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Abstract. More than 95% of the approximately 7000 orphan diseases in the
world do not have effective treatments, and since orphan diseases are conditions
that affect a limited population, there is little incentive to develop novel treat-
ments for them. Thus, drug repositioning, or finding new uses for existing drugs,
has become a viable option as it is faster and more economical than traditional
de novo drug discovery. To this end, OrphaDRGL was created: a novel computa-
tional orphan disease drug repositioning approach utilizing graph deep learning.
OrphaDRGL uses open-source disease phenotype, drug side effect, drug chemical
structure, and drug-indication data to form a heterogeneous network with drug
and medical condition nodes. Edges were created using the Tanimoto coefficient
of drug side effects and chemical structures, the Resnik phenotypic similarity of
medical conditions and their phenotypes, and existing drug-indication pairs. Mor-
gan fingerprint bit vectors were assigned as explicit node features for drug nodes.
A link concealing algorithm was then applied to emulate orphan disease condi-
tions, and a graph convolutional neural network-based link prediction framework
was trained on the network in order to identify potential drug repositioning can-
didates for orphan diseases. After 10-fold cross-validation, OrphaDRGL achieved
an average AUC-ROC score of 0.953 and was able to identify both literature-
supported and previously unreported drug repositioning candidates for three dif-
ferent orphan diseases. Furthermore, ablation analysis conducted on OrphaDRGL
demonstrated that its design was computationally suited for orphan disease drug
repositioning. OrphaDRGL is the first of its kind in the scientific literature, and its
promising performance helps address the pressing issue of in silico identifications
of potential drug repositioning candidates for orphan diseases.

Keywords: Graph Neural Networks · Heterogeneous Networks · Drug Reposi-
tioning · Orphan Diseases
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1 Introduction

1.1 Orphan Diseases

According to the U.S. Food and Drug Administration, orphan diseases are rare conditions
that affect fewer than 200,000 people nationwide [5]. Even though individual orphan
diseases are rare, approximately 30 million people suffer from them collectively in the
U.S. alone [10]. Still, more than 95% of the approximately 7000 diseases classified as
“orphan diseases” in the world do not have effective treatments [10]. One reason for the
lack of effective treatments may be that pharmaceutical companies are not incentivized
to develop novel treatments for orphan diseases. According to Nosengo [20], it takes 13-15
years and $2-3 billion U.S. to get a de novo drug approved so that it can be marketed.
This market is relatively small for drugs developed specifically to treat orphan diseases,
so pharmaceutical companies have less incentive to devote time and money to those
endeavors. Although the FDA Orphan Drug Act in 1983 led to approximately 325 new
treatments for orphan diseases, there is still a very pressing need for drugs and treatments
for orphan diseases since many are lethal and few have approved treatments [26,10].

1.2 Drug Repositioning

Drug repositioning is an alternative to de novo drug discovery for developing potential
therapies for orphan diseases [26]. Drug repositioning (also called drug repurposing) is the
act of taking existing drugs and finding new uses for them that are outside of its original
approved medical indication [2]. The benefits to this strategy include an expedited time
to market and potentially less development costs [28]. This is because it is likely that a
drug used in a repositioning scenario has already been shown to be safe in humans, so
there is a major decrease in costs for the preclinical, phase I, and phase II trials [23].
Also, existing manufacturing and testing infrastructure for a previously approved drug
can potentially save a large amount of money and resources. The drug may even skip the
phase I trials entirely due to the existence of data from previous safety studies, though
parameters such as the dosage and route of administration may differ for the repositioned
indication [21]. Additionally, phase IV studies assessing side effects and safety have likely
been conducted for potential repositioning candidate drugs on the market [28].

There have been several cases where drug repositioning has been successful in treating
both orphan diseases and non-orphan diseases. For example, Rituximab was originally
approved to treat several cancers but was then repositioned as a treatment for rheuma-
toid arthritis [23]; Atomoxetine was originally developed to treat major depression but
was then repositioned as an FDA approved treatment for attention deficit hyperactivity
disorder (ADHD) [15]; and Tretinoin, a treatment for acne vulgaris was repositioned as
an FDA approved treatment for the orphan disease acute promyelocytic leukemia [26].

These potential expense and time-reducing factors as well as the success stories make
drug repositioning a favorable option for developing treatments for orphan diseases.

1.3 Computational Network-based Drug Repositioning

In the past, drug repositioning has been a mostly fortuitous process [23], but now, com-
putational drug repositioning has become a viable option. One specific computational
approach to drug repositioning is a network-based one. This is where the problem of find-
ing drug repositioning candidates is modelled as a network in which the nodes are drugs
and medical conditions, and the edges are the various chemical and biological relation-
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Fig. 1: Visualization of a Network.

ships that drugs and medical conditions possess. Deep learning can then be applied to
these networks to detect indirect and unapparent patterns and relationships and identify
potential drug repositioning candidates.

2 Related Works

2.1 Prior Literature

Several variations of deep learning network-based approaches for drug repositioning, as
well as a similar but not identical problem of drug-target interaction prediction, are
reported in the scientific literature.

Manoochehri and Nourani [17] formed a drug-target network using interactions, drug
similarity, and target similarity and trained a multilayer perceptron (MLP) on trun-
cated adjacency matrices from extracted subgraphs for predicting drug-target interac-
tions. Zhao et al. [36] used a graph convolutional neural network (GCN) and an MLP to
perform node classification on a graph whose nodes were drug-protein target pairs. Wan
et al. [31] used a graph neural network and matrix factorization on a network with drug-
protein, drug-drug, and protein-protein interactions; drug-disease and protein-disease
associations; and drug-drug and protein-protein similarity to predict drug-target inter-
actions. Zeng et al. [34] used deep learning to featurize nodes in 15 chemical, genomic,
phenotypic, and cellular networks and then utilized matrix factorization to predict new
drug-target interactions. Zong et al. [37] used deep neural networks to calculate simi-
larities in a drug-target network to predict new drug-target interactions. Ioannidis et
al. [9] developed a novel graph neural network model that is suited for predicting rare
links to reposition drugs for Covid-19. Lastly, Zeng et al. [1] used one drug-disease, one
drug-side-effect, one drug-target, and seven drug-drug networks along with a variational
autoencoder to predict new drug-disease associations, or new drug repositioning candi-
dates.
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2.2 Commentary and Shortcomings

In the prior literature, there are two key areas which are not addressed.
Firstly, it does not appear that any of the previously reported approaches integrating

deep learning and networks/graphs for drug repositioning utilized graph neural networks
for subgraph extraction-based link prediction, which is implemented in the SEAL frame-
work [35]. This framework involves using subgraphs, or smaller networks taken from a
larger network, to train a GCN for link prediction. It has been shown to have state-of-
the-art performance on networks such as airline and academic collaboration networks
[35].

In addition, there have been no reported deep learning-based approaches using graph
neural networks specifically for orphan disease drug repositioning, which is an inherently
different computational problem due to the lack of existing, approved treatments or drugs
for orphan diseases. However, there have been non-deep learning drug repositioning ap-
proaches such as virtual screening for orphan diseases [7]. Manoochehri and Nourani [17]
and Zong et al. [37] did not explicitly design their drug repositioning approaches for dis-
eases or targets missing one key feature: a known drug. They did not remove a disease’s
known drug links when training to predict if another drug could also act as a possible
treatment for it and only found new drug repositioning candidates or new drug-target
interactions within a network of known drug-disease associations or drug-target inter-
actions. These approaches are not optimized or currently suitable for orphan diseases
because more than 95% of these diseases do not have treatments, meaning there would
be no drug-disease associations to use as links [10]. Ioannidis et al. [9] built their model
to predict rare link types in the entire network but did not design their model specifi-
cally for predicting links from nodes with zero edges of certain type, which would be the
case with many orphan disease nodes and drug-medical condition edges due to orphan
diseases’ lack of existing treatments. Zhao et al. [36] found new drug-target interactions
for targets that do not have any known drugs, but they did not explicitly use orphan
diseases or diseases in general, and they did not use any form of link prediction. Wan
et al. [31] evaluated their approach on “unique” drug target interactions – interactions
in which the drug or the target has no other interactions – but did not design their
approach specifically for targets or diseases with no associations. Zeng et al. [34] evalu-
ated their approach on a subset of targets with less than five known drugs but did not
explicitly evaluate diseases that have no known drugs. Finally, Zeng et al. [1], Zeng et
al. [34], Manoochehri and Nourani [17], and Zong et al. [37] all did not use graph neural
networks.
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Fig. 2: High-level Overview of OrphaDRGL’s Pipeline.

3 OrphaDRGL

OrphaDRGL (Orphan disease Drug Repositioning using Graph Deep Learning) is a
novel, deep learning network-based drug repositioning approach specifically designed for
orphan diseases. It uses drug side effect data, which has been shown to be a valid feature
in computational drug repositioning [33], drug chemical structure data, disease pheno-
type data, and existing drug-indication data from four different open-source databases to
form a heterogeneous network of drugs and medical conditions. The four different types of
edges within the network are drug-medical condition edges, drug-drug side effect similar-
ity edges, drug-drug chemical structure similarity edges, and medical condition-medical
condition edges. Subgraphs are extracted from this network and double-radius node la-
beling is applied as per SEAL [35]. A link concealing is also applied to these subgraphs
to emulate orphan disease conditions. Finally, a three-layer GCN is trained on these
subgraphs to predict links between drug and medical condition nodes. In other words,
it predicts if certain drugs are viable drug repositioning candidates for a given medical
condition. A high-level overview of this entire process is displayed in Figure 2.

Notably, OrphaDRGL makes two potentially novel contributions:

– OrphaDRGL is the first of its kind in the scientific literature to use graph neural
networks to perform subgraph extraction-based link prediction (SEAL) with explicit
node features, drug side effects, and disease phenotypes for drug repositioning.

– OrphaDRGL is the first application of graph neural networks in a drug repositioning
approach specifically designed for orphan diseases.

4 Procedure

4.1 Network Formation

As shown in Figure 2, the first step in OrphaDRGL’s pipeline is to construct a heteroge-
neous network of drug and medical conditions nodes with drug-medical condition edges,
drug-drug side effect similarity edges, drug-drug chemical structure similarity edges, and
medical condition-medical condition edges.

Nodes Every node in OrphaDRGL’s network is either a drug or a medical condition
taken from the repoDB [4]. All small molecule compound drugs from repoDB [4] along
with any associated medical conditions were extracted from the database, and each
one became a node. Additionally, each drug node was assigned its 1024-bit Morgan
Fingerprint vector, which is a vector-based representation of a compound’s molecular



OrphaDRGL 7

features [25], as its explicit node feature. For medical condition nodes, a 1024-bit filler
vector of 0s was assigned as the explicit node feature. There are 1199 medical condition
nodes and 1013 drug nodes, and Figure 3a depicts them OrphaDRGL’s network.

(a) Nodes (b) Drug-Medical Condition Edges

(c) Drug-Medical Condition and Drug-Drug
Edges

(d) Drug-Medical Condition, Drug-Drug, and
Medical Condition-Medical Condition Edges

Fig. 3: OrphaDRGL Network Formation

Drug-Medical Condition Edges Drug-medical condition edges in OrphaDRGL’s net-
work connect medical conditions to drugs that are approved treatments for it. Approved
drug-indication pairs were taken from the repoDB database [4] and used to construct
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these edges. There are 5686 drug-medical condition edges, and Figure 3b depicts them
in OrphaDRGL’s network.

Drug-Drug Edges Drug-drug edges in OrphaDRGL’s network connect drug nodes to
other drug nodes based on chemical structure similarity and side effect similarity.

Chemical structures of the drugs in the network were extracted from the DrugBank
database [32], and the Morgan Fingerprint bit vector of each drug was constructed using
the extracted chemical structures. The chemical structure similarity of two drugs was de-
termined by the Tanimoto Coefficient (1), where ma is the Morgan Fingerprint for drug
a. Two drugs with a Tanimoto Coefficient of their Morgan Fingerprints ≥ 0.45 were
considered similar, and a drug-drug edge was constructed between them. A similarity
threshold of 0.45 was chosen because experimentation by Maggiora et al. [16] demon-
strated that a 0.45 threshold for Tanimoto Coefficents of Morgan Fingerprints had a
significance level of p <∼ 10−4.

Then, side effects of the drugs in the network were extracted from the SIDER database
[14], and the side effect similarity of two drugs was also determined by the Tanimoto
Coefficient (1). However, ma was replaced by sa, which is the one-hot encoded side effect
vector for drug a. The same threshold as the chemical structure similarity was used.

TC(m1,m2) =
|m1 ∩m2|

|m1|+ |m2| − |m1 ∩m2|
(1)

There are 1221 drug-drug edges, and Figure 3c depicts them in OrphaDRGL’s network.

Medical Condition-Medical Condition Edges Medical condition-medical condi-
tion edges in OrphaDRGL’s network connect medical condition nodes to other medical
conditions nodes based on phenotypic similarity.

The phenotypes of medical conditions in the network were first extracted from the
Human Phenotype Ontology (HPO) database [13], and the Resnik Information Content
Similarity Score (RICSS) (2) [24] on the Human Phenotype Ontology was used to deter-
mine the phenotypic similarity of two medical conditions. The Information Content (IC)
score of a term, t, represents how specific it is. Thus, terms with lower probabilities of
occurring have higher IC scores. The RICSS of two terms is the IC score of their Most
Informative Common Ancestor (MICA). For OrphaDRGL, all RICSSs were calculated
using the PhenoSimWeb application [22].

IC(t) = −log(p(t))

Resnik(t1, t2) = IC(tMICA)
(2)

The similarity threshold for the RICSS of two medical conditions classified by HPO
as diseases was 0.5, and the similarity threshold for the RICSS of two medical conditions
classified by HPO as phenotypes was 0.25. A medical condition-medical condition edge
was constructed between any pair of medical condition nodes that met these similarity
thresholds, and all diseases were connected to their phenotypes.

There are 7986 medical condition-medical condition edges, and Figure 3d depicts
them in OrphaDRGL’s network. The summary statistics of this complete network con-
taining all the nodes and edges are given in Table 1.
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Table 1: Summary Statistics of OrphaDRGL’s Drug and Medical Condition
Network

2212 Nodes
14893 Edges
13.47 Average Degree
0.33 Average Clustering Coefficient

Fig. 4: A Visualization of SEAL’s Subgraph Extraction on OrphaDRGL’s Net-
work. The link being predicted in the subgraph is between Drug A and Medical Condi-
tion B. A two-hop subgraph is depicted for visualization purposes.

4.2 Subgraph Extraction for the SEAL Framework

After OrphaDRGL’s network was formed, the SEAL framework [35] was applied to it.

SEAL The SEAL framework performs link prediction by extracting k-hop subgraphs
surrounding two target nodes, x and y, from a larger network and applying a double-
radius node labeling to the subgraphs for marking nodes’ roles and retaining structural
information; these subgraphs are then used to train a GCN to predict the existence of
an edge between x and y [35].

OrphaDRGL’s Subgraphs When applying SEAL to OrphaDRGL, the target nodes,
x and y were always a medical condition node and drug node, respectively, as the edges
OrphaDRGL is trying to predict are drug-medical condition edges. Also, the k parameter
in k-hop subgraph extraction was set to 1. A visualization of this process is illustrated
in Figure 4.

In total, 11372 subgraphs were extracted from OrphaDRGL’s network to act as train-
ing and evaluation data. There was a perfect balance between positive and negative
samples (5686 each), and available true negative drug-medical condition pairs from the
repoDB database, such as those involved in failed clinical trials, were used. The remaining
negative samples, however, were randomly sampled from the network.

4.3 Link Concealing Algorithm

When left as is, the medical conditions in OrphaDRGL’s network have an average of 4.7
(Std. Dev. of 9.1) and at least one drug-medical condition edges associated with them.
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Fig. 5: A Visualization of the Link Concealing Algorithm Employed on Or-
phaDRGL’s Subgraphs. The highlighted drug-medical condition edges in subgraph
A are the ones that will be concealed to emulate orphan disease conditions. In subgraph
B, the edges highlighted in subgraph A are concealed and no longer part of the sub-
graph. Subgraph B is the final subgraph that will be used to train/evaluate the graph
convolutional neural network.

Certain medical conditions have a plethora of drug-medical conditions associated with
them. For example, non-insulin-dependent (type II) diabetes mellitus has 23. On the
other hand, most orphan diseases will have zero drug-medical condition edges associated
with them because they do not have existing, approved treatments [26]. Ergo, there
is a significant difference between the distributions of drug-medical condition edges for
medical conditions in OrphaDRGL’s network and OrphaDRGL’s intended application:
orphan diseases (p < 0.0001; unpaired two-tailed t-test). This is suboptimal because
the feature distributions of training, evaluation, and application data being different can
cause link prediction algorithms to be futile [8].

To this end, a link concealing algorithm was applied to the subgraphs extracted from
OrphaDRGL’s network. The Link Concealing Algorithm hides all drug-medical condition
edges stemming from the subgraph’s target medical condition in order to emulate orphan
disease conditions in the training and evaluation data so that OrphaDRGL can be applied
to orphan diseases in the real world.

Pseudocode for this algorithm is given in Algorithm 1, and a visualization is depicted
Figure 5.

Algorithm 1: OrphaDRGL’s Link Concealing Algorithm

Data: S is the adjacency matrix for subgraph with target medical condition node x
and Γ (x) is the set of all neighbors of x.

begin
for i ∈ Γ (x) do

if type(i) = ”drug” then
Sxi = Six = 0
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4.4 Deep Learning Model

Finally, after network formation, subgraph extraction, and the application of the link
concealing algorithm, 10-fold cross validation training and evaluation was performed on
a GCN, which is the deep learning model that OrphaDRGL utilizes to predict links
between drug and medical condition nodes.

Graph Convolutional Neural Networks A graph convolutional neural network
(GCN) is a specialized neural network that contains graph convolutional layers. These
layers perform node feature propagations in which each node’s feature becomes the lin-
ear transformation of the normalized aggregation of its neighbors’ features and its own
original feature [12]. This process is visually depicted in Figure 6 and represented by (3)
[12].

Z = D̃−1/2ÃD̃−1/2XW (3)

Here, Z is the output of the graph convolutional layer, X is the input, A is the adja-
cency matrix for the inputted graph and Ã = A+I, D̃ is a diagonal degree matrix where
D̃ii = ΣjÃij , and W is the weight matrix of trainable parameters. D̃−1/2ÃD̃−1/2X per-
forms the node feature propagation and normalization, and multiplying by W performs
the linear transformation [12].

Fig. 6: A Visualization of a Graph Convolutional Layer Operation.

10-fold Cross Validation 10-fold cross validation is the process of training a model
10 different times on 10 different training sets containing 90% of the data and evaluating
on 10 different testing sets containing 10% of the data and averaging the performance
metrics. An advantage of 10-fold cross validation over a single train-test split is that
every single sample is part of the testing set once. Thus, 10-fold cross validation gives a
better representation of the model’s true generalization abilities and performance.

For OrphaDRGL, there were 10234 or 10236 subgraphs, which composed 90% of the
samples, in each iteration’s training set. These subgraphs were used to train a three-layer
GCN with the architecture depicted in Figure 2 for 50 epochs. The learning rate was set
to 0.001, the batch size was 16, and the Adam optimizer was used along with a Binary
Cross Entropy loss function (4). The remaining 1138 or 1136 subgraphs, which composed
10% of the samples, were in the testing set for evaluation.

L = y · log(ŷ) + (1− y) · log(1− ŷ) (4)
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Fig. 7: The Visualization of OrphaDRGL’s 10-fold Cross-validation.

5 Findings

Fig. 8: The Area Under the Curve Receiver Operating Characteristics (AUC-
ROC) for OrphaDRGL’s 10-fold cross-validation. The average AUC-ROC score
and the highest AUC-ROC fold are highlighted

5.1 Performance Results

The performance of OrphaDRGL was evaluated using the Area Under the Curve Receiver
Operating Characteristics (AUC-ROC) score, which ranges from 0 to 1. Figure 8 displays
all 11 ROC curves: one curve for each iteration in the 10-fold cross validation and the
average curve.



OrphaDRGL 13

OrphaDRGL achieved an average AUC-ROC score of 0.953. The best performing
model achieved an AUC-ROC score of 0.964 and had an optimal classification thresh-
old of 0.481. These scores demonstrate that OrphaDRGL possesses good generalization
abilities.

5.2 Novel and Literature-supported Drug Repositioning Candidate
Identifications

Following 10-fold cross validation training and evaluation, OrphaDRGL was applied to
three different orphan diseases in order to identify potential drug repostioning candi-
dates. The orphan diseases were Steinert’s Disease, a myotonic dystrophy characterized
by skeletal muscle weakness and myotonia [27]; Menkes Disease, a copper metabolism
disorder [30]; and Agammaglobulinemia, a immunodeficiency disorder [18]. Across these
three orphan diseases, OrphaDRGL was able to identify both literature-supported and
novel, previously unreported drug repositioning candidates in its top 20 positive link
predictions, which are displayed in Table 2.

The literature-supported OrphaDRGL-identified drug repositioning candidates are
Testosterone and Prednisone for Steinert’s Disease, which are supported by Kingston &
Moxley [11] and Trip et al. [29], respectively; Penicillamine for Menkes Disease, which is
supported by Nadal & Baerlocher [19]; and Ciprofloxacin and Benzylpenicillin for Agam-
maglobulinemia, which are supported by Ganier [6] and Autenrieth et al. [3], respectively.
The remaining drugs are novel, previously unreported potential drug repositioning can-
didate identifications made by OrphaDRGL.

Table 2: The Top 20 Positive Links or Identified Drugs by OrphaDRGL for
Steinert’s Disease, Menkes Disease, and Agammaglobulinemia. The therapeutic
effect of highlighted drugs have been supported or suggested in the scientific literature.

Rank Steinert’s Disease Menkes Disease Agammaglobulinemia

1 Testosterone Chlorphenesin Ibandronate
2 Ataluren Zoledronic Acid Lactic Acid
3 Lomustine Anisotropine Methylbromide Metaxalone
4 Cholic Acid Ataluren Edetic Acid
5 Prednisone Metaxalone Pyridostigmine
6 Testosterone Propionate Ibandronate Etidronic Acid
7 Amiodarone Dexpanthenol Gramicidin D
8 Zinc Sulfate Prednisone Ciprofloxacin
9 Carmustine Oxacillin Neostigmine
10 Bicalutamide Baclofen Lumiracoxib
11 Fluoxymesterone Lactic Acid Sodium Ferric Gluconate Complex
12 Ibandronate Riluzole Levofloxacin
13 Sucralfate Dimethyl Fumarate Zoledronic Acid
14 Dipyridamole Fosphenytoin Moclobemide
15 Pyrimethamine Clobazam Vortioxetine
16 Tinidazole Dantrolene Mannitol
17 Bretylium Methoxsalen Dipyridamole
18 Chlorpromazine Diazepam Mitoxantrone
19 Temozolomide Penicillamine Cromoglicic Acid
20 Duloxetine Phylloquinone Benzylpenicillin
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5.3 Ablation Analysis

An ablation analysis on OrphaDRGL’s Link Concealing Algorithm was performed. When
the Link Concealing Algorithm was not applied to the same training samples in 10-fold
cross validation, the average AUC-ROC score was 0.778, and the highest AUC-ROC
score was 0.846. Indeed, the usage of OrphaDRGL’s Link Concealing Algorithm led to
a statistically significant performance increase in drug repositioning in orphan disease
conditions (p < 10−8; unpaired two-tailed t-test). This demonstrates that OrphaDRGL
is computationally designed for and applicable to orphan disease drug repositioning,
something that the prior literature does not do.

Fig. 9: The Area Under the Curve Receiver Operating Characteristics (AUC-
ROC) Without OrphaDRGL’s Link Concealing. The average AUC-ROC score
and the highest AUC-ROC fold are highlighted.

6 Conclusions

6.1 Discussion

OrphaDRGL is a novel deep learning network-based drug repositioning approach for or-
phan diseases that uses drug side effect data, drug chemical structure data, disease phe-
notype data, and existing drug-indication data from four different open-source databases
to form a drug and medical condition network. Then, OrphaDRGL employs subgraph
extraction-based link prediction (SEAL) [35], a link concealing algorithm, and a GCN
on its network in order to predict drug repositioning candidates.
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OrphaDRGL is the first reported deep learning network-based drug repositioning
approach in the scientific literature that utilizes a GCN for subgraph extraction-based
link prediction (SEAL) and is specifically designed for orphan diseases. It achieved a high
AUC-ROC score when trained and evaluated over 10-fold cross validation. Moreover, it
was able to identify both literature-supported as well as novel, previously unreported drug
repositioning candidates for three different orphan diseases. This is promising because
OrphaDRGL, an in silico model, was able to correspond with certain clinical studies
that have been carried out.

Ultimately, OrphaDRGL greatly improves upon the fortuitous nature of drug reposi-
tioning by providing a comprehensive deep learning-based approach by which potential
treatments for orphan diseases can be identified.

6.2 Future Work and Limitations

Currently, OrphaDRGL’s network is limited to small molecule drugs. This is because
only small molecule compounds have Morgan Fingerprints to use as explicit node features
and calculate chemical structure similarity with. Therefore, OrphaDRGL is limited to
identifying small molecule drug repositioning candidates and cannot reposition other
types of drugs such as biologics. Thus, future work involves developing an equivalent
representation for all drugs so that both small molecule drugs and biologics can be
incorporated into OrphaDRGL’s network, which would broaden the scope and increase
the variety of drugs that OrphaDRGL can identify as drug repositioning candidates.
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