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1. Introduction

The Square Peg Problem, or inscribed square problem, asks whether for any

planar curve � there exists an inscribed square in �. Here, inscribed means

that the four vertices of the square must all lie in �, but the square is not

necessarily contained in the region bounded by �.

The problem was first proposed by Otto Toeplitz [14] in 1911, and in spite

of its long history, it remains open in full generality. So far, progress has

only been possible by assuming some additional condition on the curve �.

In the case where � is convex, an early partial result was obtained by Emch

[3], who proved in 1916 that Toeplitz’s conjecture holds for piecewise ana-

lytic curves with finite singularities. The case for convex curves was later

completed by Christensen [2] and Zindler [15]. Numerous other accomplished

mathematicians have attempted the problem and achieved partial solutions.

These various results were proven through the use of techniques from a variety

of mathematical fields, and have sought a range of di↵erent constraints and

regularity conditions for their theorems.

In 1944, Shnirelman [11] proposed a version of the problem restricted to

curves with a continuity condition on their curvature, to which he provided

a flawed and incomplete proof that Guggenheimer [4] later revised in 1965,

still relying heavily on the bordism argument that Shnirelman first used, as

well as parts of trigonometry and topology. However, Guggenheimer’s proof

of Shnirelman’s proposition was not all-encompassing, as it failed to address

flaws in the limiting argument that appeared upon deformation of the curve.

During the second half of the 20th century and onwards, many more mathe-

maticians proved the theorem under various regularity conditions. Jerrard’s [6]

paper from 1961, proved the theorem for the class of periodic analytic curves

in the plane. Using the periodic nature of these functions, and constructing

a function with each vertex of the curve, he analyzed the number of defined

values and the supports at various points of such functions. After complet-

ing the initial proof for the existence of an inscribed square, he expanded his

conjecture by proving that there exists precisely an odd number of squares, in

large part by analyzing the parity of so-called “ordinary” values, defined by

Jerrard as the number of vertices such that a 90-degree rotation around that

vertex produces a curve that crosses the boundary of the original curve.
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In 1989, Stromquist [12] provided a proof for smooth curves in Rn, which

he extended to all locally monotone curves in the latter half of his paper.

In 2017, Tao [13] published a computationally intensive paper with a signif-

icant breakthrough, proving the theorem for all curves that are the union of

two Lipschitz graphs — among the least regularity yet out of all correct proofs

on Toeplitz’s proposition to date. His proof uses complex signed integrals that

benefited the use of his limiting argument.

Matschke [7] [8] was another major contributor to the progress in this prob-

lem. In two separate papers, he proved the problem for, among other classes,

curves that do not contain an even number of su�ciently small trapezoids.

Broadly speaking, the results above all use tools from algebraic topology.

During the problem’s 112-year history, there have been many other attempts

towards solutions with less regularity, or even complete proofs of Toeplitz’s

proposition. Many of these have fallen short due to a heavy reliance on a

limiting argument that proved to be flawed, as the squares would become

degenerate as opposed to converging to inscribe the various classes of curves as

these conjectures would have expected. Nonetheless, Pak’s paper [9], published

in 2008, is a fairly recent example of a successful application of ideas from

algebraic topology and the limiting argument. His proof that all simple, closed

polygons in the plane inscribe a square involves simple techniques and concepts

from geometry and set theory, which he applied in a very sophisticated manner.

Pak took two points on a curve and constructed an isosceles right triangle with

the chord as a leg, which gave him two choices for the position of the triangle’s

third vertex. These two choices correspond to two sets which represented the

pairs that would admit an inscribed triangle. By considering the configuration

space of polygonal curves and parameterizing this space by a torus (see Section

2.4 for further explanation), Pak was able to use the algebraic topology of the

torus to show that the two sets must intersect, thereby proving the existence

of an inscribed square.

A more recent publication was completed by Cantarella et al. [1] in 2021.

They investigated a possible generalization of the Square Peg Problem to

curves in higher dimensions, and asked whether there exists a so-called “square-

like quadrilateral” inscribed in all closed, continuous curves in Rn. Motivated

by their work as well as Pak’s, we investigate an extension to the Square Peg

Problem for polygonal curves in three dimensions, and ask whether such curves
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must admit a square-like tetrahedron, defined as a tetrahedron with congruent

isosceles right triangles as two of its faces, sharing an edge at a leg of each

triangle, with the right angles on opposite sides of the shared edge, as shown

in Figure 1 below.

Figure 1. Square-like tetrahedron

This paper seeks to prove the following theorem:

Theorem 1. Every simple polygonal curve in three-dimensional space has an

inscribed square-like tetrahedron.

2. Preliminaries

2.1. Setup. Let P be an oriented polygonal curve in R3 with n vertices, la-

belled p1, p2, . . ., pn. For an ordered pair (w, x) of points w, x 2 P denote by y

and z the other two vertices of a square-like tetrahedron [wxyz] in R3, where

|wz| = |wx| = |xy|, and ]zwx = ]yxw = 90. Parameterize P by the circle

and consider (w, x) as a point on a torus T = P ⇥ P . Denote by Y ⇢ T the

subset of pairs (w, x) so that y 2 P . Similarly, denote by Z ⇢ T the subset of

pairs (w, x) so that z 2 P .

2.2. Linking number. A significant section in this paper relies on the con-

cept of a linking number. Suppose �1, �2 are two non-intersecting simple closed

curves in R3. If r1, r2 : [0, 2⇡] �! R3 are parametrizations of �1, �2, respec-

tively, we define their linking number as:

(1) link(�1, �2) =
1

4⇡

Z 2⇡

0

Z 2⇡

0

det(r2 � r1, r02, r
0
1)

|r1 � r2|3
dt1dt2.

Although it is not clear at first, the above integral is always an integer. The

linking number is so called because it corresponds to the number of times

that two closed curves wind around each other. Depending on orientation, the

linking number can be both positive and negative, though our proof will only
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require di↵erentiation between the cases where two curves do and do not wrap

around each other — having a non-zero and zero linking number, respectively.

e.g. [10]

2.3. The sense of ‘generic’. For some fixed integer n, one may consider the

space of n-polygonal curves and equip it with a metric topology as follows.

First, we define a distance between two n-polygonal curves as follows: let K

andQ be two polygonal curves with n vertices each, labelled asK1, K2, · · · , Kn,

and Q1, Q2, · · · , Qn, respectively. Define the distance d(K,Q) between K and

Q as

(2) d(K,Q) = min
⇡

nX

i=1

|Ki �Q⇡(i)|

where minimum is taken among all permutations ⇡ : {1, · · · , n} ! {1, · · · , n}.
In this distance function, a sequence of n-polygonal curves Pn = {P1, P2, P3, · · · }
converges to a n-polygonal curve P if and only if

(3) lim
k!1

d(P, Pk) = 0

for some pairing of vertices between P and Pn.

One checks straightforwardly that d is a metric and from it, one can define

a topology on the space of n-polygonal curves. A generic set of polygons is a

set that is open and dense in this topology. In this paper, we address a generic

case first, followed by the general case.

2.4. Parameterization of the torus. The torus is parameterized by length

with reference to P and is treated as a square for the entirety of the proof,

where every point on T corresponds to the ordered pair (y, z). This is visual-

ized in Figure 2 below.

(w, x)

Figure 2. T = P ⇥ P
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3. Proof of the generic case

Theorem 2. Every generic simple polygonal curve in three-dimensional space

has an inscribed square-like tetrahedron.

Having established the definitions of the sets Y and Z, our goal now is to

show that they intersect.

First, we see that for a generic P , the set of points Yx = {w : (w, x) 2 Y } is

finite. This can be shown through a sphere argument involving two lemmas.

Figure 3. Sw,r

Let Sw,r be a sphere centered at w with radius r, where r > 0. Such a sphere

is shown above in Figure 3. We have the following definition:

Definition 3.1 (Qualifying radius). A radius r is categorized as a qualifying

radius if there are points h1, h2 2 Sw,r \ P that are equidistant from w, and

such that h1w is perpendicular to h2w. The pair (h1, h2) qualifies r.

Lemma 3. For all w 2 P , there exist finitely many qualifying radii r.

Proof. Let A be the set of radii r that satisfy the condition described in the

lemma. By contradiction, assume A is an infinite set. Since for some R > 0

su�ciently large, Sw,r \ P = ? for all r > R, we have that A is bounded. Thus,

by the Bolzano-Weierstrass Theorem, given an infinite number of satisfying

values in the bounded set A, there must be an accumulation point in the

interval [0, R]. This entails the existence of some converging sequence of r

values that fit the aforementioned condition. However, this corresponds to a

non-generic case, since it means that for some two radii r1 and r2 ✏-close to

each other where the intersections with P lie on the same edges of P , these

intersections form a 90-degree angle at w for both radii. This can only be

achieved if some two sides of P are perpendicular to each other. ⇤
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Lemma 4. For every qualifying radius r, there exists only a finite number of

pairs (h1, h2) that qualify r.

Proof. Let rq be a qualifying radius. Since Sw,rq is a two-dimensional object

while P is one-dimensional, we know that generically, by the transversality

condition [5], they intersect at finitely many points. ⇤

Combining the claims in Lemma 3 and Lemma 4, we can now conclude that

the set Yw = {x : (w, x) 2 Y } is finite for every generic P that does not have

orthogonal edges.

Lemma 5. Y is composed of closed curves that are piecewise C1-smooth.

Proof. We argue by continuity. Start with some wg, xg, yg 2 P , where the three

points form a right isosceles triangle with the right angle at xg. Construct a

sphere Sx,r centered at x with radius r, where x = xg and r = |wgxg|. Clearly,
this sphere passes through wg and yg. In the generic case, as we locally increase

and decrease r around r = |wgxg|, the angle should be monotonically increasing

or decreasing locally around r = |wgxg|. Thus, by continuity, as wg shifts along

P by a function parameterized by length, there should also exist a radius very

close to xg such that the angle at x is 90 degrees.

⇤

Having shown that Y is a union of piecewise di↵erentiable closed curves, we

will abuse notation slightly and refer to Y as a union of closed polygonal arcs.

Lemma 6. The closed polygonal arcs in Y are simple and disjoint.

Proof. We prove this lemma by contradiction, by assuming that some two

closed polygonal arcs in Y do intersect or that some polygonal arc self-intersects.

There exists four di↵erent cases for the relationship between any two closed

curves in Y that have such an appearance. We address them one by one to

show that none of the cases are both generic and achievable.

First, we examine the case where two polygonal arcs in the torus T intersect

edge to edge. This cannot happen, because it would mean that the intersec-

tions w and x change directions along an edge of P , which is impossible since

any point on Y can only move from one arc to another when w or x pass

through a vertex of P .
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The next case is where two polygonal arcs in T intersect vertex to edge. This

case cannot happen by similar logic, since the intersections w and x cannot

change directions unless at least one of them passes through a vertex on P .

The third case is where two polygonal arcs in T intersect vertex to vertex.

This case is non-generic, since it can only be achieved when there exists some

r and w such that Sw,r passes through two vertices of P , where the vertices

form a 90-degree angle at w.

Therefore, the only case remaining is where no two curves in Y intersect

each other, and no curve self-intersects. In this case, w and x cannot disappear

unless Sw,r passes through a vertex of P , which is what forms the boundary

of the closed curves in Y . ⇤

From here, we also observe that Y does not pass through the diagonal in

the torus T , since otherwise it would imply a non-generic case where at some

vertex of P , the triangles all converge to the same point.

Lemma 7. At least one of the closed polygonal arcs in Y is not null-homotopic.

Proof. Choose some x 2 P . Draw Sx,r, where r is infinitesimally small, and

two of the sphere’s intersections with P be w and y. For any x that is not a

vertex on P , ]wxy is 180 degrees with the radius infinitesimally small. As r

increases, there exists a least R such that for all Sx,r such that r > R, there are

no intersections between the sphere and P . For Sx,R, ]wxy is 0 degrees. Thus,

there must be an odd number of radii for which ]wxy measures 90 degrees.

Thus, for a generic x, Yx contains an odd number of elements. Therefore, at

least one of the closed polygonal arcs in Y must not be null-homotopic. ⇤

As can be checked with the same arguments, the lemmas proven above for

Y also apply to Z. In summary, Y and Z are both a disjoint union of simple

closed polygonal arcs, and at least one curve in Y as well as in Z are not

null-homotopic. We denote one such curve in each of Y and Z as Y 0 and Z 0,

respectively. Since Y 0 and Z 0 are also simple and do not intersect the diagonal

�, we conclude that they must be homotopic to �.
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Definition 3.2 (Linked; unlinked). Two curves are linked if their linking

number is nonzero. Else, we say they are unlinked.

Lemma 8. Y 0 intersects Z 0.

Proof. We perform this proof by contradiction: assume that Y 0 does not in-

tersect Z 0. Let Cw be the circle centered at w with radius |wx|, perpendicular
to wx, and let Cx be the circle centered at x with radius |wx|, perpendicular
to wx. It is easy to see that for the pairs (w, x) 2 T that lie close to �, the

linking number of Cw and P , as well as of Cx and P , are both nonzero. Keep-

ing w fixed and moving x further away, there exists some distance � between

the two points, such that Cx and P become unlinked for every |wx| > �, with

a linking number of 0. The same applies when keeping x fixed, moving w, and

examining the linking number between Cw and P . This means that as the

distance between w and x increases continuously — meaning the radii of Cx

and Cw are also increasing identically, by setup —, the linking number must

have been 1 or �1 for some radii. This is precisely the case where Cx or Cw

are tangent to P , allowing the formation of right isosceles triangles wxy and

xwz. We can also observe that when we keep w fixed and move x further from

w, Cw will always become unlinked with P before Cx becomes unlinked with

P . We can now divide the T into three regions:

• Tl: linked. Cw and Cx are both linked to P .

• Ts: semi-linked. Cw is unlinked and Cx is linked.

• Tu: unlinked. Cw and Cx are both unlinked to P .

This is shown in Figure 4 below.

Figure 4. Three regions in T

Now, consider the smallest isosceles right triangle M inscribed in P . We

start with w and x very close to each other, and move x further away while

keeping w fixed. M can be labelled in two ways:
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Figure 5. Two labellings for M

In the first labeling, y first appears on P when x and y are both vertices of

M . From our previous findings, this means that Cw and P are unlinked. In

the second labeling, z first appears on P when x and z are vertices of M . From

our previous findings, this means that Cx are P are linked. According to the

hypothesis, these observations imply that the two labelings should represent

points on two di↵erent boundaries of the torus — namely, the first labelling

should correspond to a point between Ts and Tu, while the second labeling

should correspond to a point between Tl and Ts. However, our diagram in

Figure 5 shows that the two labelings should both be in the boundary between

Tl and Ts, since M can correspond to an element in both Y and Z. Therefore,

we have reached a contradiction.

⇤

4. Finishing the proof of Theorem 1: the non-generic case

We complete the proof of Theorem 1 by addressing the case where P is non-

generic. Because our conjecture restricts P to be a simple closed polygon, we

are able to execute the following argument. For some non-generic polygonal

curve P , there exists a sequence of generic polygonal curves Pn that converges

to P in the distance sense, as defined in Section 2.3. By Theorem 2, for each

n, there are square-like tetrahedrons Qn inscribed on Pn. Our proof will be

done once we show that Qn does not degenerate as Pn ! P and thus must

converge to a square-like tetrahedron Q that is inscribed in P .

Lemma 9. The square-like tetrahedrons Qn do not degenerate as Pn ! P .

Proof. By contradiction, suppose Qn is degenerating. In this case, we can find

right isosceles triangles Tn in Qn which are degenerating to a point.

Since Pn �! P , the vertices of Pn stay at a bounded distance from each

other as n ! 1. And because Pn is generic, the three vertices of the triangles



14 DERUI CHU

Tn all must lie on di↵erent sides of Pn. But this is a contradiction since Tn

degenerating to a point would imply that vertices or sides of Pn would have

to come together as n �! 1. ⇤

Our proof of Theorem 1 is now complete.
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