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Abstract

Assume J ⊂ R3 is a non-trivial knot, and assume k̂ ⊂ S1 × D2 is a
satellite pattern. Let N be the generalized Thurston norm of the homology
class of the meridian disk in S1 × D2 with respect to k̂. Let K be the
satellite knot of J with pattern k̂. We show that the trunk number of K
is strictly greater than N times the trunk number of J .

This paper is written with the help of Prof. Zhenkun Li and Prof.
Boyu Zhang.

1 Introduction

The trunk number is a knot invariant defined by Ozawa[1]. It is closely related
to the width of a knot introduced by Gabai[5]. The properties of the trunk
number under connected sums were studied by Davies and Zupan[2]. In [4],
Kavi, Wu, and Li studied the properties of the trunk number of satellite knots:
they proved that if K is a satellite knot with companion J and if J is non-trivial,
then

trunk(K) >
1
2
m · trunk(J),

where m denotes the wrapping number of the pattern of K. The purpose of this
paper is to give another lower bound for the trunk of satellite knots, but using
the generalized Thurston norm (see Section 1.2) instead of wrapping number.
Let N be the generalized Thurston norm of the pattern of K, and assume J is
non-trivial, we show that

trunk(K) > N · trunk(J)

1.1 Notation and conventions

Throughout this paper, all knots, curves, and surfaces are assumed to be smooth,
and maps between manifolds are assumed to be smooth.

It will be important for us to differentiate between embedded circles and
isotopy classes of embedded circles in S3. Therefore, we will use capitalized
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letters (K, J , etc.) to denote isotopy classes of embedded circles (namely,
knots) in S3, and use lower case letters (k, j, etc.) to denote embedded circles
in S3.

We will use notations such as k̂, ĵ, etc, to denote embedded circles in S1×D2.
To simplify notation, we also use V̂ to denote S1 ×D2.

We will identify S3 with the unit sphere {(x1, x2, x3, x4) ∈ R4|
∑4

i=1 x
2
i = 1},

and define

h: S3 → R
(x1, x2, x3, x4) 7→ x4

to be the height function on S3. We call (0, 0, 0, 1), (0, 0, 0,−1) ∈ S3 the north
pole and the south pole respectively.

If X is a manifold with finitely many connected components, we use |X| to
denote the number of connected components of X.

1.2 Statement of the result

Suppose j ⊂ R3 is a knot such that the restriction of h to j is a Morse function
with distinct critical values. We also assume that j does not contain the north
pole or the south pole of S3. The trunk number of j is defined to be

trunk(j) = max
z
|h−1(z) ∩ j|.

It is straightforward to see that trunk(j) is invariant under C2–small perturba-
tions of j.

If J is the isotopy class of a knot, the trunk number of J is defined to be

trunk(J) = min
j

trunk(j),

where j is taken over all embedded circles in R3 in the isotopy class of J such
that the restriction of h to j is a Morse function with distinct critical values,
and that j is disjoint from the north and the south poles.

Now assume k̂ ⊂ S1 ×D2 is a satellite pattern. By definition, this implies
that k̂ can not be included in a solid ball in S1 ×D2.

Recall that we use V̂ to denote S1×D2. Let (Σ, ∂Σ) ⊂ (V̂ , ∂V̂ ) be an embed-
ded compact oriented surface that intersects k̂ transversely. If Σ is connected,
we define

xk̂(Σ) = max{−χ(Σ) + |Σ ∩ k̂|, 0}.

If Σ is disconnected with connected components Σ1, . . . ,Σs, define

xk̂(Σ) =
s∑

i=1

xk̂(Σi).

For
a ∈ H2(V̂ , ∂V̂ ),
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the generalized Thurston norm of a with respect to k̂ is defined to be

xk̂(a) = min
Σ
xk̂(Σ),

where Σ is taken over all (Σ, ∂Σ) ⊂ (V̂ , ∂V̂ ) such that [Σ] = a and that Σ
intersects k̂ transversely.

We will fix a satellite pattern k̂ from now. Let Σ be an oriented meridian
disk in V̂ , let [Σ] ∈ H2(V̂ , ∂V̂ ) be its fundamental class, and define

N = xk̂([Σ]).

It is straightforward to verify that

xk̂(a) = xk̂(−a) for all a ∈ H2(S1 ×D2, S1 × ∂D2),

so the value of N does not depend on the orientation of Σ
The main theorem of this paper is the following result.

Theorem 1.1. Assume J is a non-trivial knot, and K is the satellite of J with
pattern k̂. Then

trunk(K) > N · trunk(J). (1)

Remark 1.2. The assumption that J is non-trivial is necessary in Theorem 1.1.
In fact, if J is the unknot and k̂ is the Whitehead double pattern, then N = 1,
and K is also the unknot. So (1) does not hold for this case.
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and is also very grateful to Professor Boyu Zhang for many useful conversa-
tions and, especially, help on the homology part. The author would also thank
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2 Preliminaries

Let k̂, J , K be as in Theorem 1.1. Recall that we use V̂ to denote S1 × D2.
Define

ĵ = S1 × {(0, 0)} ⊂ V̂

to be the core circle in V̂ .
Let k ⊂ S3 be a representative of K such that h|k is Morse with distinct

critical values and that k is disjoint from the north and the south poles of S3.
By the definition of satellite knots, there exists an embedding

τ : V̂ → S3 (2)
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such that τ(ĵ) represents the isotopy class J and τ(k̂) = k. Moreover, we may
choose τ so that its image is disjoint from the north and the south poles.

Let
V = τ(V̂ ), T = τ(∂V̂ ).

Then V is an embedded solid torus in S3, and T is its boundary torus. By the
above assumptions, both V and T are disjoint from the north and the south
poles.

Perturb τ near ∂V̂ so that h|T is Morse with distinct critical values, and that
the critical values of h|T are disjoint from the critical values of h|k. Assume

c1 < c2 < · · · < cn

are all the critical values of h|T and h|k. For each i = 1, 2, . . . , n − 1, take
ri ∈ (ci, ci+1). Then ri is a regular value of both h|T and h|k, and we have

trunk(k) = max
1≤i≤n−1

|h−1(ri) ∩ k|.

Note that H2(V, T ) = H2(V, ∂V ) ∼= Z. We have the following elementary
properties about embedded surfaces in V .

Lemma 2.1. Assume (Σ, ∂Σ) ⊂ (V, T ) is an embedded connected surface with
boundary. Then [Σ] ∈ H2(V, T ) is either zero or a generator of H2(V, T ).

Proof. Let N(Σ) be a tubular neighborhood of Σ. Then for each x ∈ V \Σ,
there is a path in V \Σ from x to a point in N(Σ)\Σ. Since N(Σ)\Σ has two
connected components, the space V \Σ has at most two connected components.

If V \Σ has two connected components, write these components as M1 and
M2. Then

[Σ] = [∂M1] = 0 ∈ H2(V, T ).

If V \Σ has one connected component, then there exists an embedded circle
in the interior of V that intersects Σ transversely at one point. Therefore [Σ]
must be a generator of H2(V, T ).

Definition 2.2. We say that a simple closed curve c ⊂ T is essential on T , if
it is not contractible on T . Otherwise, we say that c is inessential.

Lemma 2.3. Assume (Σ, ∂Σ) ⊂ (V, T ) is an embedded connected surface with
boundary. Then [Σ] ∈ H2(V, T ) is a generator of H2(V, T ) if and only if there
is an odd number of connected components of ∂Σ that are essential on T .

Proof. Let D be an oriented meridian of V . By Lemma 2.1 and the homology
exact sequence for the pair (V, T ), we have

1. [∂Σ] ∈ H1(T ) is equal to 0 or ±[∂D],

2. [Σ] is a generator of H2(V, T ) if and only if [∂Σ] = ±[∂D].
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Since the essential components of ∂Σ are all parallel to each other, we conclude
that [∂Σ] = ±[∂D] if and only if ∂Σ has an odd number of essential components.
Hence the result is proved.

Lemma 2.4. Assume (Σ, ∂Σ) ⊂ (V, T ) is an embedded connected oriented sur-
face such that [Σ] is a generator of H2(V, T ). Also assume that Σ intersects
k transversely. Let a be the number of connected components of ∂Σ that are
essential on T . Let b = |k ∩ Σ|. Then we have

max{a+ b− 2, 0} ≥ N.

Proof. Let c1, . . . , cs be all the connected components of ∂Σ that are inessential.
Then each ci bounds an embedded disk on T . By a standard innermost disk
argument, we find an embedded oriented surface

(Σ′, ∂Σ′) ⊂ (V, T ),

such that

1. ∂Σ′ = ∂Σ\(c1 ∪ c2 ∪ · · · ∪ cs),

2. Σ′ intersects k transversely,

3. k ∩ Σ = k ∩ Σ′,

4. [Σ′] = [Σ] ∈ H2(V, T ).

As a consequence, we have

max{a+ b− 2, 0} = xk̂(τ−1(Σ′)) ≥ N,

where τ is the map defined in (2).

We will use the following result by [3] and [2].

Theorem 2.5. ([3], see also [4] Proposition 3.3) There exists an embedded circle
l ⊂ V , such that the following holds.

1. The circle l is transverse to h−1(ri) for all i = 1, . . . , n− 1.

2. Let L be the isotopy class of l. Then there exists an isotopy class J ′, such
that L = J#J ′.

3. If Σ is a component of h−1(ri) ∩ V such that [Σ] = 0 ∈ H2(V, T ), then l
is disjoint from Σ.

4. If Σ is a component of h−1(ri)∩V such that [Σ] is a generator of H2(V, T ),
then l intersects Σ transversely at one point.

Proof. The construction of l is given in Definition 3.4 of [3]. The fact that J is
a connected sum component of L is given in the proof of Lemma 4.3 in [3]. The
discussion of [3] after Lemma 4.4 showed that l can be isotoped in T so that it
satisfies Conditions 1,3,4 above.

Theorem 2.6 ([2]). Suppose K1,K2 are two knots, then

trunk(K1#K2) = max{trunk(K1), trunk(K2)}.
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3 Proof of the main result

Now we prove Theorem 1.1. We will use the same notation from Section 2.
For each i = 1, . . . , n − 1, we have ∂V ∩ h−1(ri) 6= ∅ and the intersection is

transverse.
Let Σ be a connected component of h−1(ri) ∩ V . To simplify notation, we

say that a connected component of ∂Σ is essential, if it is an essential curve on
T ; otherwise we say that the boundary component is inessential. We say that
Σ is principal, if the fundamental class [Σ] ∈ H2(V, T ) is nonzero. By Lemma
2.3, Σ is principal if and only if ∂Σ has an odd number of essential components.

Lemma 3.1. Let Σ be a connected component of h−1(ri) ∩ V , and assume c is
an essential connected component of ∂Σ. Let Dc be the disk bounded by c on
the sphere h−1(ri) whose interior is disjoint from Σ. Then there exists at least
one component Σ′ of h−1(ri) ∩ V that is distinct from Σ, such that

1. Σ′ ⊂ Dc.

2. Σ′ has at least one essential boundary.

Proof. Assume the contrary, then every component of int(Dc)∩T is an inessen-
tial simple closed curve on T , where int(Dc) denotes the interior of Dc. Let S
be the set of all possible embedded disks D in S3 such that

1. ∂D = ∂Dc = c,

2. There exists an open neighborhood N(c) of c such that N(c) ∩ Dc =
N(c) ∩D,

3. int(D) intersects T transversely, and every component of int(D) ∩ T is
inessential on T ,

Since D = Dc satisfies the above conditions, the set S is non-empty. Let D be
an embedded disk in S that minimizes the value of | int(D) ∩ T |.

We show that int(D)∩T = ∅. Assume the contrary, then by the assumptions,
every connected component of int(D) ∩ T bounds a disk in T . We may take a
component c′ such that it bounds an “innermost disk”. Namely, c′ is a connected
component of int(D) ∩ T , and it bounds a disk BT in T such that int(BT ) ∩
int(D) = ∅. Since c′ is a simple closed curve on D, it bounds a disk BD in D.
Perturbing (D\BD) ∪ BT yields an element D′ in S such that | int(D′) ∩ T | <
| int(D) ∩ T |, which contradicts the definition of D.

Since int(D)∩T = ∅ and N(c)∩Dc = N(c)∩D for some neighborhood N(c)
of c, we must have int(D) ∩ V = ∅.

In conclusion, we proved that c bounds a disk in S3 whose interior is disjoint
from V . Since c is essential on T , this implies that j is isotopic to the unknot,
which contradicts the assumption on the non-triviality of J .

We will need the following technical combinatorial lemma about surfaces on
a sphere.
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Lemma 3.2. Assume s is a positive integer and Σ1, . . . ,Σs are disjointly em-
bedded compact surfaces in S2. Assume for all j = 1, . . . , s, each connected
component of ∂Σj is classified as either “essential” or “inessential”. Let nj be
the number of essential boundary components of Σj.

Assume that for every j and every essential component c of Σj, there exists
j′ 6= j such that nj′ > 0 and Σj′ ⊂ Dc, where Dc is the disk bounded by c on
S2 whose interior is disjoint from Σj.

Also assume that there exists at least one j with nj > 0.
Then ∑

nj is odd

(2− nj) > 0.

Proof. Regarding essential boundaries, there are three cases:

1. All boundaries are essential. In this case, we assert that every component
Σj has at least 1 boundary. If this is untrue, then there exists such j that
nj = 0. Because Σj ⊂ S2, Σj must cover the entire S2, and since the
components are disjoint, there can be no other components and thus the
conclusion is trivial.

Now for every even nj , we have nj ≥ 2, so 2− nj ≤ 0.

Let the connected components of S2/(Σ1 ∪ ...∪Σs) be T1, . . . , Tk, and we
define these components as ”gaps”. Now for any gap Tk, it must have at
least 2 boundaries. Otherwise, Tk will be a disk whose interior does not
have any other components, which contradicts the combinatorial setup.

Notice that every component and gap lie on S2, so each of them has genus
0, which means each has an Euler characteristic, or χ value, of 2− b, with
b being the number of boundaries. Thus, the χ value of every gap is no
greater than 0.

Now we sum up the χ values of all the surfaces on S2. Since χ(A ∪B) =
χ(A)+χ(B)−χ(A∩B), and the intersection between any component and
any gap is a loop (whose χ value is 0) if there exists such intersection, we
have:

∑
nj is even

χ(Σj) +
∑

nj is odd

χ(Σj) +
∑

χ(Tk) = χ(sphere) = 2.

Since all the boundaries are essential, 2− nj = χ(Σj). And we know that
2− nj ≤ 0 for even nj , so ∑

nj is even

χ(Σj) ≤ 0.

Also, since χ(Tk) ≤ 0 for every k, we have∑
χ(Tk) ≤ 0.
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Therefore, ∑
nj is odd

χ(Σj) ≥ 2.

which suffices to show that ∑
nj is odd

χ(Σj) > 0.

2. There is at least one inessential boundary, and each connected component
has at least 1 essential boundary.

In this case, if a gap has only 1 boundary, then it must be inessential, or
it will contradict the combinatorial setup. We call these gaps with only 1
boundary ”disk gaps”.

Assume there are d disk gaps. Since other gaps have at least 2 boundaries
each, we have

∑
χ(Tk) ≤ d. In this case, we can still sum up the Euler

characteristics of all the pieces and gaps on S2:∑
nj is even

χ(Σj) +
∑

nj is odd

χ(Σj) +
∑

χ(Tk) = χ(sphere) = 2.

Thus, ∑
all

χ(Σj) ≥ 2− d.

Let b be the total number of inessential boundaries in the pieces, then∑
all

(2− nj) =
∑
all

χ(Σj) + b.

Every disk cap has a boundary that belongs to a piece, and they sum up
to d inessential boundaries. Thus,∑

all

(2− nj) ≥
∑

χ(Σj) + b ≥ (2− d) + d = 2.

Since every component has at least 1 essential boundary, for nj even, Σj

has at least 2 essential boundaries. Thus,∑
nj is even

(2− nj) ≤ 0

.

Hence, ∑
nj is odd

(2− nj) ≥ 2− 0 = 2 > 0.
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3. There is at least one inessential boundary, and there is at least 1 compo-
nent with no essential boundaries.

Let t be the number of components without essential boundaries.

The combinatorial setup states that any essential boundary bounds a disk
disjoint from its component, and the disk has a component with at least 1
essential boundary in it. Thus, if we remove a component with 0 inessential
boundaries, the presumption is still correct. Also,∑

nj is odd

(2− nj)

does not change because it only concerns components with an odd number
of essential boundaries.

Removing 1 such component, we have t− 1 such components left. We can
remove them one by one, and eventually the case will become the same as
case 2, in which ∑

nj is odd

(2− nj) > 0

is true. Thus, this statement holds for case 3.

Proposition 3.3. For each i = 1, . . . , n − 1, let zi be the number of principal
components of h−1(ri) ∩ V . If N > 0, zi > 0, we have

|h−1(ri) ∩ k| > N · zi.

Proof. Let Σ1, . . . ,Σs be the connected components of h−1(ri) ∩ V . Let nj be
the number of essential components of Σj . Then by Lemma 2.3, Lemma 2.4,
and Lemma 3.1, the following statements hold for each j = 1, . . . , s.

1. Σj is principal if and only if it has an odd number of essential boundaries.

2. If Σj is principal, then

max{|Σj ∩ k|+ nj − 2, 0} ≥ N. (3)

3. If c is an essential boundary component of Σj , and Dc is the disk bounded
by c on h−1(ri) whose interior is disjoint from Σj , then there exists j′ 6= j,
such that

(a) Σj′ ⊂ Dc,

(b) Σj′ has at least one essential boundary component.

For each j such that nj is odd, we have Σj is principal. Since we assume
N > 0, inequality (3) above implies that

|Σj ∩ k|+ nj − 2 ≥ N.
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By Lemma 3.2, we have ∑
nj is odd

(2− nj) > 0.

Therefore,

|h−1(ri) ∩ k| ≥
∑

nj is odd

|Σj ∩ k| ≥
∑

nj is odd

(N + 2− nj) >
∑

nj is odd

N = N · zi.

Now we can prove Theorem 1.1 using Proposition 3.3.

Proof of Theorem 1.1. The statement of the theorem is obvious if N = 0. From
now, we assume N > 0.

Recall that the embedded circle l ⊂ V satisfies the statements of Theorem
2.5. By definition, there exists i ∈ {1, . . . , n− 1} such that

|h−1(ri) ∩ l| = trunk(l) > 0.

By Proposition 3.3 and Parts (3), (4) of Theorem 2.5, we have

|h−1(ri) ∩ k| > N · |h−1(ri) ∩ l| = N · trunk(l).

By the definition of trunk number, we have

trunk(k) ≥ |h−1(ri) ∩ k|.

Recall that L denotes the isotopy class of l. By Theorem 2.5 Part (2) and
Theorem 2.6, we have

trunk(l) ≥ trunk(L) ≥ trunk(J).

Therefore, combining the above inequalities, we have

trunk(k) > N · trunk(J). (4)

Since (4) holds for every embedded circle k representing the isotopy class of K,
we conclude that trunk(K) > N · trunk(J).
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