
 

 
 

S.T. Yau High School Science Award  
 

Research Report 
 
 
The Team 
 
Name of team member: Anish Mudide 
School: Phillips Exeter Academy 
City, Country: Exeter, USA 
 
Name of supervising teacher: Alexander Wu 
Job Title: PhD Student 
School/Institution: MIT CSAIL 
City, Country: Cambridge, USA 
 
 
 
Title of Research Report 
 
Neural Granger Causality on DAGs Reconstructs Gene Regulatory Networks from Single-cell 
Transcriptomics 
 
Date 
 
September 5, 2022



Neural Granger Causality on DAGs Reconstructs Gene
Regulatory Networks from Single-cell Transcriptomics

Anish Mudide

Under the direction of

Rohit Singh
Research Scientist

MIT CSAIL

Alexander Wu
PhD Student
MIT CSAIL

Research Science Institute
September 5, 2022



Abstract

Uncovering causal relationships between variables is crucial for developing a global un-
derstanding of dynamical systems. Granger causal models extract the underlying causal
structure by identifying variables useful in forecasting future values of other variables, thus
accounting for the temporal lag between a cause and its effect. While traditional Granger
causal methods model linear relationships between time series, recent work has pushed for
the capture of nonlinear dynamics and long-range dependencies via sparsity-inducing reg-
ularization. However, such models assume that the dynamical system under consideration
consists of a totally-ordered sequence of observations. Many real-world dynamical systems,
such as cellular differentiation trajectories, possess only a partial ordering due to branch-
ing points and thus cannot be rigorously explored under current methods. In this paper,
we present LagNet, a novel model architecture that extends regularized, nonlinear Granger
causal inference to partially-ordered sequences of observations. We demonstrate LagNet’s
utility by applying it to reconstruct genetic regulatory networks from single-cell transcrip-
tomic datasets. In a series of benchmark tests, we show that LagNet consistently outperforms
established Granger causal models as well as GENIE3, a state-of-the-art regulatory network
inference method.

Summary

To study a system, researchers will often collect data from many observations. A major
goal of such work is to understand the cause and effect relationships that exist within the
data. Current methods for identifying these causal relationships fail to work when the system
is structured as a network, as is the case for social media users and groups of cells. To address
this, we developed a novel method that effectively uncovers cause and effect relationships
within network-structured systems. The motivating application for our research is to develop
a deeper understanding of gene regulation, the process by which special proteins called
transcription factors control the production of our genes. Since many diseases arise from
errors in gene regulation, further insight into these interactions is critical for developing new
therapeutics.
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1 Introduction

The expression levels of genes within a cell are intrinsically linked by causal relationships,

in which a change to the expression of one gene may trigger downstream effects in other genes.

Uncovering the topology of gene regulatory networks (GRNs) which describe the complete

set of casual relationships is a crucial open problem in biology [1]. While causality remains

a deeply philosophical notion, statistical frameworks such as Granger causality have shown

promise in detecting ground-truth casual relationships from real-world datasets [2]. Often,

the downstream effect of a cause does not occur instantaneously. For instance, within GRNs

a transcription factor (TF) must first be translated and bind to the promoter region of a

target gene (TG) before its effect on TG expression can be realized (Figure 1a). When a

cause precedes its effect, the casual variable is informative for forecasting future values of

the effected variable. The framework of Granger causality thus recasts causal relations as

predictive relations. In particular, a time series x (where xt denotes the value at time t) is

defined to “Granger-cause” a time series y if knowing past values of x helps predict y [3].

Modern GRN inference methods leverage Granger casual models to identify TF-TG pairs

from single-cell RNA-sequencing (scRNA-seq) data, relying on the biological intuition that if

the expression level of gene a Granger-causes the expression level of gene b, we can infer that

gene a encodes a TF while gene b is its corresponding TG [4, 5]. Ideally, such methods would

operate on datasets that sample the transcriptomic state of singular cells over time (Figure

1b). However, the vast majority of available scRNA-seq datasets originate from protocols

which result in cell death, preventing the temporal measure of transcriptional output. scRNA-

seq instead provides a snapshot description of a cell population’s state at a particular time [6].

The data is organized into an expression matrix, which contains the expression levels of every

gene within each cell (Figure 1c). Despite not containing true temporal information, large-

scale scRNA-seq studies capture a wide range of cell states, ranging from early progenitor
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Figure 1: Overview. (a) A temporal lag separates the transcription of a transcription factor
and its corresponding target gene. (b) The expression of a TF Granger-causes the expres-
sion of a TG. However, we cannot measure the transcriptional output of a cell over time
because sequencing destroys the cell. (c) With scRNA-seq, we obtain a snapshot of the cell
population’s state, which describes the number of transcripts per gene for all cells.

cells to fully differentiated cells. Computational strategies have been developed to order these

cells along a linear trajectory, where each cell is associated with an inferred “pseudotime”

[7]. Cells earlier in the trajectory are assumed to be the previous states of cells with later

pseudotimes. Thus, ordering cells by pseudotime estimates the evolution of a cell’s expression

levels over time, which enables Granger causal models to identify TF-TG pairs [8].

Complications arise, however, because realistic cells do not evolve in a linear trajectory.

Many cellular trajectories contain branching events where a cell may differentiate along

one of many lineages, each with its own terminal state [9]. Consequently, the underlying

differentiation structure of the cells is more aptly described as a directed acyclic graph

(DAG), where an edge from node i to node j indicates that cell i may differentiate into cell

j. In this paper, we construct this DAG directly from the expression matrix. While ordering

cells by pseudotime imposes a total ordering on the cells, the DAG structure imposes only

a partial ordering, which is biologically sound as cells in separate lineages are not directly
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Figure 2: Current GRN inference methods determine TF-TG pairs by applying Granger
causality to cells ordered by pseudotime, which disregards the differentiation structure of
the cells encoded by the DAG. By taking into account the structure of the DAG, LagNet
produces biologically meaningful predictions.

comparable. However, state-of-the-art Granger casual models such as the component-wise

multilayer perceptron (cMLP) require that the observations obey a total ordering [10]. Figure

2 depicts a group of 10 cells (labeled a through j) ordered by pseudotime on the left, while

the true differentiation structure is shown on the right. A totally-ordered Granger causal

model (e.g. cMLP) will forecast the gene expression of cell j using the L most recent cells;

for L = 2, these are cells h and i. This is illogical because cells h and i are part of a distinct

cellular lineage and are thus far-removed from cell j in the differentiation structure. In short,

using totally-ordered models on DAG-structured systems ignores the underlying branching

structure, necessitating new model architectures for Granger causal inference on DAGs.

In this paper, we present LagNet, a novel causal inference model that extends state-

of-the-art Granger causal inference to dynamical systems structured as DAGs. LagNet’s

architecture combines graph convolutions that aggregate information from ancestors in the
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DAG with fully connected linear layers in order to make forecasts (Figure 2). While LagNet

is fully general and can be applied to any DAG-structured dynamical system, in this paper

we focus specifically on its ability to reconstruct gene regulatory networks. We apply LagNet,

two recently proposed Granger casual models, as well as a random forest model specialized

in GRN inference to simulated scRNA-seq data with known ground truth TF-TG pairs.

We find that LagNet consistently is the best-performing GRN inference model across four

datasets varying in differentiation complexity. Our implementation of LagNet is available at

https://github.com/amudide/LagNet.

2 Methods

2.1 Granger Causal Models

Since its proposal in 1969, Granger causality has proven to be a successful framework

for inferring causal relationships within dynamical systems [11, 12]. There are two main

approaches we can use to assess the existence of a Granger causal relationship between

variables x and y: ablation and invariance [3]. The ablation approach involves training two

predictive models of y, denoted as u and ux̄, where u includes the full history of every variable

in the system and ux̄ excludes the history of x. If u performs significantly better than ux̄,

as determined by a one-tailed F-test, then x Granger-causes y. The invariance approach

(which we adopt in this paper) involves training just one predictive model of y, denoted as

f , using the full history of every variable. Then, x does not Granger-cause y if and only if the

learned weights governing the interaction between x and y are all equal to 0. Equivalently,

no causal relationship exists exactly when the prediction of y is invariant to perturbations

in the history of x. This latter approach reduces training time and allows for more direct

interpretation.

In the original formulation of Granger causality, every variable is modelled as a linear com-
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bination of the system’s variable histories. While this traditional casual model successfully

captures simple dynamics, real-world datasets often conform to nonlinear and long-range

interactions. To identify causal relationships in these settings, recent work has focused on

developing new variations of the Granger causal model based on deep learning architectures

[10, 13]. Tank et al. [10] introduce a regularized multilayer perceptron (cMLP) and a long

short-term memory network (cLSTM) that model nonlinear relationships while simultane-

ously determining the lag of each putative causal relationship. Marcinkevičs and Vogt [13]

extend self-explaining neural networks to multivariate time series data in order to determine

whether a causal relationship induces a positive or negative effect.

In general, given a dynamical system with N observations and g variables, Granger causal

inference involves training g models f1, f2, . . . , fg. fj models variable j as a function of the

previous L observations:

xtj = fj
(
x(t−L):(t−1)1, x(t−L):(t−1)2, . . . , x(t−L):(t−1)g

)
+ etj.

Here, x(t−L):(t−1)k = (x(t−L)k, . . . , x(t−1)k), xtj denotes the value of the variable j at observation

t and etj denotes an error term [10]. Each pair of variables (i, j) has an associated weight

matrix Wij that defines how variable j depends on past lags of variable i. Variable i is inferred

to Granger-cause j if |Wij| 6= 0, meaning that fj is not invariant to x(t−L):(t−1)i. During

training, regularization can be applied to each weight matrix Wij to assist in achieving exact

zeros for the non-causal relationships. In addition, Wl
ij refers to the vector that defines the

interaction between x(t−l)i and xtj. By applying additional regularization terms on each Wl
ij,

we can automatically detect the relevant lags of each putative causal relationship [10].

2.2 LagNet

In the above formulation, xt is defined to temporally precede xt+1, which means that a

total ordering on the N observations is required. Thus, dynamical systems which consist of

branching points, such as cellular differentiation trajectories and Twitter retweet networks,
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cannot be successfully modelled under current architectures. To address this, LagNet extends

the nonlinearity and automatic lag selection of modern Granger causal methods to DAG-

structured dynamical systems which possess only a partial ordering over their observations.

LagNet takes in two inputs, A ∈ RN×N and X ∈ RN×g, and produces one output

GC ∈ Rg×g. A is the adjacency matrix of the DAG, X is the feature matrix which describes

the values of the g variables over the N observations, and GC is the adjacency matrix of the

inferred causal graph, where GCij = 1 if variable i Granger-causes variable j and GCij = 0

otherwise. We precompute a modified matrix A′ which is the result after normalizing the

sum of each row in AT to 1. If a row of AT consists of all zeros, the row is unaltered.

To infer causal relationships, we train g separate models f1, f2, . . . , fg. We propose fj to

be a multilayer neural network that models variable j as a nonlinear function of ancestors

within the DAG. The key differentiating factor of our model architecture is the first hidden

layer, which takes on the form

h(1) = σ
( L∑

`=1

(AT )`XW1,` + b1

)
.

Here, (A′)` represents the `th power of A′, W1,` is a learned weight matrix and b1 is a

learned bias term. For each 1 ≤ l ≤ L, (A′)`XW1,` aggregates information from ancestors `

steps backwards in the DAG defined by A (Figure 3a). The row-normalization of A′ allows

for predictions to be uniform despite varying indegrees. Let d be the number of hidden units

per hidden layer. Then, we have h(1) ∈ RN×d, W1,` ∈ Rg×d and b1 ∈ RN×d. Note that, as

the A′ and X matrices are fixed, we can pre-compute (A′)`X = A′
(
(A′)`−1X

)
inductively

for 1 ≤ ` ≤ L. σ is a nonlinear activation function.

In a K layer model, the hidden layers h(k) for 1 < k < K are given by

h(k) = σ
(
h(k−1)Wk + bk

)
,

where h(k) ∈ RN×d, Wk ∈ Rd×d and bk ∈ RN×d (Figure 3b). Finally, the output fj ∈ RN of
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the autoregressive model is given by

c
(
h(K−1)WK + bK

)
,

where WK ∈ Rd×1, bK ∈ RN×1 and c is an optional element-wise decoder function that maps

the real numbers to a domain-specific output. While we limit c to the identity function, future

work could explore using c(x) = ex for gene expression data, which is always non-negative.

The only constraint on the weight matrices is that each of the bi matrices must have constant

columns so that the bias term is uniform across observations.

Figure 3: LagNet architecture: N = 8, g = 3, L = 3, d = 4 and K = 3. (a) LagNet

predicts a node’s features based on ancestors in the DAG. (b) Predictions are made by

passing aggregated information from each lag through a feed-forward neural network. (c) If

the weights associated with variable i (highlighted in black for i = 1) are all equal to 0, then

variable i does not Granger-cause variable j. (d) The lag-selection and hierarchical penalties

further penalize groups of weights associated with particular lags.
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To infer causality, we concatenate the W1,` matrices into W1 ∈ RL×g×d. Let W1
i ∈ RL×d

denote the weights that govern the interaction between variable i and variable j (Figure

3c). Time series i does not Granger-cause time series j exactly when ‖W1
i ‖F = 0, where

|| · ||F denotes the Frobenius matrix norm. Similarly, let W1,l
i ∈ Rd denote the weights that

govern the interaction between variable i and variable j at a particular lag l. If variable i

Granger-causes j, then l is not a relevant lag exactly when
∥∥∥W1,l

i

∥∥∥
2

= 0, where || · ||2 denotes

the L2 norm.

We wish to simultaneously reduce the prediction error of each model fj while encouraging

exact zeros within the W1
i matrices in order to induce sparsity in the causal graph. To achieve

this, our objective function J is defined to be the sum of the MSE loss and a regularization

term applied to W1, which is weighted by λ:

J = MSE(fj,X:j) + λR(W1).

Here, X:j ∈ RN denotes the value of variable j over all N observations.

We implement three distinct regularization functions defined by Tank et al. [10]. The

group regularization penalizes all weights within W1 symmetrically:

R(W1) =

g∑
i=1

∥∥W1
i

∥∥
F
.

The lag-selection regularization aids in automatic lag detection by merging weights from the

same lag together (Figure 3d):

R(W1) =

g∑
i=1

(∥∥W1
i

∥∥
F

+
L∑
l=1

∥∥∥W1,l
i

∥∥∥
2

)
.

Finally, the hierarchical regularization also merges weights from the same lag, but penalizes

longer lags more than shorter lags (Figure 3d):

R(W1) =

g∑
i=1

( L∑
l=1

∥∥∥(W1,l
i , . . . ,W

1,L
i

)∥∥∥
F

)
.

Traditional gradient descent algorithms such as Adam [14] and stochastic gradient descent

often fail to converge the learned weights to exact zeros, hindering causal detection. We thus
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optimize the objective function J via proximal gradient descent, a specialized algorithm

designed to induce sparsity given a regularized objective function [15]. We train the models

f1, f2, . . . , fg using all N observations. The models are never shown the ground truth causal

graph GC∗, thus preventing overfitting from occurring. During evaluation, GC∗ is compared

to GC, which is inferred from the learned weight matrices of f1, f2, . . . , fg. Across all LagNet

experiments, we set d = 100, K = 2 and L = 5. We use ReLU [16] for our activation function

σ, the hierarchical regularization penalty, and the identity function for c.

2.3 Comparison with GrID-Net

To the best of our knowledge, the only other Granger causal model that takes into account

the DAG structure of a system is GrID-Net, an approach based on graph neural networks

[3]. GrID-Net adopts the ablation strategy: for each pair of variables (i, j), GrID-Net will

train a reduced model using only variable j and a full model using variables i and j. The

models are then compared via the in-sample loss; if the full model performs significantly

better, i is inferred to Granger-cause j. By considering only bivariate relationships, GrID-

Net fails to capture the system-wide dynamics modelled by LagNet. Moreover, GrID-Net

applies no regularization to model weights, does not quantify the lag of causal relationships

and overall, lacks the interpretability provided by LagNet. In this paper, we also demonstrate

that GrID-Net fails to consistently produce meaningful inferences in the GRN reconstruction

task.

2.4 DAG Construction

Given a scRNA-seq dataset with N cells and g genes, we aim to construct a DAG (with

adjacency matrix A ∈ RN×N) on the cells that preserves the underlying differentiation

trajectories. We want Aij = 1 if cell j is a logical subsequent cell state of cell i, and Aij = 0
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otherwise.

To build this DAG, we first construct a graph G that connects each cell to its k-nearest

neighbors based on latent space representations generated from principal component anal-

ysis (PCA). Next, we infer a pseudotime value for each cell using the diffusion pseudotime

algorithm [7]. Finally, we orient each edge e ∈ G in the direction of increasing pseudotime.

This preserves the underlying differentiation structure while ensuring that the constructed

graph is acyclic.

We note that dynamical systems with totally ordered sequences of observations can also

be modelled by LagNet. In this case, the adjacency matrix satisfies Aij = 1 if i+ 1 = j and

Aij = 0 otherwise.

3 Results

We evaluate LagNet on simulated datasets by comparing LagNet’s inferred Granger

causal relationships to the ground truth causal graph. We present two major sets of results.

First, we apply LagNet to multivariate time series data, for which there exists a total order-

ing on the observations. Despite being designed for partially ordered sequences, LagNet still

performs on-par with state-of-the-art Granger casual models that assume a total ordering.

Second, we apply LagNet to reconstruct gene regulatory networks from simulated scRNA-

seq datasets. We find that LagNet outperforms GrID-Net [3], cMLP [10] and GENIE3 [17]

across four benchmark tasks.

3.1 Multivariate Time Series

The Lorenz-96 model [18] is used as a standard benchmark task for Granger casual models

due to the nonlinear nature of the underlying causal relationships. The simulated dynamical

system consists of g variables, where variable i is Granger-caused by variables i − 2, i − 1
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and i+ 1, and variable indices outside of [0, g − 1] are taken modulo g. Each variable obeys

the differential equation

dxti
dt

=
(
xt(i+1) − xt(i−2)

)
xt(i−1) − xti + F,

where higher values of F result in greater nonlinearity [10]. Figure 4 illustrates examples of

simulated time series.

Figure 4: First 50 data points of 5 simulated Lorenz-96 time series (F = 40).

We run LagNet on 10 simulated time series, each with 1000 observations. We compare the

inferred Granger casual graph with the ground truth interactions defined by the differential

equation. Figure 5 visually compares the adjacency matrices of the ground truth and pre-

dicted casual graphs, where the relative intensity of each entry (i, j) in the predicted matrix

corresponds to the Frobenius norm of the learned weight matrix governing the interaction

between variables i and j. We find that LagNet perfectly reconstructs the relative intensities

of each entry. However, LagNet faces difficulty in achieving exact zeros for non-casual rela-

tionships, despite our optimization of the objective function via proximal gradient descent.

It is thus more practical to infer a Granger casual relationship between two variables if the
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interaction intensity is above a certain threshold s.

Marcinkevičs and Vogt [13] rigorously benchmark six different Granger casual models on

simulated Lorenz-96 data (F = 40, N = 500 observations, g = 20 time series). We apply

LagNet to the benchmark dataset to compare its performance with current top-performing

models (Table 1). While cMLP performs the best in terms of both AUROC and AUPRC,

LagNet performs on par, placing second in terms of AUROC and third in terms of AUPRC.

Thus, in generalizing to DAGs, LagNet does not compromise its ability to infer casual rela-

tionships within totally-ordered datasets.

Figure 5: Lorenz-96 ground truth versus predicted casual graphs, visualized as adjacency

matrices.

Model VAR cMLP cLSTM TCDF eSRU GVAR LagNet (ours)

AUROC (± SD) 0.745 (± 0.047) 0.979 (± 0.016) 0.661 (± 0.038) 0.679 (± 0.021) 0.934 (± 0.021) 0.970 (± 0.009) 0.975 (± 0.015)

AUPRC (± SD) 0.474 (± 0.036) 0.956 (± 0.033) 0.385 (± 0.063) 0.314 (± 0.050) 0.834 (± 0.033) 0.916 (± 0.024) 0.908 (± 0.041)

Table 1: Comparison of various Granger casual models on simulated Lorenz-96 data. AUROC

and AUPRC are calculated by sweeping the threshold value s. Data shown is the mean and

standard deviation values across 5 replicates. [13]

While LagNet is designed for nonlinear interactions, we show that LagNet is robust
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to linear dynamics as well. Using vector autoregression (VAR), we simulate 10 time series

across 1000 observations. Figure 6 depicts how VAR time series evolve over time. Applying

LagNet to the simulated data leads to an almost perfect (98% accuracy) reconstruction of

the underlying causal graph (Figure 7). Once again, we observe that LagNet struggles to

converge to exact zeros for certain non-causal interactions.

Figure 6: First 50 data points of 5 simulated VAR time series.

Figure 7: VAR ground truth versus predicted casual graphs, visualized as adjacency matrices.
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3.2 Gene Regulatory Network Reconstruction

SERGIO [19] is a computational tool that simulates scRNA-seq datasets which reflect the

dynamics of a user-defined GRN. Datasets generated by SERGIO are realistic and allow for

the rapid assessment of GRN inference tools since the underlying GRN is known. We assess

LagNet’s ability to reconstruct gene regulatory networks by applying it to four benchmark

datasets. We additionally evaluate the performance of cMLP [10], GrID-Net [3] and GENIE3

[17] on the same datasets in order to provide a comparison. We run GrID-Net and GENIE3

using the default parameters. To apply cMLP, we first order the cells by pseudotime, as

determined by the diffusion pseudotime algorithm [7].

The four datasets each contain 100 genes and 300 cells per cell type. The underlying GRN

used to simulate the data is a network found in E. coli consisting of 10 TFs and 137 TF-TG

pairs [19]. Dataset 1 contains three cell types arranged in a linear trajectory, dataset 2 has

four cell types with a bifurcation event, dataset 3 has six cell types with a trifurcation event,

and dataset 4 has seven cell types with both bifurcation and trifurcation events (Figure 8).

We evaluate the predicted causal graphs of LagNet, GrID-Net, cMLP and GENIE3 on

the four benchmark datasets in terms of AUROC and AUPRC. The baseline AUPRC for a

random model is 0.0137. Across all four datasets, we find that LagNet is the top performer as

measured by both AUROC and AUPRC (Figure 8). GENIE3 consistently outperforms the

two other Granger causal models. While cMLP displayed unsurpassed performance on the

totally-ordered Lorenz-96 dataset, it fails to compete with LagNet in this DAG-structured

system. Despite taking the DAG structure into account, GrID-Net performs poorly, especially

on datasets 2 and 4. The success of LagNet on these datasets demonstrates the power of

incorporating domain knowledge and regularization when building interpretable models.
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Figure 8: Comparison of Granger causal (LagNet, GrID-Net, cMLP) and random forest mod-

els (GENIE3) models on the gene regulatory network inference task. Across four benchmark

datasets varying in differentiation complexity, LagNet performs the best in terms of both

AUROC and AUPRC.
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4 Discussion

The modern deep learning toolbox is hyper-focused on data structured as sequences (e.g.

audio, text) and grids (e.g. images). On the other hand, the study of neural networks that

operate on graphs was first introduced by Scarselli et al. in 2008 and is still in its early stages

[20]. This poses a major challenge because a great wealth of pressing problems, such as drug

design and protein folding, can be formulated using graphs [21]. In fact, any sequence or

grid can be re-casted as a graph, meaning that further research into graph-based machine

learning is a step in the right direction towards general intelligence. In this paper, we make

meaningful contributions to the study of graphs by generalizing state-of-the-art causality

inference to directed acyclic graphs.

In addition, the vast majority of machine learning architectures are optimized for predic-

tion, whether that be in the form of classification, regression or forecasting. Such models often

involve complex sets of dependencies and vast sets of parameters that yield them difficult to

interpret. Instead of optimizing predictive power, we focus on an interpretable architecture

that reveals the underlying structure within data in the form of causal relationships. We

achieve this through combining a biologically-informed representation with harsh penalties

that force the model to extract only the relevant information. Incorporating regularization

additionally allows our method to generalize well to high-dimensional settings.

We observe that LagNet more accurately predicts the ground truth regulatory network

when given larger amounts of data. While the maximum number of cells in our benchmark

datasets was roughly 2000, modern scRNA-seq pipelines easily profile tens of thousands of

cells [22]. These datasets often contain many cell types and complex differentiation patterns.

We project that LagNet will continue to excel over other methods in these real-world con-

ditions. Additionally, further iterations of LagNet have the potential to strengthen GRN

reconstruction. We notice that LagNet often fails to converge non-causal weight matrices to
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exact zeros, even within linear settings. Thus, GRN inference requires selecting a threshold

value s, which in it of itself is a difficult task. Marcinkevičs and Vogt [13] resolve this issue in

the context of totally-ordered Granger casual models by using a stability-based procedure.

In their method, two casual graphs are inferred: GC1 from the unaltered dataset and GC2

from the time-reversed dataset. A perfect model would yield GCT
1 = GC2. Thus, the best

threshold corresponds to the value of s that results in the best agreement between GCT
1

and GC2. We propose to extend this technique to DAGs, where the time-reversed dataset

is constructed by reversing all the edges of the DAG.

LagNet distinguishes itself from GrID-Net through its ability to determine the relevant

lags of an inferred Granger causal relation. When applied to single-cell gene expression data,

LagNet quantifies the lag between the transcription of a transcription factor and its target

gene, providing deeper mechanistic insight into gene regulation. This is especially relevant for

the elucidation of gene regulatory cascades, in which gene i regulates gene i+1 for 1 ≤ i < g.

Future work could investigate the detected lags for interactions between genes part of the

same regulatory cascade.

Furthermore, LagNet has potential applications in the modelling of in silico perturba-

tions. Once we infer the causal graph GC, we can train a sparsified model of each gene using

only the inferred casual relationships. In this scenario, GRN inference acts analogously to

feature selection. After training is complete, we can perform knockout experiments where

we zero out a gene in a cell early in the trajectory and use our model to predict what the

downstream effects would be. Being able to conduct genetic perturbations in silico opens the

door to unprecedented large-scale experiments that could reveal undiscovered gene functions.
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5 Conclusion

In this paper, we generalize Granger causal models to systems structured as DAGs while

retaining interpretability. Our method, LagNet, successfully evaluates putative causal rela-

tionships by examining the learned weight matrices of trained neural networks. LagNet in-

corporates sparsity-inducing regularization which aids in removing noise and selecting only

genuine relationships. We demonstrate that LagNet performs on par with current meth-

ods in totally-ordered settings, and consistently outperforms in partially-ordered settings.

Our major result is that LagNet can be applied to successfully resolve the topology of gene

regulatory networks.

Our work sets the stage for a range of follow-up research, some of which is theoretical and

some of which is experimental. Future theoretical work includes designing the automatic se-

lection of the threshold value s used to infer causality, as well as creating novel optimization

methods that better converge weights to exact zeros. Promising directions for new experi-

mental results involve applying LagNet to recover gene regulatory cascades or to perform

perturbation experiments in silico.

While we focus specifically on applying LagNet to single-cell expression data, LagNet is

fully generalizable to all DAG-structured systems. Directed acyclic graphs occur naturally

in a wide variety of real-world settings, including citation networks, Twitter retweet net-

works and evolution. Future applications of LagNet could reveal insights into the spread of

misinformation and genomic mutations.
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