0.6821, and Ωb0h
2 = 0.02234, where

h ≡ H0

100
(22)

is a parametrized form of the Hubble Rate. All of these parameter values are

close to the current ΛCDM best-fit values. Ωbh
2 was used instead of the baryon

density parameter Ωb. Results are shown in Figure 6, Figure 7, and Figure 8.

3.0 2.5 2.0 1.5 1.0 0.5 0.0
log(a)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

c

1e9
0=-0.5
0=-0.1
0=-0.01
0=-0.001
0=0.0
0=0.001
0=0.01
0=0.1
0=0.5

Figure 6: Graph of Ωc vs. log(a) with IDS

3.0 2.5 2.0 1.5 1.0 0.5 0.0
log(a)

4

2
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4

6

0=-0.5
0=-0.1
0=-0.01
0=-0.001
0=0.0
0=0.001
0=0.01
0=0.1
0=0.5

Figure 7: Graph of ΩΛ vs. log(a) with IDS

γ0 = 0 is equivalent to the ΛCDM model. By comparing different curves with

the γ0 = 0 curve, we could see that values of γ0 as small as ±0.001 are able to
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Figure 8: Graph of Ωtot vs. log(a) with IDS

have noticeable impacts on the density parameter values.

To cross-check IDS parameter values, we propose and test an alternate IDS

model with equation

γ(a) =
1 + tanh (k (Ωc1 − Ωc))

2

Q =
3Ωc (1 + tanh (k (Ωc1 − Ωc)))

2a
.

(23)

Here, k is a constant that could change the rate at which γ(a) approaches 0 or

1. In our testing, we use the value k = 0.00001. Similar to with IDS, we make

the approximation Ωc/Ωc1 ≈ a3
1/a

3 to reduce computation cost:

Q =
3Ωc

(
1 + tanh

(
k
(

Ωc0

a31
− Ωc0

a3

)))
2a

. (24)

2.2 Implementation

Markov chain Monte Carlo (MCMC) sampling with the Metropolis-Hastings

algorithm was used to determine the best-fit values and probability distributions

for present-day values Ωm0 , Ωb0h
2, and h. MCMC sampling works by finding the

probability this set of values, evolved to early-universe times, describe the data,

in the form of a likelihood function. To ensure the entire posterior gets sampled,

the algorithm jumps to a new point in the parameter space with probability

depending on this likelihood function. To carry out MCMC sampling, we use a
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Python version3 of the more commonly-used Fortran CosmoMC4.

Our free parameters are Ωm0
, Ωb0h

2, h, and γ0. Their sampling ranges are

constrained from a variety of different measurements. Ωm0
was set to vary

between 0.15 and 0.50, around 50% on either side from the best-fit Planck

2018 result of 0.315 ± 0.007. The value of Ωb0h
2 is constrained by primordial

deuterium abundances found in BAO and is around 0.0220 ± 0.0005. Modern

measurements of h all lie between 0.65 and 0.75; as a result, h was defined to

vary in the interval (0.60, 0.80) to allow for it to take values at and around all

plausible values.

Since we know very little about γ0, we let it vary between −1 and 1. This

range was determined from experimentation; all values of gamma found had

|γ| � 1.

Ωr0h
2 was fixed because it is heavily constrained by the cosmic microwave back-

ground radiation temperature Tcmb. While ΩΛ0
is not constrained by any ob-

servations, we still need Ωb0 + Ωc0 + Ωr0 + ΩΛ0
= 1; thus, ΩΛ0

is constrained by

the other parameters.

The present-day density parameter values could be converted to those at some

other time by taking integrals over a of dΩb,c,r,Λ/da; in the case of recombina-

tion, the integration range is from a = 1 to a = 1/1090. Unfortunately, it is very

difficult to get a closed-form expression for this integral, so we use an ordinary

differential equation (ODE) solver to integrate numerically. odeint, a scipy

ODE solver that utilizes the LSODA method, was used. LSODA is versatile

because it automatically switches between stiff5 and non-stiff solvers based on

the behaviour of the ODE. Other approximation methods are available, such

as the second-order and fourth-order Runge-Kutta methods (RK23 and RK45)

which are part of the solve ivp solver, but in the end, LSODA was chosen for

its superior speed.

Integrating numerically while doing MCMC sampling is quite computationally

expensive. Being able to speed up each integral, even by a small amount, would

allow for significant cuts to the total computing time, considering the large

number of integrals involved. The adjustments of odeint error allowances rtol

3https://github.com/slosar/april
4https://cosmologist.info/cosmomc
5Stiff ODEs have slowly-varying solutions and corresponding solving algorithms need to

have smaller step sizes.
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and atol were attempted; however, it was found that changing one by an order

of magnitude either way while fixing the other would cause the ODE solver to

run around 30% more slowly, and that the default values of rtol and atol at

1.49012 · 10−8 produced the best results.

We run the code with a variety of different datasets, for both ΛCDM and IDS.

Each run was stopped when MCMC sampling had accepted 50000 parameter

samples, a value where parameters are generally able to converge and after which

and best-fit values barely change (this was found through experimentation). We

use subsets of datasets within

• Baryon Oscillation Spectroscopic Survey (BOSS) Baryon Acoustic Oscil-

lations, from distribution of quasars and galaxies6 (BAO)

• Planck 2018 CMB data7 (Planck)

• Type Ia Supernovae from the Sloan Dark Sky Survey II (SDSS-II), Super-

Nova Legacy Survey (SNLS), and Hubble Space Telescope Cluster Super-

nova Survey (UnionSN) collaborations8910 (SN)

• Riess et al. (2019) measurements of the Hubble constant from Hub-

ble Space Telescope Cepheid Variables11, using Large Magellanic Cloud

Cepheid Variables (H0)

Out of the datasets used, only ones that contain Planck are able to constrain

parameter values. Last but not least, to plot probability distributions and

contour plots, we utilize the python package GetDist12, which approximates

MCMC samples with smooth curves. GetDist was also used to determine the

parameter values at 68% CL, the value used to represent error bounds.

3 Results and Discussion

Best-fit values, error bounds, and χ2 values for dataset combinations, for both

ΛCDM and IDS, are shown in Table 1. IDS reduces χ2 values for all datasets

6http://www.sdss3.org/surveys/boss.php
7https://www.cosmos.esa.int/web/planck
8https://www.sdss.org/dr12/data_access/supernovae
9http://irfu.cea.fr/en/Phocea/Vie_des_labos/Ast/ast_technique.php?id_ast=2289

10http://supernova.lbl.gov/Union
11https://archive.eso.org/cms/hubble-space-telescope-data.html
12https://getdist.readthedocs.io
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Model Datasets h Ωm0
Ωb0h

2 γ0 χ2

ΛCDM Planck+SN 0.688± 0.013 0.295± 0.016 0.02243± 0.00033 N/A 27.2551
ΛCDM BAO+Planck 0.6814± 0.0066 0.3031± 0.0082 0.02232± 0.00027 N/A 5.12304
ΛCDM BAO+Planck+SN 0.6818± 0.0063 0.3025± 0.0078 0.02232± 0.00027 N/A 32.4011
ΛCDM Planck+H0 0.715± 0.010 0.263± 0.011 0.02297± 0.00029 N/A 3.19027
ΛCDM Planck+SN+H0 0.7105± 0.0093 0.268± 0.010 0.02289± 0.00028 N/A 31.1657
ΛCDM BAO+Planck+H0 0.6922± 0.0061 0.2902± 0.0073 0.02260± 0.00026 N/A 12.2886
ΛCDM BAO+Planck+SN+H0 0.6918± 0.0058 0.2907± 0.0070 0.02259± 0.00026 N/A 39.5645
IDS Planck+SN 0.686+0.028

−0.033 0.297± 0.026 0.02244± 0.00036 −0.0005± 0.0059 27.2689
IDS BAO+Planck 0.6789± 0.0077 0.3022± 0.0083 0.02245± 0.00035 −0.0016± 0.0027 4.96449
IDS BAO+Planck+SN 0.6793± 0.0076 0.3019± 0.0081 0.02244± 0.00035 −0.0016± 0.0027 32.2365
IDS Planck+H0 0.739± 0.014 0.255± 0.011 0.02247± 0.00036 0.0078± 0.0031 0.010435
IDS Planck+SN+H0 0.731± 0.013 0.262± 0.010 0.02240± 0.00036 0.0073± 0.0031 28.4602
IDS BAO+Planck+H0 0.6937± 0.0071 0.2912± 0.0076 0.02247± 0.00035 0.0013± 0.0026 12.1982
IDS BAO+Planck+SN+H0 0.6934± 0.0069 0.2915± 0.0073 0.02248± 0.00035 0.0012± 0.0026 39.4632

Table 1: Best-fit values, error bounds, and χ2 values for different model-dataset
combinations

except for Planck+SN. Two datasets, H0 and BAO particularly influence the

parameter best-fit values.

The inclusion of H0 results in positive γ0, i.e. decreasing dark energy density.

Furthermore, the modified model, when and only when run with datasets that

include H0, demonstrates best-fit values of h higher than the ΛCDM model with

corresponding datasets. In other words, H0 is able to increase goodness-of-fit

and decrease Hubble rate tensions. This is partially a consequence of the nature

of the dataset: H0 directly uses Hubble rate data points from Riess et al. (2019),

the dataset with which ΛCDM directly demonstrates tensions. As a result, this

result does not directly show that IDS reduces Hubble rate tensions given our

current understanding of the universe (when run with datasets without H0, IDS

increased Hubble rate tensions).

BAO appears to limit the change in parameter best-fit values: datasets that

include BAO have best-fit values of h that vary by a maximum of 0.0025 between

models. This might be the case because BAO and Planck CMB measure the

same attributes of CMB from very low (z = 2) and high (z = 1090) redshifts,

respectively; in addition, two of the three parameters that describe BAO, sound

horizon at decoupling rd and density parameter Ωmh
2, are well-constrained by

CMB, which leaves little room for the third parameter, h, to change value. Due

to the constraint of both Ωmh
2 and h of BAO, Ωm is more constrained with

datasets that contain BAO.

Probability distributions and contour plots of different model-dataset combi-

nations are shown in Figure 9,Figure 10,Figure 11, and Figure 12. Datasets

within each model are grouped into graphs by whether they contain H0 due
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to the large influence of H0 on best-fit values. The datasets BAO+Planck and

BAO+Planck+H0 are omitted from plots due to the similarity between their

results and those of BAO+Planck+SN and BAO+Planck+SN+H0.

0.25 0.30

m0

0.68

0.70

0.72

0.74

h

0.0220

0.0225

0.0230

0.0235

b 0
h2

0.022 0.023

b0h2
0.68 0.70 0.72 0.74

h

LCDM Planck+H0
LCDM Planck+SN+H0
LCDM BAO+Planck+SN+H0

Figure 9: LCDM plots for datasets with H0. BAO probability distributions
noticeably differ from non-BAO distributions. All best-fit h values are higher
than those of corresponding datasets without H0 due to the nature of the H0

dataset.

Ratios of h values between different model-dataset combinations and ΛCDM

BBAO+Planck+SN+H0 were plotted against log(z), as shown in Figure 13 and

Figure 14. IDS datasets and their corresponding ΛCDM datasets are plotted

on the same graph; the datasets are again divided according to whether they

contain H0.

We define the interaction switch-on redshift zon as the redshift that satisfies

γ(a(zon))/γ0 = 0.1, where a(zon) ≡ 1/(zon +1), i.e. it is the redshift after which

the interaction starts to become significant. In the modified model, zon ≈ 75.7.

The line log(z) = log(zon) was also plotted to indicate approximately when the

interaction starts.

The graphs show that due to the positive γ0 values of datasets with H0, dark

energy density is comparatively larger at later times, leading to larger h values.

IDS graphs reach extrema at values of z close to zon. The proximity of the
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Figure 10: LCDM plots for datasets without H0. All best fit values for h are
under 0.70.
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Figure 11: IDS plots for datasets with H0. Values for H are higher than corre-
sponding LCDM values. Planck+H0 and Planck+SN+H0 have especially high
h values over 0.730.
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Figure 12: IDS plots for datasets without H0. Best-fit values for h are all slightly
lower than corresponding LCDM values.

ΛCDM Planck+SN+H0 curve with a horizontal line again shows that datasets

with BAO cause modified plots to deviate very little from corresponding LCDM

plots.
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Figure 13: Relative H vs.
log(z) plots for datasets withH0
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Figure 14: Relative H vs.
log(z) plots for datasets without
H0

MCMC on the dataset Planck+SN+H0 was run with variations of IDS with

four other values of zon, with results shown in Table 2. Values of zon are listed
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in the table. The middle two values of zon lie in the matter-dominated era; the

smallest and largest zon values lie in the dark energy and radiation dominated

eras, respectively.

Q/γ0 zon h Ωm0 Ωb0h
2 γ0 χ2

1 + tanh ln(a3 · 7.3173 · 109))

2
2740 0.732± 0.013 0.262± 0.010 0.02240± 0.00035 0.0066± 0.0028 28.4493

1 + tanh(ln(a3 · 50003/2))

2
100.9 0.731± 0.013 0.262± 0.010 0.02240± 0.00036 0.0076± 0.0032 28.4576

1 + tanh(ln(a3 · 5003/2))

2
31.2 0.731± 0.013 0.262± 0.010 0.02239± 0.00036 0.0069± 0.0029 28.4594

1 + tanh(ln(a3 · 9/8))

2
0.6 0.730± 0.0123 0.263± 0.010 0.02240± 0.00035 0.097± 0.042 28.6929

Table 2: Best-fit values, error bounds, and χ2 values for variations of the mod-
ified model with different values of zon, using the dataset Planck+SN+H0

Relative h vs. log(z) plots for modified IDS models with different values zon

were also generated, as shown in Figure 15. Again, the reference model-dataset

combination for h is ΛCDM BAO+Planck+SN+H0. ΛCDM Planck+SN+H0

is also plotted; the similarity between its curve and a horizontal line shows that

BAO alters results minimally when compared to other datasets. The minima

of the IDS and modified IDS graphs all occur at their corresponding zon values.

Furthermore, the larger the zon value, the smaller the h ratio at minima.
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Figure 15: Comparison of H vs. log(z) plots for different values of zon

Values of t · H were plotted against log(a) for datasets with and without H0.

Since

a ∝ t2/(3+3w), (25)

where w is the equation of state constant, and H = ȧ/a, t ·H would approxi-

mately equal 1/2 and 2/3 in the radiation and matter dominated eras, respec-
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tively. It could be seen in Figure 16 and Figure 17 that values for t ·H equal to

1/2 at small values of a and reaches 2/3 at a value of log(a) between z = 2740

and z = 0.3, the radiation-matter and matter-dark energy equality redshifts.

The dataset Planck+H0 was omitted due to its plot’s indistinguishability with

that of Planck+SN+H0.
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Figure 16: t · H(a) vs. log(a)
plots for datasets with H0
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Figure 17: t · H(a) vs. log(a)
plots for datasets without H0

The alternate version of IDS with equation γ(a) =
1+tanh(k(Ωc1

−Ωc))
2 was also

run with all datasets; however, its results are negligibly close to those of IDS

and are thus omitted.

4 Conclusion

The Interacting Dark Sector model decreased Hubble rate tensions for datasets

containing H0. However, Hubble rate tensions increased by a smaller amount for

datasets without H0. Since H0 is taken directly from Riess et al. (2019) results,

IDS is unlikely to solve the Hubble tension with our current understanding of

the universe. The positive value of γ and increased h in runs containing the

dataset H0 gives some degree of support for a relationship between decaying

dark energy and lower Hubble rate tensions. If evidence of decreasing dark

energy density is ever found, models similar to IDS are a possible solution to

the Hubble tension.
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