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ABSTRACT
Clustering multidimensional points is a fundamental data mining

task, with applications in many fields, such as astronomy, neuro-

science, bioinformatics, and computer vision. The goal of clustering

algorithms is to group similar objects together. Density-based clus-

tering is a clustering approach that defines clusters as dense regions

of points. It has the advantage of being able to detect clusters of

arbitrary shapes, rendering it useful in many applications.

In this paper, we propose fast and theoretically efficient paral-

lel algorithms for Density-Peaks Clustering (DPC), a method for

density-based clustering. DPC is effective in detecting clusters of ar-

bitrary shapes, and allows hyperparameter selection in a user-friendly

fashion, unlike standard methods such as DBSCAN. However, ex-

isting exact DPC algorithms suffer from high computational cost

both theoretically and in practice, which limits DPC’s application

to large-scale datasets. To remedy the performance issue, we pro-

pose three theoretically efficient exact DPC algorithms. Our most

performant algorithm achieves lower work complexity (sequential

runtime complexity) than the state-of-the-art DPC algorithm; it at-

tains 𝑂 (log(𝑛)) span complexity (parallel runtime complexity), a

dramatic improvement from the 𝑂 (𝑛2) span complexity achieved

by the previous best DPC algorithm. Our most performant DPC

algorithm utilizes a novel data structure which we call a priority

search 𝑘d-tree. We present the priority search 𝑘d-tree and provide

complexity analysis for performing queries on this data structure.

We provide optimized implementations of our algorithms and

evaluate their performances via extensive experiments. Running on a

30-core machine with two-way hyperthreading, we find that our best

algorithm achieves a 8.3–4666.3x speedup over the previous best

exact DPC algorithm. Compared to the state-of-the-art approximate

DPC algorithm, our best algorithm achieves competitive results and

is able to achieve a geometric mean speedup of 8.2x. Our DPC

algorithms are scalable, attaining a 8.8–13.2x self-relative speedup.
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1 INTRODUCTION
Clustering multidimensional points is a fundamental task in data
analysis and unsupervised machine learning. Algorithms that per-
form clustering have wide applications spanning many fields. They

can be used to identify different types of tissues in medical imag-
ing [66], analyze social networks [51], identify weather regimes in
climatology [14], and analyze dwarf galaxies in astrophysics [8].
Clustering algorithms are also widely used as a data processing
subroutine in other machine learning tasks [15, 40, 42, 64].

One popular paradigm of clustering algorithms is density-based
clustering, which defines clusters as dense regions of points in the
coordinate space. When compared with traditional clustering algo-
rithms, density-based clustering has two main advantages. First, they
are computationally more tractable. Second, they can discover clus-
ters of arbitrary shapes while algorithms such as 𝑘-means clustering
can only recover clusters with spherical shapes. For these reasons,
density-based clustering has received a tremendous amount of atten-
tion, with a number of proposed algorithms [1, 3, 21, 30, 31, 33, 49,
52, 59].

In this paper, we focus on Density-Peaks Clustering (DPC), a
density-based clustering algorithm proposed by Rodriguez and Laio
[49], which has many advantages. A lot of density-based clustering
algorithms, such as DBSCAN [21], are very sensitive towards the
choice of a density-noise cutoff hyper-parameter (points with density
lower than the cutoff are deemed as irrelevant noise) [21]. DPC, in
comparison, has been shown to perform well consistently over differ-
ent hyper-parameter choices [49]. It is also very easy to set the hyper-
parameters of DPC because DPC can generate a decision graph [49]
that visually aids the determination of the hyper-parameters. Due to
its advantages, DPC has been applied in the analysis of pathogenesis
of COVID-19 [71], cancer study [29], neuroscience study [45], mar-
ket analysis [60], computer vision tasks [39], and natural language
processing [58].

DPC, however, suffers from a relatively high runtime complexity
of 𝑂 (𝑛2) and has low parallelism, which limits its application in
performing cluster analysis on large datasets. We aim to improve the
running time of DPC in this work. DPC has three main steps.

(1) Compute the density of each point 𝑋 , which is defined as
the number of points in 𝑋 ’s neighborhood.

(2) For each point 𝑋 , connect 𝑋 to its dependent point, which is
defined as the closest neighbor of𝑋 that has a higher density
than 𝑋 . The resulting graph is a tree.

(3) Cut all connections with a distance higher than a certain
threshold value. Each resulting connected component is a
separate cluster. This final step is equivalent to performing
single linkage clustering [50] on the tree.

Let 𝑛 be the number of points in a dataset, a naive implementation
of DPC that computes all pair-wise point distances takes𝑂 (𝑛2) time
to compute the density of all points and another 𝑂 (𝑛2) time to con-
nect each point to its dependent point [49]. Multiple works have
attempted to optimize the computational cost of DPC [4, 26, 65, 69],
but they cannot break the quadratic computational complexity bar-
rier. Amagata and Hara [2] recently proposed an exact DPC algo-
rithm that leverages a 𝑘d-tree to improve the efficiency of density
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computation and dependent point searching; it is currently the state-
of-the-art DPC algorithm. Amagata and Hara [2]’s algorithm takes
𝑂 (𝑛2−

1
𝑑 +𝑛[𝜌]) time to compute the density of every point, where 𝑑

is the dimensionality of the coordinate space and [𝜌] represents the
average density of all points. Their algorithm takes 𝑂 (𝑛2) time to
connect every point to its closest neighbor with higher density (Note
that Amagata and Hara claimed a lower complexity for this task, but
they did not provide a proof and we cannot find evidence for that
claim) [2].They parallelize the density computation for points. How-
ever, they do not parallelize finding the dependent point for different
points. As a result, their algorithm suffers from high sequential de-
pendency and Step 2 constitutes the computational bottleneck of
their algorithm [2].

In this paper, we develop fast parallel algorithms for DPC. As the
sizes of modern day datasets grow [36], leveraging parallelism to
speed up clustering becomes crucial. In particular, to take advantage
of the exponentially increasing number of cores in a commercially
available CPU, shared-memory multi-core parallelism becomes in-
dispensable for high performance algorithms [54, 56]. As such, the
primary focus of our work is on tackling the computational and
parallelism bottleneck of Amagata and Hara [2]’s algorithm—the de-
pendent point finding task. We present three optimized algorithms for
solving the dependent point finding task. We use the classic work-
span model to analyze the theoretical complexity of our parallel
algorithm, where briefly, the work is the total number of operations
performed by the algorithm, and the span (or the depth) is the length
of the longest chain of sequential dependencies in the algorithm.

(1) parallel fenwick tree based algorithm The first algorithm
stores points in multiple 𝑘d-trees nested inside a fenwick
tree. The fenwick tree partitions points along increasing den-
sity values such that each 𝑘d-tree stores points within a par-
ticular range of density values. To query the dependent point
of a point 𝑋 , we consider the range of density values higher
than 𝑋 ’s density. This range is partitioned by the fenwick
tree into𝑂 (log(𝑛)) sub-ranges that each correspond to a 𝑘d-
tree. We perform queries on these 𝑂 (log(𝑛)) 𝑘d-trees and
aggregate the results. The algorithm is highly parallel since
each dependent point query can be performed independently.
The work of the algorithm is bounded by 𝑂 (𝑛 log(𝑛)2) in
expectation. The span is bounded by 𝑂 (log(𝑛) log log(𝑛)).

(2) iterative incomplete 𝑘d-tree based algorithm The second
algorithm is obtained by optimizing Amagata and Hara
[2]’s dependent point finding algorithm using a lazy strategy
for the 𝑘d-tree. Compared to the 𝑂 (𝑛2) work complexity
achieved by Amagata and Hara [2], this algorithm has an
expected work complexity bounded by 𝑂 (𝑛 log(𝑛)) and a
span complexity of 𝑂 (𝑛 log(𝑛)).

(3) parallel priority search 𝑘d-tree based algorithm The third
algorithm utilizes a priority search 𝑘d-tree, an optimization
of a max 𝑘d-tree [19, 28]. Priority search 𝑘d-tree can be
used to query the dependent point of a point 𝑋 in𝑂 (log(𝑛))
time in expectation. Because each point can perform de-
pendent point query independently, this algorithm is highly
parallel. It has an expected work of 𝑂 (𝑛 log(𝑛)) and a span
of 𝑂 (log(𝑛) log log(𝑛)).

In addition to the three dependent point finding algorithms we
present, we also introduce an optimization technique for density
computation. Finally, we solve Step 3’s single linkage clustering
problem using a parallel union-find data structure [34], which has
𝑂 (𝑛𝛼 (𝑛)) expected work and 𝑂 (log(𝑛)) span with high probability,
where 𝛼 represents the inverse Ackermann function.

We implement our algorithms using the ParGeo library [62] and
evaluate them on both synthetic and real-world datasets. We compare
our runtime results to Amagata and Hara [2]’s state-of-the-art exact
DPC algorithm. Experiments are performed on a 30-core machine
with two-way hyper-threading. Our optimized density computation
algorithm outperforms Amagata and Hara’s density computation by
up to 18586.3x. For dependent point finding, our parallel fenwick
tree based algorithm achieves up to a 1551.7x speedup over Ama-
gata and Hara’s algorithm; our iterative incomplete 𝑘d-tree based
approach attains up to a 675.9x speedup; our parallel priority search
𝑘d-tree based approach attains up to a 4666.3x speedup.

Our contributions are threefold.

(1) We propose an optimization of the max 𝑘d-tree, called a
priority search 𝑘d-tree data structure. We prove that this data
structure can perform queries of a point’s closest neighbor
with higher priority/density in 𝑂 (log(𝑛)) time in expecta-
tion. We also show that it can perform queries of points
inside an axis-parallel range with priority value higher than
some threshold in 𝑂 (𝑛1−

1
𝑑 + |𝑄 |) time, where 𝑄 is the set

of points satisfying the query constraint.
(2) We introduce three new algorithms for solving the depen-

dent point finding task in a DPC algorithm, and introduce
techniques for tackling the density computation and single
linkage clustering tasks in a DPC algorithm.

(3) We provide fast implementations of our algorithms and per-
form extensive experimental evaluations of these algorithms.
We show that our DPC algorithms vastly outperform the
state-of-the-art.

Our source code is publicly available at https://github.com/micha
elyhuang23/ParCluster.

2 RELATED WORK
2.1 Density Peaks Clustering
Density Peaks Clustering (DPC) was invented by Rodriguez and
Laio [49] and has received a lot of attention. Many variants of DPC
have been developed [13, 17, 35, 44, 58, 65, 68]. Due to DPC’s high
computational cost, there has also been a line of work focused on
improving the computational efficiency of the standard DPC algo-
rithm. Bai et al. [4] utilized 𝑘-means clustering as a preprocessing
step of DPC to prune the number of points needed to be traversed
to find a point’s density and dependent point. Gong and Zhang [26]
parallelized DPC in a distributed setting and employed Voronoi dia-
grams to improved its efficiency. Amagata and Hara [2] leveraged
a 𝑘d-tree to improve the density computation and dependent point
finding runtime. Some works also relaxed the definition of DPC and
arrived at efficient algorithms for approximate DPC. Zhang et al.
[69] proposed LSH-DDP, a parallel algorithm on distributed system
that first hashes points into buckets, with spatially-close points be-
ing hashed into the same bucket. It then approximates the density

https://github.com/michaelyhuang23/ParCluster
https://github.com/michaelyhuang23/ParCluster
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and dependent point query of a point 𝑋 by only considering points
from the same bucket as 𝑋 . Finally, it applies corrections to the
approximations as deemed necessary. Amagata and Hara [2] also
proposed a parallel approximate DPC that constructs a spatial grid
on top of the points. Leveraging the grid structure, the algorithm
shares density and dependent point computations between all points
inside the same grid cell, thus reducing the computational cost. It
should be noted, however, that none of the exact DPC algorithms
achieve strong work complexity or span complexity guarantees, a
gap that our work tries to bridge. Experimentally, our best algorithm
outperforms all existing exact DPC algorithms and is competitive
against the state-of-the-art approximate DPC algorithm in terms of
practical efficiency.

2.2 Density-based Clustering Algorithms
DPC falls under the category of density-based clustering algorithms,
which has been extensively studied. In this subsection, we give a
brief overview of density-based clustering algorithms. Some density-
based clustering algorithms define density of a point based on the
number of points in its vicinity [1, 3, 21, 33, 49]. Others leverage
a grid-based definition [30, 31, 52, 59]. Some algorithms define
density based on a probabilistic density function [37, 53, 59]. The
most famous and standard density-based clustering algorithm is
DBSCAN [21], which has many derivatives [3, 7, 12, 20, 27, 55].
DBSCAN first computes each point’s density to be the number of
points in its neighborhood. It then classifies points into core points
and noise points based on a density cutoff and perform single linkage
clustering [50] on the core points with a manually chosen distance
cutoff. Though DBSCAN is popular, it has some drawbacks. DB-
SCAN not only suffers from a high sensitivity towards the hyperpa-
rameter choices but also cannot effectively cluster data distributions
where the regions between clusters have relatively high density—a
problem that DPC can evade [2, 4, 69].

2.3 𝑘d-tree and 𝑘-Nearest Neighbor Query
A key technique of our DPC algorithms is performing nearest neigh-
bor queries on a data structure structurally similar to a standard
𝑘d-tree. 𝑘d-trees are binary space partitioning data structures pro-
posed by Bentley [5] to store multi-dimensional points by organizing
them into cells, which are partitions of space. The key aspect of a 𝑘d-
tree is the space partitioning scheme (or the splitting scheme) used.
𝑘d-trees can answer two types of queries efficiently: finding points
inside a range and finding the 𝑘-nearest neighbors of some chosen
point. We call the first type range query and the second 𝑘-nearest
neighbor query. Bentley [5] showed that a 𝑘d-tree can perform range
query with complexity 𝑂 (𝑛1−

1
𝑑 + |𝑄 |), where 𝑄 is the set of points

satisfying the query condition. Friedman et al. [23] showed that a
𝑘d-tree that always splits the widest dimension attains an expected
runtime of 𝑂 (𝑘 log(𝑛)) for 𝑘-nearest neighbor query because it only
visits 𝑂 (𝑘) number of cells in expectation. Maneewongvatana and
Mount [41] proved that a 𝑘d-tree that adopts a sliding mid-point
space partitioning scheme only visits 𝑂 (𝑘) cells in the worst case;
however, their 𝑘d-tree does not have a bounded height and therefore
does not have a 𝑂 (𝑘 log(𝑛)) expected query complexity.

There have also been works that propose variants of 𝑘d-trees
that specialize in other tasks. Wald et al. [57] proposed implicit

𝑘d-tree, which defines the partitioning of space using a recursive
splitting-function and is applied in ray tracing. Robinson [48] pro-
posed K-D-B-tree, which is used to organize large point sets stored
on secondary memory. Groß et al. [28] proposed min-max 𝑘d-tree,
which is designed for storing points with an extra attribute value.
Each node of the min-max 𝑘d-tree records the minimum and maxi-
mum attribute value amongst all points stored under the subtree of
that node [28]. Our proposed priority search 𝑘d-tree is an optimized
variant of a max 𝑘d-tree (it can also be perceived as a generalization
of the priority search tree data structure [43] to higher dimensions).

3 PRELIMINARIES
In this section, we provide definitions for the notations used in this
paper. Then, we introduce the work-span model used in this work to
analyze the runtime complexity of our parallel algorithms. Finally,
we provide background on the fenwick tree, 𝑘d-tree data structures
and other relevant parallel primitives.

3.1 Notations
Let 𝑀 = {𝑋1, 𝑋2, · · · , 𝑋𝑛} represent a size 𝑛 set of points we need
to perform clustering on. Each point is in 𝑑 dimensional coordinate
space. We use𝑋 to denote a generic point in R𝑑 and𝑋𝑖 to represent a
point in our point set 𝑀 . Let 𝐷 (𝑋𝑖 , 𝑋 𝑗 ) denote the distance between
point 𝑋𝑖 and point 𝑋 𝑗 . For the complexity results of our work to
hold, 𝐷 can be a range of metric distance measurements, as long as
they are subject to the constraints detailed in Friedman et al. [23].
For instance, 𝐷 can be any p-norm [23].

DEFINITION 1. Given a point 𝑋𝑖 ∈ 𝑀 and a cutoff value 𝑑cut, we
define the density of 𝑋𝑖 to be 𝜌 (𝑋𝑖 ) = |{𝑋 | 𝑋 ∈ 𝑀 and 𝐷 (𝑋𝑖 , 𝑋 ) ≤
𝑑cut}|.

The density of 𝑋𝑖 is the number of points inside a hyperball
centered at 𝑋𝑖 with radius 𝑑cut. Given a point 𝑋𝑖 , we define its
dependent point set 𝑀𝑖 as the set of points with density value higher
than 𝜌 (𝑋𝑖 ). Mathematically, 𝑀𝑖 = {𝑋 𝑗 | 𝑋 𝑗 ∈ 𝑀 and 𝜌 (𝑋 𝑗 ) >

𝜌 (𝑋𝑖 )}. When 𝜌 (𝑋𝑖 ) = 𝜌 (𝑋 𝑗 ) for some points 𝑋𝑖 and 𝑋 𝑗 , the tie can
be broken arbitrarily [2].

DEFINITION 2. For a point 𝑋𝑖 ∈ 𝑀 , the dependent point of 𝑋𝑖
is a point 𝜆(𝑋𝑖 ) ∈ 𝑀𝑖 such that,

𝐷 (𝑋𝑖 , 𝜆(𝑋𝑖 )) ≤ 𝐷 (𝑋𝑖 , 𝑋 𝑗 ) ∀ 𝑋 𝑗 ∈ 𝑀𝑖

We let 𝛿 (𝑋𝑖 ) represent the distance between 𝑋𝑖 and its dependent
point, which we call the dependent distance of 𝑋𝑖 . If 𝑋𝑖 is the
point with highest density in 𝑀 , then it does not have a well-defined
dependent point. In that case, we let 𝛿 (𝑋𝑖 ) = ∞.

Now, we define noise points and cluster centers. A point 𝑋𝑖 ∈ 𝑀
is considered a noise point if 𝜌 (𝑋𝑖 ) < 𝜌min for some density cutoff
𝜌min. 𝑋𝑖 is considered a cluster center if 𝛿 (𝑋𝑖 ) ≥ 𝛿min and it is
not a noise point. Each cluster center corresponds to a separate
cluster. Each point that is not a cluster center is labeled with the
same cluster as its dependent point. 𝑑cut, 𝜌min, and 𝛿min are the three
hyperparameters of DPC. They can be set manually using the visual
aid of an intuitive decision graph that plots each point 𝑋𝑖 ’s density
value 𝜌 (𝑋𝑖 ) against its dependent point distance 𝛿 (𝑋𝑖 ).
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3.2 Model of Computation
Before proceeding with the discussion of our parallel DPC algo-
rithms, we first provide background on how we analyze the runtime
complexity of a parallel algorithm. The model we adopt for our par-
allel runtime complexity analysis is the shared-memory work-span
model. The work of an algorithm is the total number of operations
executed by the algorithm, and the span is the length of the longest
dependency path of the algorithm [16]. Given an algorithm’s work
𝑇1 and span 𝑇∞, we can bound the running time of the algorithm on
𝑃 processors 𝑇𝑃 using Brent’s Theorem [9],

𝑇𝑃 ≤
𝑇1 −𝑇∞

𝑃
+𝑇∞

In our analysis, we assume arbitrary forking, which means that
forking 𝑛 processes takes a span of 𝑂 (1).

3.3 Relevant Techniques
Our algorithms make heavy use of the fenwick tree [22] and 𝑘d-
tree [5] data structures. We now provide a brief background on the
data structures and define the notations with which we will be using
these data structures.
fenwick tree.

Fenwick tree decomposes a range [1, 𝑛] into 𝑛 sub-ranges such
that the 𝑖 th sub-range, represented by 𝐵 [𝑖], corresponds to the range
[𝑖 −LSB(𝑖) + 1, 𝑖]. Here LSB(𝑖) represents the least significant bit of
integer 𝑖. Note that

∑𝑛
𝑖=0 |𝐵 [𝑖] | = 𝑂 (𝑛 log(𝑛)) [22]. The key property

of a fenwick tree is that each prefix range [1, 𝑖] can be decomposed
into 𝑂 (log(𝑛)) disjoint sub-ranges; we represent the set of these
sub-ranges by 𝑆 [𝑖]. In other words,⋃

𝑗 ∈𝑆 [𝑖 ]
𝐵 [ 𝑗] = [1, 𝑖] .

𝑆 [𝑖] can be built in an iterative process. Let 𝑖0 = 𝑖, 𝑖1 = 𝑖0 −
LSB(𝑖0), 𝑖2 = 𝑖1 − LSB(𝑖1), · · · , then 𝑆 [𝑖] = {𝑖0, 𝑖1, 𝑖2, · · · }. Given
the decomposition, we can access a partition of the range [1, 𝑖] in
𝑂 (log(𝑛)) time using the indices stored in 𝑆 [𝑖].
𝑘d-tree.
𝑘d-tree is a binary space partitioning data structure. Each node

of the 𝑘d-tree corresponds to a hyper-rectangular region of space
called cell that contains a set of 𝑑 dimensional points. Each node of
a 𝑘d-tree partitions its point set into two equally sized subsets along
a hyperplane that is perpendicular to the longest side of that node’s
cell. All points are stored at the leaf cells of a 𝑘d-tree. A 𝑘d-tree
supports range search operation (searching through all points inside a
particular range) and 𝑘-nearest neighbor query. It can be constructed
with 𝑂 (𝑛 log(𝑛)) work and 𝑂 (log(𝑛) log log(𝑛)) span [67]. A 𝑘d-
tree 𝑇 can be dynamic, in which case we can insert a point 𝑋 into
𝑇 . Note that a dynamic 𝑘d-tree can be unbalanced and not satisfy
complexity results of a normal 𝑘d-tree. We use BUILD-𝑘D-TREE(𝑀)
to represent initializing a 𝑘d-tree from the set of points 𝑀 . Similarly,
let BUILD-DYN-𝑘D-TREE(𝑀) denote initializing a dynamic 𝑘d-tree
from 𝑀 .
range query with 𝑘d-tree.

A 𝑘d-tree can be used to efficiently traverse points within a certain
range 𝑅. When traversing down the 𝑘d-tree, we only need to visit
a node if its cell intersects with 𝑅. If not, it can be pruned from

the search. A range search takes 𝑂 (𝑛1−
1
𝑑 + size(𝑅)) work 1, where

size(𝑅) denotes the number of points in 𝑅 [38]. It takes 𝑂 (log(𝑛))
span. If 𝑇 represents a 𝑘d-tree, we use 𝑇 .QUERY-RANGE(𝑋, 𝑟 ) to
denote a range search on 𝑇 , in a spherical region with radius 𝑟
centered at a generic point 𝑋 . QUERY-RANGE returns the number of
points inside the region.
𝑘-nearest neighbor query with 𝑘d-tree.

A 𝑘d-tree can also be used to find the 𝑘-nearest neighbors of a
generic point 𝑋 (note that the variable 𝑘 in “𝑘d-tree" represents the
dimensionality of the tree while the variable 𝑘 in 𝑘-nearest neighbor
represents the number of nearest neighbors of 𝑋 ). In the first step of
the search, we traverse down the 𝑘d-tree to find the leaf that contains
the point 𝑋 . Then, in the backtracking process, we only search the
neighboring sibling subtrees. Let 𝑋 ’s distance to the current 𝑘 th

nearest neighbor of 𝑋 be represented by 𝐿𝑘 , then we can prune the
search of any subtree whose cell is farther than 𝐿𝑘 away from 𝑋 .
Friedman et al. [23] proved that the expected runtime of a 𝑘-nearest
neighbor search can be bounded by 𝑂 (𝑘 log(𝑛)), or more roughly
𝑂 (log(𝑛)). When applying 𝑘d-tree nearest neighbor searching to
DPC, we only need to search for the first nearest neighbor. We use
𝑇 .QUERY-NN(𝑋 ) to represent performing a nearest neighbor search
on 𝑇 for the point 𝑋 . QUERY-NN returns the closest neighbor of 𝑋 .
other parallel primitives.

Besides the fenwick tree and 𝑘d-tree data structures we use. We
also utilize the parallel primitives defined as follows.

ATOMIC-WRITE(𝑎, 𝑏, COND) takes as input a variable 𝑎, a value 𝑏,
and a function COND. COND(𝑎, 𝑏) is a function that takes in 𝑎, 𝑏 and
outputs a boolean result. ATOMIC-WRITE atomically reads 𝑎, and if
COND(𝑎, 𝑏) = True, it then updates 𝑎’s value to 𝑏. If the update is
performed successfully, the function returns true, and otherwise, it
returns false. We assume that this takes 𝑂 (1) work.

RADIX-SORT(𝐴) takes as input a collection of elements of size
𝑛 with an ordering key defined for each element. It sorts them in
parallel according to the natural ordering of the elements’ keys. The
sort takes𝑂 (𝑛) work and𝑂 (log(𝑛)) span w.h.p. given that the range
of the keys is bounded by 𝑂 (𝑛) [46].

4 BASELINE PARALLEL DPC ALGORITHM
AND MINOR OPTIMIZATIONS

4.1 Amagata and Hara [2]’s Algorithm
Using the preliminary background and notations provided in Section
3, we now provide a brief description of how Amagata and Hara
[2]’s proposed DPC algorithm solves the density computation task,
the dependent point finding task, and the single linkage clustering
task.

(1) density computation: Amagata and Hara [2]’s algorithm
constructs a 𝑘d-tree 𝑇 from all points. It then computes the
density for every point 𝑋𝑖 in parallel by 𝜌 (𝑋𝑖 ) ← 𝑇 .QUERY-
RANGE(𝑋𝑖 , 𝑑cut).

(2) dependent point finding: Amagata and Hara [2]’s algorithm
uses a dynamic 𝑘d-tree 𝑇 ′ to find each point’s dependent
point. It first sorts all points by descending order of den-
sity and then sequentially iterate through the sorted points.

1The work complexity that arises here utilizes a slightly different splitting rule [38].
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Point 𝑋𝑖 ’s dependent point is found by 𝜆(𝑋𝑖 ) ← 𝑇 ′.QUERY-
NN(𝑋𝑖 ). Then, 𝑋𝑖 is inserted into dynamic 𝑘d-tree 𝑇 ′.

(3) single linkage clustering: To solve single linkage clustering,
Amagata and Hara [2]’s algorithm simply performs a depth
first search starting from each cluster center.

The primary computational bottleneck both theoretically and
experimentally is the dependent point finding step; this is true es-
pecially in low dimensional datasets. Its sequential for loop incurs
a high span complexity. Moreover, the dynamic 𝑘d-tree point in-
sertions could unbalance the 𝑘d-tree, which does not have trivial
re-balancing strategies [5]. The unbalanced 𝑘d-tree’s height is not
bounded by 𝑂 (log(𝑛)), causing its 𝑘-nearest neighbor search work
complexity and span complexity to explode from an expected com-
plexity of 𝑂 (log(𝑛)) to 𝑂 (𝑛). As a result, the overall dependent
point finding routine has a work and span complexity of 𝑂 (𝑛2). The
primary focus of our work is proposing faster algorithms to solve
the dependent point finding task.

4.2 Optimizing Density Computation
Before introducing our algorithms for solving the dependent point
finding task, we first discuss a simple optimization we use to speedup
the density computation operation QUERY-RANGE(𝑋center, 𝑟 ). Let
𝑆 denote the spherical region with radius 𝑟 and centered at 𝑋center,
which is a generic point. In a standard QUERY-RANGE operation
used by Amagata and Hara [2], we go down the 𝑘d-tree, visiting
the points in all leaf cells that intersect with 𝑆 . We note that since
we only seek to count the number of points in 𝑆 , we do not have to
visit every point. If a cell corresponding to a subtree is contained
inside 𝑆 completely, then we can simply add the number of points
inside that cell to the count and prune the subtree from the rest of the
traversal. It is possible to check whether a hyper-rectangular region
𝑅 in coordinate space is contained inside a sphere 𝑆 by finding a
point 𝑋far ∈ 𝑅 that is farthest from the center of 𝑆 and checking if
𝑋far is enclosed in 𝑆 . Let𝑋min represent the vertex of 𝑅 with minimal
coordinate values in all dimensions and let 𝑋max represent the vertex
with maximal coordinate values. Dimension 𝑖 of the farthest point,
𝑋 𝑖

far, can be found by:

if 𝑋 𝑖
center < (𝑋 𝑖

min + 𝑋
𝑖
max)/2 then

𝑋 𝑖
far ← 𝑋 𝑖

max
else

𝑋 𝑖
far ← 𝑋 𝑖

min

4.3 Optimizing Single Linkage Clustering
The depth first search based single linkage clustering can also be
improved. We opt to use a lock-free parallel union-find data struc-
ture [34] to solve single linkage clustering, thus cutting down the
span complexity from Amagata and Hara [2]’s 𝑂 (𝑛) to 𝑂 (log(𝑛)).
Our approach is inspired by Wang et al. [61]’s success in using a par-
allel union-find data structure to parallelize the DBSCAN algorithm.
The procedure is simple and is shown in Algorithm 1.
Analysis.

The initialization on Line 2 takes 𝑂 (𝑛) work and 𝑂 (1) span.
Jayanti and Tarjan [34] proved that performing𝑚 unionizations on a
union-find data structure with𝑛 elements takes𝑂 (𝑚

(
log( 𝑛𝑚 + 1) + 𝛼 (𝑛)

)
)

work, where 𝛼 denotes the inverse Ackermann function. In our case,

Algorithm 1 Single linkage clustering with parallel union-find
1: procedure SINGLE-LINKAGE-CLUSTER(𝑀 , 𝜆, 𝛿 , 𝛿min)
2: initialize 𝐹 to be an empty parallel union-find data structure
3: parfor all 𝑋𝑖 in 𝑀 do
4: if 𝛿 (𝑋𝑖 ) < 𝛿min then ⊲ check if 𝑋𝑖 ’s dependent distance is < threshold
5: 𝐹 .UNIONIZE (𝑋𝑖 , 𝜆 (𝑋𝑖 )) ⊲ unionize 𝑋𝑖 with 𝜆 (𝑋𝑖 )
6: return 𝐹 .cluster-labels

Algorithm 2 Parallel dependent point finding with fenwick tree
1: procedure FENWICK-QUERY(𝑇, 𝑖, 𝑋𝑖+1)
2: 𝜆′ ← ∅
3: build 𝑆 [𝑖 ] ⊲ build a list of indices whose corresponding sub-ranges span the

range [1, 𝑖 ]
4: parfor all 𝑗 in 𝑆 [𝑖 ] do
5: 𝑌 ← 𝑇 [ 𝑗 ] .QUERY-NN (𝑋𝑖+1)
6: ATOMIC-WRITE (𝜆′, 𝑌 , dist(𝑋𝑖+1, 𝑌 ) < dist(𝑋𝑖+1, 𝜆′))
7: return 𝜆′

8: procedure FENWICK-DEPENDENT-POINT(𝑀 , 𝜌)
9: 𝑀 ← RADIX-SORT (𝑀) ⊲ let 𝑀 be a one-based array of all points in

descending order of their densities
10: initialize𝑇 as a one-based array of length 𝑛
11: parfor 𝑖 = 1 to 𝑛 do
12: 𝑇 [𝑖 ] ← BUILD-𝑘D-TREE (range 𝐵 [𝑖 ] in 𝑀) ⊲ construct all 𝑛 𝑘d-trees
13: initialize 𝜆 as a one-based array of length 𝑛 ⊲ 𝜆 (𝑋𝑖 ) denotes the 𝑖 th entry of 𝜆
14: parfor all 𝑋𝑖 in 𝑀 do
15: 𝜆 (𝑋𝑖 ) ← FENWICK-QUERY (𝑇, 𝑖 − 1, 𝑋𝑖 ) ⊲ compute each point 𝑋𝑖 ’s

dependent point in parallel
16: if 𝜆 (𝑋𝑖 ) ≠ ∅ then
17: 𝛿 (𝑋𝑖 ) ← dist(𝑋𝑖 , 𝜆 (𝑋𝑖 )) ⊲ compute dependent distance
18: return 𝜆

𝑚 = 𝑛. Therefore, the overall work complexity is 𝑂 (𝑛𝛼 (𝑛)). The
unionization operation on Line 5 takse span 𝑂 (log(𝑛)). Thus, the
overall span of the algorithm is 𝑂 (log(𝑛)).

5 FENWICK TREE BASED PARALLEL
DEPENDENT POINT FINDING

In this section, we introduce our first algorithm for solving the
dependent point finding task: a parallel fenwick tree based algorithm.
Our parallel algorithm reduces the worst-case span complexity from
Amagata and Hara [2]’s 𝑂 (𝑛2) to 𝑂 (log(𝑛)).

This algorithm can be summarized as follows. We first construct a
one-based array𝑀 of points in𝑀 sorted by descending order of their
density values. Recall that 𝑛 = |𝑀 | is the length of the array. Then,
we construct a fenwick tree decomposition of the range [1, 𝑛]. 𝐵 [𝑖]
corresponds to the range of points in𝑀 with indices [𝑖−LSB(𝑖)+1, 𝑖].
For each range 𝐵 [𝑖], we construct a 𝑘d-tree 𝑇 [𝑖] containing 𝐵 [𝑖]’s
range of points. Recall that 𝑆 [𝑖] represents a decomposition of the
range [1, 𝑖] into sub-ranges that are inside 𝐵. To perform dependent
point query for the 𝑖 th point in array 𝑀 , we simply need to search
through every 𝑘d-tree that corresponds to a sub-range in 𝑆 [𝑖 − 1].
These queries can be computed in parallel, thus achieving a low span
complexity.

We provide the dependent point search algorithm’s pseudocode
in Algorithm 2 and will now dissect it in greater details. The main
procedure is FENWICK-DEPENDENT-POINT(𝑀, 𝜌), which takes as
input a set of points 𝑀 and the computed densities of the points 𝜌 (𝜌
can be stored as an array or hash table). To find the dependent points
𝜆 for all points, we first construct a one-based array of points 𝑀
sorted in descending order of their density values, as done on Line 9.
We then initialize a one-based array 𝑇 to store the 𝑛 𝑘d-trees in the
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algorithm. On Line 11–12, we construct the𝑛 𝑘d-trees; the 𝑖 th 𝑘d-tree
𝑇 [𝑖] is constructed from the range of points 𝐵 [𝑖] = [𝑖−LSB(𝑖) +1, 𝑖]
in one-based array 𝑀 . Finally, on Line 15, we perform FENWICK-
QUERY for all points in parallel to find the dependent point for all
points.

Now, we will explain procedure FENWICK-QUERY, which takes
as input an array of 𝑘d-trees 𝑇 , an index 𝑖, and the (𝑖 + 1)th point
in 𝑀 , 𝑋𝑖+1; FENWICK-QUERY performs nearest neighbor query for
point 𝑋𝑖+1 on all points 𝑋1, 𝑋2, · · · , 𝑋𝑖 . On Line 3, we construct a
set 𝑆 [𝑖] for the inputed index 𝑖; set 𝑆 [𝑖] contains the indices of the
fenwick tree sub-ranges that form a partition of [1, 𝑖], as described
in Section 3.3. Each of those sub-ranges correspond to a 𝑘d-tree; we
perform nearest neighbor query QUERY-NN on all those 𝑘d-trees on
Line 5. Let 𝜆′ signify the current dependent point of point 𝑋𝑖+1. On
Line 6, the current 𝜆′ is replaced by a newly found nearest neighbor
if the newly found nearest neighbor is closer to 𝑋𝑖+1 than 𝜆′ is.
Analysis.

We first analyze the time complexity of subroutine FENWICK-
QUERY. We show that it takes 𝑂 (log(𝑛)2) expected work and 𝑂 (𝑛)
worst-case work. The construction of 𝑆 on Line 3 takes 𝑂 (log(𝑛))
work [22]. On the other hand, in expectation, each call of QUERY-
NN on Line 5 takes 𝑂 (log(𝑛)) work [23], which accumulates to
𝑂 (log(𝑛)2) expected work over all iterations of the parallel for loop
on Line 4. In the worst-case however, each 𝑘d-tree nearest neigh-
bor query takes time linear to the number of points in the 𝑘d-tree
[23]. Thus, Line 5 takes 𝑂 ( |𝐵 [ 𝑗] |) for the 𝑗 th 𝑘d-tree, 𝑇𝑗 . Over all
iterations of the parallel for loop, the worst-case work complexity is
𝑂 (∑𝑗 ∈𝑆 [𝑖 ] |𝐵 [ 𝑗] |) = 𝑂 (𝑖) = 𝑂 (𝑛).

In terms of span, FENWICK-QUERY attains an expected and worst-
case span of 𝑂 (log(𝑛)). Again, the construction of 𝑆 [𝑖] only takes
𝑂 (log(𝑛)) span. The ATOMIC-WRITE operation on Line 6 also only
incur an additional span of𝑂 (log(𝑛)) in the worst case. There can be
at most log(𝑛) atomic updates conflicting with each other because
|𝑆 [𝑖] | ≤ log(𝑛). The nearest neighbor query on Line 5 takes an
expected and worst-case span of 𝑂 (log(𝑛)). The expected span of
𝑘d-tree’s nearest neighbor query is bounded by its expected work
complexity of 𝑂 (log(𝑛)), which is proven by Friedman et al. [23].
The worst-case nearest neighbor query span complexity turns out
also to be𝑂 (log(𝑛)) since each branch of the 𝑘d-tree can be searched
in parallel. Details of the worst-case nearest neighbor query com-
plexity is addressed in Section 7. Since all nearest neighbor queries
are executed in parallel, 𝑂 (log(𝑛)) is also the span complexity for
the entire FENWICK-QUERY subroutine.

Now, we examine the main process FENWICK-DEPENDENT-POINT.
We show its expected work complexity to be 𝑂 (𝑛 log(𝑛)2) and its
worst-case work complexity to be 𝑂 (𝑛2). Line 9 takes 𝑂 (𝑛) work
since the keys of the sort–the 𝜌 values–are bounded in size by 𝑂 (𝑛).
On Line 12, constructing the 𝑖 th 𝑘d-tree takes time 𝑂 ( |𝐵𝑖 | log( |𝐵𝑖 |)).
Therefore, constructing all 𝑘d-trees takes 𝑂 (∑𝑛

𝑖=1 |𝐵𝑖 | log( |𝐵𝑖 |)) =
𝑂 (𝑛 log(𝑛)2) work. Finally, all FENWICK-QUERY operations per-
formed in the parallel for loop on Line 14 takes 𝑂 (𝑛 log(𝑛)2) work
in expectation and 𝑂 (𝑛2) work in the worst case. Thus, the overall
work complexity of FENWICK-DEPENDENT-POINT is 𝑂 (𝑛 log(𝑛)2)
in expectation and 𝑂 (𝑛2) in the worst case.

Next, we analyze the span bounds of FENWICK-DEPENDENT-
POINT. The radix sort on Line 9 takes 𝑂 (log(𝑛)) span w.h.p.2 Each
BUILD-𝑘D-TREE operation on Line 12 has span𝑂 (log(𝑛) log log(𝑛)).
Finally, each call to subroutine FENWICK-QUERY on Line 15 takes
𝑂 (log(𝑛)) span in the worst case. Thus, the overall span of FENWICK-
DEPENDENT-POINT is 𝑂 (log(𝑛) log log(𝑛)) in the worst case.

Finally, we consider the space usage of our algorithm. The 𝑖 th

𝑘d-tree, 𝑇𝑖 , takes space 𝑂 ( |𝐵𝑖 |). Thus, the overall space usage is
𝑂 (∑𝑛

𝑖=1 |𝐵𝑖 |) = 𝑂 (𝑛 log(𝑛)).

6 PRIORITY SEARCH 𝑘D-TREE BASED
DEPENDENT POINT FINDING

In this section, we present two more algorithms for solving the de-
pendent point finding task: an iterative incomplete kd-tree based
algorithm and an algorithm based on a parallelization of the incom-
plete kd-tree data structure, which we call priority search kd-tree.
Both of these algorithms attain better expected work complexity than
the fenwick tree based algorithm described in Section 5 because they
make use of only one 𝑘d-tree structure. The parallel priority search
kd-tree based algorithm matches the fenwick tree based algorithm
in terms of span complexity.

6.1 Iterative Dependent Point Finding with
Incomplete 𝑘d-tree

First, we introduce an iterative incomplete 𝑘d-tree based algorithm
for finding dependent points. We note that the computational bottle-
neck of Amagata and Hara [2]’s dependent point finding algorithm,
as described in Section 4, originates from the use of a dynamic 𝑘d-
tree that is not necessarily balanced, which makes querying slower
than a balanced 𝑘d-tree. In this subsection, we propose to use a bal-
anced incomplete 𝑘d-tree in place of a dynamic 𝑘d-tree. Instead of
inserting points into the dynamic 𝑘d-tree, we utilize a lazy insertion
strategy: the 𝑘d-tree is constructed with all points in𝑀 , but all points
are marked as inactive initially. We use a variable isActive𝑖 to track
if the 𝑖 th subtree contains an active point. When we insert a point into
the 𝑘d-tree, we simply activate the point and set isActive𝑖 ← True
for each node 𝑖 that is an ancestor of the leaf node at which the
point is inserted. When traversing the 𝑘d-tree to query for 𝑘-nearest
neighbors, we can prune a subtree 𝑖 if its isActive𝑖 value is False.
An example of incomplete 𝑘d-tree is given in Figure 1.
Analysis.

Because the incomplete 𝑘d-tree is constructed in the same way
as a normal 𝑘d-tree, its construction work is 𝑂 (𝑛 log(𝑛)) and con-
struction span is 𝑂 (log(𝑛) log log(𝑛)). An incomplete 𝑘d-tree can
perform nearest neighbor query in 𝑂 (log(𝑛)) expected work and
𝑂 (𝑛) worst-case work, but always take only 𝑂 (log(𝑛)) span. We
reserve the proof of this fact for Section 7. As a result of the com-
plexity bounds for an incomplete 𝑘d-tree’s nearest neighbor query,
the overall dependent point finding algorithm takes 𝑂 (𝑛 log(𝑛)) ex-
pected work, 𝑂 (𝑛2) worst-case work, and 𝑂 (𝑛 log(𝑛)) worst-case
span.

2We say 𝑂 (𝑓 (𝑛)) with high probability (w.h.p.) to indicate 𝑂 (𝑐 𝑓 (𝑛)) with probability
at least 1 − 𝑛−𝑐 for 𝑐 ≥ 1, where 𝑛 is the input size.
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Figure 1: An example graph for an incomplete 𝑘d-tree. A node is
unfilled if its subtree does not contain any active point; otherwise
it is filled. During a 𝑘-nearest neighbor search, the entire grayed
out subtree can be pruned because it contains no active point.

6.2 Priority Search 𝑘d-tree
To parallelize the dependent point finding routine described in Sec-
tion 6.1, we first introduce a parallel analogue of the incomplete
𝑘d-tree–a priority search 𝑘d-tree–and describe its general proper-
ties. A priority search 𝑘d-tree is intuitively a generalization of the
1 dimensional priority search tree data structure to higher dimen-
sions. A priority search 𝑘d-tree is designed to store a set of points
𝑀 = {𝑋1, 𝑋2, · · · , 𝑋𝑖 , · · · , 𝑋𝑛} such that each point 𝑋𝑖 ∈ R𝑑 is as-
sociated with a priority value 𝛾𝑖 . Similar to a normal 𝑘d-tree, each
node of the priority search 𝑘d-tree corresponds to a set of points
and a partition of space—called a cell. We store at each node the
point with the highest 𝛾 value amongst all points in that node’s point
set; this 𝛾 value is referred to as the 𝛾 value of the node. The rest
of points are split evenly between the children of the node along a
hyperplane perpendicular to the longest side of the cell of that node.
An example of a priority search 𝑘d-tree is represented by Figure 2.

A priority search 𝑘d-tree is structurally similar to a max 𝑘d-
tree [28], which records only the maximum priority value at each
node. The actual point with that priority value is stored at a leaf in
either the left or right subtree of that node.

Priority search 𝑘d-trees can be constructed similar to a normal
𝑘d-tree; the only extra step is finding the point with highest prior-
ity value at each node. Construction takes 𝑂 (𝑛 log(𝑛)) work and
𝑂 (log(𝑛) log log(𝑛)) span. The data structure takes 𝑂 (𝑛) memory
like a normal 𝑘d-tree, because only 𝑂 (1) extra information is stored
at each node compared to a normal 𝑘d-tree.

The main application of both priority search 𝑘d-tree and max
𝑘d-tree are answering priority range queries and priority 𝑘-nearest
neighbor queries. A priority search 𝑘d-tree is advantageous in that
a meaningful priority range query complexity bound can be estab-
lished for it but not for a max 𝑘d-tree.

6.2.1 Priority Range Query. A priority search 𝑘d-tree can be
used to efficiently answer a priority range query, which can be
defined as follows.

DEFINITION 3. Given a query range 𝑅𝑞 ⊆ R𝑑 , a priority thresh-
old 𝛾𝑞 , and a point set 𝑀 , a priority range search asks for the set of
points 𝑄 ⊆ 𝑀 such that for each point 𝑋𝑖 ∈ 𝑄 , 𝑋𝑖 ∈ 𝑅𝑞 and 𝛾𝑖 > 𝛾𝑞 .

Figure 2: An example graph for a priority search 𝑘d-tree. Each
point is labeled with its priority value 𝛾 , which is an integer from
1 to 9 in this example. Each node of the priority search 𝑘d-tree
stores the point with the highest 𝛾 within the region of the cell
of the node; the number inside the circle of the node represents
the node’s 𝛾 value. The dotted lines on the graph connects each
node with the splitting hyperplane of that node. The grayed area
represent a subtree 𝑇𝑞 comprising all nodes with 𝛾 > 4. Because
the 𝛾 values of a priority 𝑘d-tree satisfies the heap property, 𝑇𝑞
is always an upper portion of the priority search 𝑘d-tree.

A priority range query can be solved by a normal 𝑘d-tree by first
querying the set of points inside 𝑅𝑞 and then finding the subset of
points that satisfies the priority constraint.

This can be optimized by a priority search 𝑘d-tree. When per-
forming a priority range query on a priority search 𝑘d-tree 𝑇 , we
only visit nodes with a cell that intersect the query region 𝑅𝑞 and a
𝛾 value higher than the cutoff value 𝛾𝑞 . Let 𝑇𝑞 represent the subset
of nodes with 𝛾 value higher than 𝛾𝑞 . 𝑇𝑞 is necessarily a connected
subtree that forms an upper portion of 𝑇 , as illustrated by Figure 2.
Therefore, performing a priority range search on 𝑇 is equivalent to
performing a normal range search on the unbalanced 𝑘d-tree 𝑇𝑞 .
Analysis.

If 𝑅𝑞 is an axis-parallel hyper-rectangular region, then a mean-
ingful complexity bound can be established for priority range query
on a priority search 𝑘d-tree 𝑇 . All cells visited during the query
operation must be in 𝑇𝑞 . There are two types of such cells.

(1) A cell that intersects 𝑅𝑞 but is not completely inside 𝑅𝑞 : It
is well known that the number of such cells in 𝑇 is bounded
by 𝑂 (𝑛1−

1
𝑑 ) [16].

(2) A cell that is completely inside 𝑅𝑞 : Each such cell must
contain a unique point 𝑋𝑖 satisfying 𝑋𝑖 ∈ 𝑅𝑞 and 𝛾𝑖 > 𝛾𝑞 .
There are only a total of |𝑄 | such points. Therefore, the
number of cells of this type is ≤ |𝑄 |.
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In sum, the total number of cells visited by a priority range query
operation is bounded by 𝑂 (𝑛1−

1
𝑛 + |𝑄 |).

Note that this proof cannot be applied to a max 𝑘d-tree because
each cell in a max 𝑘d-tree is not uniquely associated with a point, as
assumed in the proof in order to bound the number of Type 2 cells
traversed.

6.2.2 Priority 𝐾-Nearest Neighbor Query. Another application
of a priority search 𝑘d-tree is to answer priority 𝑘-nearest neighbor
queries, which is the usecase for priority search 𝑘d-tree in this paper.
We define a priority 𝑘-nearest neighbor query by,

DEFINITION 4. Given a generic query point 𝑋𝑞 ∈ R𝑑 , a point
set 𝑀 ⊆ R𝑑 , and a distance measure 𝐷, find, among the points in
𝑀 , 𝑘 points {𝑋1, 𝑋2, · · · , 𝑋𝑖 , · · · , 𝑋𝑘 } such that 𝑋𝑖 is the 𝑖 th closest
point to 𝑋𝑞 as measured by 𝐷 and 𝜆𝑖 > 𝜆𝑞 for all 𝑖 ∈ [1, 𝑘].

This problem can be solved by querying on a priority search 𝑘d-
tree following a similar procedure as a normal 𝑘-nearest neighbor
query, with the exception that all subtrees with priority value ≤ 𝜆𝑞
may be pruned from the search. It can also be solved by querying on
a max 𝑘d-tree (again, all subtrees with priority value ≤ 𝜆𝑞 are pruned
from the search). The two data structures attain the same complexity
for this task. This is because performing priority 𝑘-nearest neighbor
query on a priority search 𝑘d-tree or a max 𝑘d-tree can be equated
to performing a normal 𝑘-nearest neighbor query on an incomplete
𝑘d-tree, the complexity of which is bounded in Section 7. Consider
a particular query, with a threshold priority value of 𝜆𝑞 . Let𝑇 denote
a priority search 𝑘d-tree or a max 𝑘d-tree. Let 𝑇𝑞 ⊆ 𝑇 represent the
set of nodes with priority value > 𝛾𝑞 . Because of the structure of
both priority search 𝑘d-tree and max 𝑘d-tree,𝑇𝑞 must be a connected
subtree of 𝑇 in both cases. A priority 𝑘-nearest neighbor search
on 𝑇 is thus equivalent to a normal 𝑘-nearest neighbor search on
an incomplete 𝑘d-tree 𝑇 with 𝑇𝑞 forming its active portion. Thus,
similar to the complexity result on an incomplete 𝑘d-tree, performing
priority 𝑘-nearest neighbor query on a priority search 𝑘d-tree or max
𝑘d-tree takes only 𝑂 (log(𝑛)) expected work, 𝑂 (𝑛) worst-case work,
and 𝑂 (log(𝑛)) worst-case span.

It is important to note that a priority nearest neighbor query prob-
lem can be equated to the problem of finding dependent points if we
set the priority value 𝛾𝑖 for a point 𝑋𝑖 to be the density value 𝜌 (𝑋𝑖 ).

6.3 Parallel Dependent Point Finding with Priority
Search Kd-Tree

We now apply the priority search 𝑘d-tree data structure to solve
the dependent point finding task. The algorithm introduced in this
subsection achieves the same work complexity as the incomplete
𝑘d-tree based approach while maintaining a 𝑂 (log(𝑛) log log(𝑛))
worst-case span. The recipe for finding dependent points using a
priority search 𝑘d-tree is given in Algorithm 3

Algorithm 3 Parallel dependent point finding with priority search
kd-tree
1: procedure PRIORITY-SEARCH-KD-TREE-DEPENDENT-POINT(𝑀 , 𝜌)
2: 𝑀 ← RADIX-SORT (𝑀) ⊲ let 𝑀 be an array of all points in descending order

of their densities
3: 𝑇 ← BUILD-PRIORITY-SEARCH-KD-TREE (𝑀, 𝜌) ⊲ construct a priority search

kd-tree from the points and their density values
4: initialize 𝜆 as an array of length 𝑛 ⊲ 𝜆 (𝑋𝑖 ) denotes the 𝑖 th entry of 𝜆
5: parfor all 𝑋𝑖 in 𝑀 do
6: 𝜆 (𝑋𝑖 ) ← 𝑇 .QUERY-PRIORITY-NN (𝑋𝑖 ) ⊲ compute each point 𝑋𝑖 ’s

dependent point in parallel
7: if 𝜆 (𝑋𝑖 ) ≠ ∅ then
8: 𝛿 (𝑋𝑖 ) ← dist(𝑋𝑖 , 𝜆 (𝑋𝑖 )) ⊲ compute dependent distance
9: return 𝜆

Analysis.
Similar to the analysis for Algorithm 2, the RADIX-SORT oper-

ation on Line 2 takes 𝑂 (𝑛) work and 𝑂 (log(𝑛)) span w.h.p. The
priority search kd-tree construction on Line 3 has a work complexity
of𝑂 (𝑛 log(𝑛)) and span complexity of𝑂 (log(𝑛) log log(𝑛)). Finally,
each QUERY-PRIORITY-NN invocation on Line 6 takes 𝑂 (log(𝑛))
work in expectation and𝑂 (𝑛) work in the worst case. The worst-case
span complexity of QUERY-PRIORITY-NN is 𝑂 (log(𝑛)). Therefore,
the overall work complexity of Algorithm 3 is 𝑂 (𝑛 log(𝑛)) in expec-
tation and 𝑂 (𝑛2) in the worst case. The overall span complexity is
𝑂 (log(𝑛) log log(𝑛)).

7 𝐾-NEAREST NEIGHBOR QUERY
COMPLEXITY

In this section, we provide an analysis of the expected 𝑘-nearest
neighbor query complexity on an incomplete kd-tree. We define an
incomplete kd-tree to be a kd-tree constructed from a set of 𝑛 points
𝑀 = {𝑋1, 𝑋2, · · · , 𝑋𝑛} in 𝑑-dimensional space such that 𝑋𝑖 is only
active if 𝑋𝑖 ∈ 𝑀𝑞 , where 𝑀𝑞 ⊆ 𝑀 .

Our analysis follows in a similar spirit as Friedman et al. [23]’s
proof of the expected 𝑂 (𝑘 log(𝑛)) complexity for 𝑘-nearest neigh-
bor query on a normal kd-tree. We show that finding the 𝑘-nearest
neighbors of some query point 𝑋𝑞 on an incomplete 𝑘d-tree takes
𝑂 (𝑘 log(𝑛)) time in expectation.

We separate the analysis based on the size of 𝑀𝑞 .
Case 1: |𝑀𝑞 | = 𝑂 (𝑘 log(𝑛)).

In this case, we can simply find the 𝑘-nearest neighbors of a point
𝑋𝑞 by searching through all active points in the incomplete kd-tree
without breaking the 𝑂 (𝑘 log(𝑛)) complexity.
Case 2: |𝑀𝑞 | = Ω(𝑘 log(𝑛)).

To analyze this case, we make some similar assumptions as Fried-
man et al. [23]. First, we assume that all 𝑋𝑖 ∈ 𝑀 are sampled from
R𝑑 according to some probability density function 𝜇. Similarly, all
𝑋𝑖 ∈ 𝑀𝑞 are sampled from some probability density function 𝜇𝑞 . We
use 𝜇 (𝑋 ) and 𝜇𝑞 (𝑋 ) to denote the probability density of functions 𝜇
and 𝜇𝑞 at a generic point 𝑋 . Now, we assume that |𝑀 | and |𝑀𝑞 | are
sufficiently large such that both 𝜇 and 𝜇𝑞 can be considered locally
uniform. This means 𝜇 and 𝜇𝑞 can be taken to be constant within any
compact hypercubical region 𝑅 containing ∼ 𝑘 points in expectation
over all samplings of 𝑀 and 𝑀𝑞 according to 𝜇 and 𝜇𝑞 .

A result of the assumption that 𝜇 is locally uniform is that an
incomplete 𝑘d-tree’s compact cells, or cells with ∼ 𝑘 points, are near
hypercubical in shape. This is because each node of the incomplete
kd-tree always partitions the point set into two equally sized subsets
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along a hyperplane perpendicular to the longest side of that node’s
cell. The assumption that 𝜇 is locally uniform ensures that a cell con-
taining << 𝑛 points is partitioned into two cells with approximately
equal volumes. Thus, under the assumption of local uniformity, the
longest side of each cell is halved in each split of the kd-tree’s node.
As a results, compact cells should have a longest side that is not
significantly longer than twice the length of its shortest side. We
assume 𝜇𝑞 is also locally uniform. Because each compact cell is
halved at each split of a node, we expect the set of active points to
be also split approximately evenly given the local uniformity of 𝜇𝑞 .
Thus, adjacent compact cells should contain approximately the same
number of active points.

Let 𝑁𝑞 represents a leaf node with cell 𝑅𝑞 such that our query
point 𝑋𝑞 is contained within 𝑅𝑞 . We define 𝑁𝑘

𝑞 to be the smallest
subtree that contains 𝑁𝑞 and contains ≥ 𝑘 active points; let the cell
of 𝑁𝑘

𝑞 be represented by 𝑅𝑘𝑞 . The children cells of 𝑅𝑘𝑞 are adjacent
compact cells. Since one of them (the one containing 𝑋𝑞) has < 𝑘
active points, the other cell contains ⪅ 𝑘 active points because of the
local uniformity of 𝜇𝑞 . Thus, the expected number of active points in
𝑁𝑘
𝑞 , [size(𝑁𝑘

𝑞 )] ⪅ 2𝑘 , where the square bracket [·] indicates taking
the expected value over all samplings of points. Since 𝑅𝑘𝑞 contains
⪅ 2𝑘 active points in expectation, we can also consider 𝜇𝑞 and 𝜇 to
be constant within 𝑅𝑘𝑞 . We represent their values of constancy by
𝜇𝑞 (𝑋𝑞) and 𝜇 (𝑋𝑞).

We define𝑉 (𝑅𝑘𝑞 ) to be the volume of 𝑅𝑘𝑞 and define its probability
content to be,

𝑢 (𝑅𝑘𝑞 ) =
∫
𝑋 ∈𝑅𝑘

𝑞

𝜇𝑞𝑑𝑋

The probability distribution of 𝑢 (𝑅𝑘𝑞 ) follows a beta distribution
[24]. The expected value of 𝑢 (𝑅𝑘𝑞 ) is directly related to the expected
number of active points in 𝑅𝑘𝑞 and satisfies,

[𝑢 (𝑅𝑘𝑞 )] ⪅
2𝑘

|𝑀𝑞 | + 1
,

because [size(𝑁𝑘
𝑞 )] ⪅ 2𝑘 . Since 𝑢 (𝑅𝑘𝑞 ) = 𝜇𝑞 (𝑋𝑞)𝑉 (𝑅𝑘𝑞 ), we have,

𝜇𝑞 (𝑋𝑞) [𝑉 (𝑅𝑘𝑞 )] ⪅
2𝑘

|𝑀𝑞 | + 1

[𝑉 (𝑅𝑘𝑞 )] ⪅
2𝑘

( |𝑀𝑞 | + 1)𝜇𝑞 (𝑋𝑞)

Consider the kd-tree query procedure for finding the 𝑘-nearest
neighbors of 𝑋𝑞 . In the first step, we traverse down the kd-tree to
find 𝑁𝑞 , the leaf node containing 𝑋𝑞 . Then, we backtrack up the
incomplete kd-tree, visiting neighboring sibling subtrees that contain
active points. Notice that when we backtrack to a node 𝑁𝑖 , we are
guaranteed to have searched through all active points within the
subtree of 𝑁𝑖 . Therefore, once we backtrack to node 𝑁𝑘

𝑞 , we are
guaranteed to have searched through at least 𝑘 active points. The
maximum possible distance between 𝑋𝑞 and its 𝑘 th nearest neighbor
is bounded by the diagonal of 𝑅𝑘𝑞 . Let this diagonal length be denoted
by 𝑑 (𝑅𝑘𝑞 ) and let 𝑆𝑘𝑞 represent a hypercube with side length 2𝑑 (𝑅𝑘𝑞 ),
centered at 𝑋𝑞 . When we continue to traverse up the incomplete kd-
tree, we only need to search through cells that intersect 𝑆𝑘𝑞 . Because

𝑅𝑘𝑞 is a compact cell with a near hypercubical shape, we have

[𝑉 (𝑆𝑘𝑞 )] ≈ 𝐺 (𝑑) [𝑉 (𝑅𝑘𝑞 )]

⪅
2𝑘𝐺 (𝑑)

( |𝑀𝑞 | + 1)𝜇𝑞 (𝑋𝑞)
,

where 𝐺 (𝑑) is a constant dependent only on the number of dimen-
sions. This relation can be established because a hypercube’s volume
is directly proportional to the volume of a hyperball with a radius
equal to the hypercube’s diameter. Using the expected volume, the
expected side length 𝑒 (𝑆𝑘𝑞 ) can be estimated,

[𝑒 (𝑆𝑘𝑞 )] ∼ 𝑑

√︄
2𝑘𝐺 (𝑑)

( |𝑀𝑞 | + 1)𝜇𝑞 (𝑋𝑞)
.

Now that we have created a bound on the expected side length of
the hypercube region that our 𝑘-nearest neighbor query algorithm
searches through, we use this expected side length to bound the
number of leaf cells the query algorithm inspects.

We denote a generic leaf cell (active or inactive) intersecting 𝑆𝑘𝑞
by 𝑅𝑏 . Following the same argument made for 𝑅𝑘𝑞 , the probability
content of 𝑅𝑏 follows a beta distribution [24]. Thus,

[𝑢 (𝑅𝑏 )] =
1

|𝑀 | + 1

[𝑉 (𝑅𝑏 )] =
1

( |𝑀 | + 1)𝜇 (𝑋𝑞)

[𝑒 (𝑅𝑏 )] ∼ 𝑑

√︄
1

( |𝑀 | + 1)𝜇 (𝑋𝑞)
,

where the assumption that 𝜇 is constant within 𝑆𝑘𝑞 is used. The
expected number of leaf cells traversed can now be bounded by,

[𝐶 (𝑆𝑘𝑞 )] ∼
(
[𝑒 (𝑆𝑘𝑞 )]
[𝑒 (𝑅𝑏 )]

+ 1
)𝑑

[𝐶 (𝑆𝑘𝑞 )] ∼
(

𝑑

√︄
2𝑘𝐺 (𝑑) ( |𝑀 | + 1)𝜇 (𝑋𝑞)
( |𝑀𝑞 | + 1)𝜇𝑞 (𝑋𝑞)

+ 1
)𝑑
.

Consider now the probability 𝑃 (𝑋 ∈ 𝑀𝑞 | 𝑋 ∈ 𝑀). Define 𝜖 (𝑋 )
to be a hyperball centered at 𝑋 with a limiting volume 𝑑𝑉 (𝜖 (𝑋 )),
then

𝑃 (𝑋 ∈ 𝑀𝑞 | 𝑋 ∈ 𝑀) = lim
𝑑𝑉 (𝜖 (𝑋 ))→0

𝑃
(
(𝜖 (𝑋 ) ∩𝑀𝑞) ≠ ∅

)
𝑃
(
(𝜖 (𝑋 ) ∩𝑀) ≠ ∅

) .
Since the probability of sampling a point in 𝑀 inside the region

𝜖 (𝑋 ) can be computed by 𝜇 (𝑋 )𝑑𝑉 (𝜖 (𝑋 )), 𝑃
(
(𝜖 (𝑋 ) ∩ 𝑀) ≠ ∅

)
=∑ |𝑀 |

𝑖=0 𝜇 (𝑋 )𝑑𝑉 (𝜖 (𝑋 )) = |𝑀 |𝜇 (𝑋 )𝑑𝑉 (𝜖 (𝑋 )). Thus, the equation can
be simplified as follows.

𝑃 (𝑋 ∈ 𝑀𝑞 | 𝑋 ∈ 𝑀) = lim
𝑑𝑉 (𝜖 (𝑋 ))→0

|𝑀𝑞 |𝜇𝑞 (𝑋 )𝑑𝑉 (𝜖 (𝑋 ))
|𝑀 |𝜇 (𝑋 )𝑑𝑉 (𝜖 (𝑋 ))

≤
(|𝑀𝑞 | + 1)𝜇𝑞 (𝑋 )
( |𝑀 | + 1)𝜇 (𝑋 ) ,

,
where the approximation at the last step is valid because |𝑀𝑞 | >>

1 and |𝑀 | >> 1.
For points inside the region 𝑆𝑘𝑞 , 𝜇𝑞 and 𝜇 are constant. Thus, the

value of 𝑃 (𝑋 ∈ 𝑀𝑞 | 𝑋 ∈ 𝑀) is also constant within the region. We
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denote this value of constancy by 𝑝 (𝑋𝑞). The expression for 𝑝 (𝑋𝑞)
can be substituted back into the approximate expression for [𝐶 (𝑆𝑘𝑞 )],
resulting in,

[𝐶 (𝑆𝑘𝑞 )] ∼
(

𝑑

√︄
2𝑘𝐺 (𝑑) ( |𝑀 | + 1)𝜇 (𝑋𝑞)
( |𝑀𝑞 | + 1)𝜇𝑞 (𝑋𝑞)

+ 1
)𝑑

≤
(

𝑑

√︄
2𝑘𝐺 (𝑑)
𝑝 (𝑋𝑞)

+ 1
)𝑑
.

This is the expected number of leaf cells intersecting 𝑆𝑘𝑞 . If we
let [𝐶𝑞 (𝑆𝑘𝑞 )] represent the expected number of active leaf cells.
[𝐶𝑞 (𝑆𝑘𝑞 )] can be computed by,

[𝐶𝑞 (𝑆𝑘𝑞 )] = 𝑝 (𝑋𝑞) [𝐶 (𝑆𝑘𝑞 )] ∼
(

𝑑
√︁
2𝑘𝐺 (𝑑) + 𝑑

√︃
𝑝 (𝑋𝑞)

)𝑑
≤

(
𝑑
√︁
2𝑘𝐺 (𝑑) + 1

)𝑑
.

We assume 𝑑 to be constant. Because only the active leaf cells
are visited, the 𝑘-nearest neighbor query algorithm traverses 𝑂 (𝑘)
expected number of leaf cells. Visiting each leaf cell takes𝑂 (log(𝑛))
time, thus giving a total expected query time complexity of𝑂 (𝑘 log(𝑛)).

The 𝑘-nearest neighbor query can also be performed in parallel,
in which case we first traverse down the 𝑘d-tree to find the leaf node
𝑁𝑞 containing the query point𝑋𝑞 , and then backtracks up the 𝑘d-tree
to find the smallest subtree containing at least 𝑘 active points, 𝑁𝑘

𝑞 .
After this, we only need to inspect 𝑘d-tree cells that intersect the
spherical region 𝑆𝑘𝑞 . These cells can be inspected in parallel. As a
result, the span complexity of a parallel 𝑘-nearest neighbor query can
be bounded by 𝑂 (log(𝑛)) in the worst case. The work complexity
remains 𝑂 (𝑘 log(𝑛)) in expectation and 𝑂 (𝑛) in the worst case.

This analysis not only bounds the 𝑘-nearest neighbor query run-
time for the incomplete kd-tree used in Section 6.1, but also for the
priority search kd-tree and max kd-tree [28] described in Section
6.2, since performing nearest neighbor on them is equivalent to per-
forming nearest neighbor query on a normal incomplete 𝑘d-tree; the
equivalence has been discussed in Section 6.2.2.

It should also be noted that our analysis differs from Friedman
et al. [23]’s analysis for a normal kd-tree. Friedman et al. [23]
bounded the expected volume of a hyperball containing 𝑋𝑞’s 𝑘-
nearest neighbors and produced a bound on the expected number
of cells intersecting the hyperball. Such an approach is deficient in
that the number of cells the normal kd-tree query algorithm actually
visits is not directly bounded by the number of cells intersecting the
hyperball. We evade this deficiency by choosing a different approach.

8 EXPERIMENTS
Finally, in this section, we perform experimental evaluations on the
efficiency of our dependent point finding algorithms as well as our
proposed optimizations to density computation.

8.1 Experiment Setup
Datasets.

We run experiments on both real world and synthetic datasets.
The real world datasets we use include GeoLife [70], PAMAP2 [47],

Name 𝑛 𝑑 selected 𝑑cut selected 𝜌min selected 𝛿min

uniform 103–107 2 30 0 100
simden 103–107 2 30 0 100
varden 103–107 2 30 0 100
GeoLife 24876978 3 1 1000 10
PAMAP2 259803 4 0.02 20 0.2
Sensor 3843160 5 0.2 5 2
HT 928991 8 0.5 30 10

Table 1: The real world datasets used in our experiments, along
with their sizes (𝑛), their dimensionality (𝑑), and the clustering
hyperparameters we select for them. Similar to Amagata and
Hara [2], we trim down the dimensionality of PAMAP2 and
Sensor in order to obtain a collection of real world datasets with
different number of dimensions.

Sensor [10, 11], and HT [32]. The synthetic datasets we use are pro-
duced by the simden and varden random walking based generators
proposed by Gan and Tao [25]. Simden generates multiple clusters of
points with similar density while varden produces multiple clusters
with varying density. We also use synthetic datasets generated by a
uniform sampler. Details of these datasets are listed in Table 1 along
with the hyperparamters we chose for each dataset. The 𝑑cut hyper-
parameter is selected such that the computed density values based
on the chosen 𝑑cut value is nonzero but significantly smaller than
the size of the dataset. The 𝜌min and 𝛿min values are selected such
that the total number of clusters produced by the DPC algorithm is
relatively small.
Computational Environment.

We use c2-standard-60 instances on Google Cloud for our experi-
ments. These are 30-core machines with two way hyper-threading
and are equipped with Intel 3.1 GHz Cascade Lake processors that
can reach a max turbo clock-speed of 3.8 GHz. For all algorithms, 30
threads are used, and hyperthreading is enabled if it further improves
the runtime of the algorithm.
Algorithms.

We study the effectiveness of our proposed optimizations for den-
sity computation and analyze the performances of our dependent
point finding algorithms. The baseline algorithms used for com-
parisons are the state-of-the-art exact DPC method proposed by
Amagata and Hara [2] and the state-of-the-art approximate DPC
method3 proposed by Amagata and Hara [2].

The algorithms studied are detailed in the list below.

(1) DPC-EXACT-BASELINE: Amagata and Hara [2]’s state-of-
the-art exact DPC algorithm.

(2) DPC-APPROX-BASELINE: Amagata and Hara [2]’s state-of-
the-art approximate DPC algorithm.

(3) DPC-FENWICK: a DPC algorithm that uses the fenwick tree
based dependent point finding algorithm in Section 5 along
with the density computation and single linkage clustering
optimizations introduced in Section 4.

(4) DPC-INCOMPLETE: a DPC algorithm that uses the incom-
plete 𝑘d-tree based dependent point finding algorithm in

3Amagata and Hara [2] proposed two approximate DPC algorithms. We compare our
algorithms with their fastest approximate DPC algorithm.
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Section 6.1 along with the density computation and single
linkage clustering optimizations introduced in Section 4.

(5) DPC-PRIORITY: a DPC algorithm that uses the priority
search 𝑘d-tree based dependent point finding algorithm in
Section 6.3 along with the density computation and single
linkage clustering optimizations introduced in Section 4.

Besides studying the DPC algorithms’ overall performance, we
also analyze the runtimes of the density computation task separately
from the dependent point finding task in order to study the effec-
tiveness of our proposed optimizations for those tasks. The single
linkage clustering task is not studied separately as it takes up a negli-
gible percentage of the overall runtime; we refer to Wang et al. [61]
for an experimental demonstration of the performance the parallel
union-find based single linkage clustering method we adopt.

We implement our algorithms using the libraries ParlayLib [6]
and ParGeo [63]. We use C++ to implement our code and the gcc
compiler with -O3 optimization level to compile the code.

8.2 Algorithm Runtime Comparison
We first perform cross-comparison between the runtimes of all 5 of
our algorithms. Figure 3 and Table 2 shows the runtime comparison
across the five DPC algorithms studied.
Comparison with exact DPC baseline.

First, all of our proposed algorithms consistently outperform
DPC-EXACT-BASELINE on all datasets, both in terms of density
computation and dependent point finding. Our optimized density
computation method outperform the baseline exact density com-
putation by 1.4–18586.3x, with a geometric mean of 61.2x. For
dependent point finding, our fenwick tree based method outperform
the baseline by 12.9–1551.7x, with a geometric mean of 131.2x. Our
incomplete 𝑘d-tree based method achieves a speedup of 0.9–675.9x,
with a geometric mean of 31.9x (a < 1 speedup signifies a slow-
down). Our priority search 𝑘d-tree based method attains a speedup
of 8.3–4666.3x, with a geometric mean of 233.3x.

We also note that Figure 3 shows that our DPC algorithms are
able to scale to high dimensional datasets far better than Amagata
and Hara [2]’s baseline exact DPC algorithm. For this reason, we
also provide the speedup numbers for low dimensional datasets (2D
synthetic datasets). Our density computation optimization is still
able to achieve a 1.4–4.0x speedup, with a geometric mean of 2.5x.
On low dimensional datasets, our DPC-FENWICK’s dependent point
finding algorithm outperforms the baseline by 12.9–64.7x, with
a geometric mean of 39.8x; DPC-INCOMPLETE’s dependent point
finder outperforms the baseline by 5.0–28.0x, with a geometric mean
of 15.3x; DPC-PRIORITY’s dependent point finder attains a speedup
of 54.2–209.1x, with a geometric mean of 128.0x.
Comparison with approximate DPC baseline.

Our best exact DPC algorithm, DPC-PRIORITY, is able to achieve
runtimes that are superior to the approximate DPC baseline on most
datasets. DPC-FENWICK and DPC-INCOMPLETE can also achieve
competitive results when compared to DPC-APPROX-BASELINE.
Over all datasets, our optimized density computation method attains
a 1.7–6828.5x speedup over the baseline density approximation
algorithm used by Amagata and Hara [2] for DPC; the geometric
mean speedup is 23.1x. DPC-FENWICK’s dependent point finder
outperform the approximate dependent point finder by 0.2–536.2x,

(a) Total runtime of DPC algorithms

(b) Density computation component

(c) Dependent point finding component

Figure 3: Plot of the running time of all DPC algorithms studied
on four real world datasets. All algorithms are run on a 30-
core machine. For each algorithm, two-way hyperthreading is
enabled if it further improves the algorithm’s performance. All
units are in seconds and the y-axis is in logarithmic scale. Some
algorithms do not have a runtime for a dataset because they do
not terminate within 48 hours. It is clear from these plots that
our proposed dependent point finding algorithms and density
computation optimizations achieve considerable improvement
in comparison to the baseline methods.

with a geometric mean of 4.6x; DPC-INCOMPLETE’s dependent
point finder is able to outperform the baseline by 0.005–232.2x,
with a geometric mean of 1.3x; DPC-PRIORITY’s dependent point
finder can outperform it by 0.04–1534.1x, with a geometric mean
of 8.2x. The range of speedups achieved varies significantly across
datasets primarily because DPC-APPROX-BASELINE’s performance
is highly dependent on the different distribution of points in each
dataset. It should be noted that DPC-PRIORITY’s dependent point
finder is only slower than the baseline approximate dependent point
finder on one dataset, and achieves considerable speedup on all
others. Since DPC-APPROX-BASELINE is fairly scalable with respect
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Algorithm DPC-EXACT-BASELINE DPC-APPROX-BASELINE DPC-FENWICK DPC-INCOMPLETE DPC-PRIORITY

Datasets density. dep. density. dep. density. dep. density. dep. density. dep.

uniform2 30.70 91.30 NaN NaN 7.65 7.07 7.58 18.26 7.59 1.69
simden2 3.39 290.30 2.23 6.36 1.29 3.86 1.31 11.27 1.27 1.39
varden2 1.82 250.23 5.25 2072.96 1.28 3.87 1.26 8.93 1.28 1.35
GeoLife NaN NaN 21.08 5.19 10.20 12.25 10.04 14.95 10.18 2.59
PAMAP2 1.76 4.65 0.83 0.026 0.037 0.11 0.052 5.13 0.037 0.56
Sensor 11850.20 2000.41 202.95 115.50 2.97 1.77 2.94 4.33 2.95 0.98
HT 5836.56 814.50 2, 144.31 0.61 0.31 0.52 0.46 1.21 0.32 0.17

Table 2: The runtime of the 5 DPC algorithms tested on real world and synthetic datasets, decomposed into the density computation
component (density.) and the dependent point finding component (dep.). NaN means that the algorithm does not terminate within
48 hours. Our proposed DPC-FENWICK and DPC-PRIORITY consistently outperform the state-of-the-art exact and approximate DPC
algorithms. DPC-PRIORITY is the most performant algorithm in most scenarios.

to the dimensionality of the datasets, we do not provide separate
comparisons on low dimensional datasets.

Finally, it should be noted that Table 2 shows that density compu-
tation sometimes take up a larger portion of time than the dependent
point finding task. The runtime ratio between these two tasks is
dependent on the parameter choice for 𝑑cut. For our performance
analysis, 𝑑cut is chosen crudely such that the computed density val-
ues are nonzero but are << 𝑛. For carefully selected 𝑑cut values,
the dependent point finding task is more likely to occupy the major
portion of time [2].

8.3 Scalability Analysis
We analyze the scalability of our algorithms by performing experi-
ments on synthetic datasets of varying sizes and running the algo-
rithms on different numbers of threads. We use datasets generated
by simden for scalability analysis because DPC-APPROX-BASELINE,
when running on a single thread, does not terminate for the largest
uniform and varden datasets within 48 hours.
Scalability over the size of the dataset.

We analyze the scalability of all 5 DPC algorithms over 2D simden
datasets of varying sizes (from 103 points to 107 points); we keep
the dimensionality of the datasets tested low because DPC-EXACT-
BASELINE does not scale to high dimensional datasets well. Figure
4a shows the runtime of all five DPC algorithms over simden datasets
of different sizes. It should be noted that our DPC-PRIORITY is able
to outperform both the exact DPC baseline and the approximate DPC
baseline for simden datasets of most sizes. Further, we note that the
runtime of our proposed algorithms increase much slower than DPC-
EXACT-BASELINE. From simden with 103 points to simden with 107
points, the runtime of DPC-EXACT-BASELINE increases by about
1.5 · 105x. In comparison, DPC-FENWICK’s runtime increases by
only 104x; DPC-INCOMPLETE’s runtime increases by 1.4 · 104x, and
DPC-PRIORITY’s runtime increases by 4.5 · 103x. This demonstrates
that our algorithm has superior scalability over different graph sizes,
which is expected since our algorithms are able to attain stronger
complexity results than Amagata and Hara [2]’s algorithms.
Parallel scalability.

Finally, we investigate the parallel scalability of our algorithms.
Figure 4b clearly shows that all of our proposed DPC algorithms
attain better parallel scallability than the exact DPC baseline. This is
expected, because of the fact that we reduced the span complexity

from the baseline’s𝑂 (𝑛2) to𝑂 (𝑛 log(𝑛)) for DPC-INCOMPLETE and
𝑂 (log(𝑛) log log(𝑛)) for both DPC-PRIORITY and DPC-FENWICK.

DPC-FENWICK is able to achieve a 8.8x self-relative speedup
when running on 60 threads. DPC-PRIORITY, in comparison, achieves
a 13.2x self-relative speedup. Both are superior to the 1.3x self-
relative speedup attained by DPC-EXACT-BASELINE and are com-
petitive against the 14.4x self-relative speedup achieved by DPC-
APPROX-BASELINE.

9 CONCLUSION
In this paper, we develop theoretically efficient parallel algorithms
for performing Density-Peaks Clustering (DPC), an established
density-based clustering method with wide applications. We intro-
duce optimizations for the density computation and the single link-
age clustering subtasks of DPC. We further propose 3 algorithms for
solving the dependent point finding subtask of DPC. Our best pro-
posed algorithm is able to dramatically improve upon the work com-
plexity and span complexity of the state-of-the-art solution, cutting
the work complexity from 𝑂 (𝑛2) to 𝑂 (𝑛 log(𝑛)) in expectation, and
reducing the span complexity from 𝑂 (𝑛2) to 𝑂 (log(𝑛) log log(𝑛)).
We also introduce priority search 𝑘d-tree, a data structure used in
our DPC algorithm, and provide proof for the runtime complexity
of performing queries on a priority search 𝑘d-tree. Finally, we con-
duct extensive experimental analysis of the performances of our
proposed algorithms in comparison to the state-of-the-art exact and
approximate DPC algorithms. Our best algorithm is able to achieve
a geometric mean speedup of 233.3x over the state-of-the-art exact
DPC solution. It is also able to outperform the best approximate
DPC algorithm on almost all datasets, attaining a geometric mean
speedup of 8.2x. We further show that our algorithms are scalable
to datasets of different sizes and parallel computing machines with
different number of cores. When running on a 30-core machine with
two-way hyperthreading, our fastest algorithm attains a self-relative
speedup of 13.2x.

10 FUTURE WORK
In the future, we intend to further improve the runtimes of our
algorithms via performance engineering. We also wish to explore the
possibility of applying a Balanced-Aspect-Ratio tree [18] to solving
the DPC dependent point finding task, which can potentially result
in an algorithm with a tighter, non-probabilistic work bound.
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(a) Scalability analysis over datasets of different sizes

(b) Scalability analysis over different number of threads used

Figure 4: Runtime of all 5 DPC algorithms on simden datasets
over different sizes and the speedup ratios of the DPC algorithms
over different number of threads (note that “60 threads" means
a 30-core environment with two-way hyperthreading). The run-
time units are in seconds and all axis use logarithmic scale. Our
proposed algorithms clearly scale better than the exact DPC
baseline algorithm.

Beyond DPC, we wish to explore the application value of the
priority search 𝑘d-tree data structure in solving other computational
challenges.
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