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1. Introduction

Informally, a knot is a tangled loop of string. We call knots simple and closed
because the string does not intersect itself and has no beginning or end. Knot
theory is then the study of simple closed curves in R3. Over the last 50 years,
a number of applications have been found. We list three. In synthetic chem-
istry, molecules created with the same atoms, but shaped into different knots,
have different and often unique properties. In molecular biology, different knots
can affect how enzymes interact with DNA. And in cyber security, certain post
quantum cryptography algorithms rely on the difficulty of classifying knots.

Classically, knots have been studied via their regular projections, projections of
the knot onto the plane R2 where two strands intersect at every crossing. In [1],
Adams introduced n-crossing projections, projections where n strands intersect
pairwise transversely at each crossing (that is, each of the n strands crosses each
of the other n− 1 strands at the crossing point). An example of an n-crossing is
given in Figure 1. Every knot has an n-crossing projection for all n ≥ 2. One can
then define the n-crossing number cn(K) as the smallest number of crossings in
an n-crossing projection of K. If K is a non-trivial knot, cn(K) ≥ 1. Also, the
construction in Figure 1 shows that every crossing of n strands can be turned into
one with n+2 strands. Thus, an n-crossing can be made into an (n+2)-crossing
and cn+2(K) ≤ cn(K).

These n-crossing knot projections are highly interesting because they gener-
alize traditional knot projections. They then give new knot invariants, such as
cn(K). However, the n-crossing number of a knot is currently difficult to compute.
Strict mathematical inequalities relating the different n-crossing numbers are use-
ful as they narrow down the possible values of cn(K). These inequalities are also
important as they show relationships and patterns between different n-crossing
numbers.

Only three strict inequalities were previously known: c3(K) ≤ c2(K)− 1 for all
non-trivial knots [1]. In addition, for a non-trivial knot K, c4(K) ≤ c2(K)− 1 [2]
and c5(K) ≤ c3(K) − 1 [3]. Until now, no inequalities had been shown for any
n-crossing numbers more complicated than c5(K).

In Section 2, we deduce upper bounds on c9(K) for knots with certain 5-crossing
projections. These results are used heavily in Section 3 when we prove our main
result. In Section 2, we also obtain the first non-trivial values for c9(K). That
is, we find the first values of c9(K) for knots K where c7(K) ̸= 1. (If c7(K) = 1,
then cn+2(K) ≤ cn(K) implies that c9(K) = 1.)

In Section 3, we prove Theorem 3.1, our main result. It states that c9(K) ≤
c3(K) − 2 for all knots K that are not the trivial, trefoil, or figure-eight knot.
We show that this inequality is the best possible by giving knots for which the
inequality is an equality.

Theorem 3.1 has multiple implications. As none of the previously known n-
crossing inequalities included a crossing number more complicated than c5(K),
this result gives the first quantitative understanding of c9(K). Additionally, The-
orem 3.1 is the fourth strict inequality found for cn(K), and it provides additional
evidence for the existing conjecture that cn(K) ≥ cn+1(K) for all n ≥ 2 and
knots K.
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︸︷︷︸
n− 1 strands

→

︸︷︷︸
n− 1 strands

Figure 1. Turning an n-crossing into an (n+ 2)-crossing

2. Classification of 5-crossing Knots

Adams introduced the notion of a crossing covering circle in [1]. For some knot
projection P , a crossing covering circle is a topological circle in the projection
plane that only intersects P at crossings, and when it intersects a crossing, it
passes straight through the crossing. We introduce two definitions that generalize
this concept.

Definition 2.1 (Crossing Segment). Take an n-crossing knot projection P . De-
fine a crossing segment to be a topological line segment in the projection plane
that only intersects P at crossings. When the crossing segment does intersect P ,
it must pass directly through the crossing, with n strands of the crossing on either
side of P . Lastly, a crossing segment cannot intersect a crossing more than once.

Definition 2.2 (Crossing Connected). For a given n-crossing knot projection P ,
we say two faces in P are crossing connected via α if they have common vertex α
(a crossing) and can be connected by a crossing segment that does not intersect α.
Faces are adjacent crossing connected (ACC) via α if they are crossing connected
via α and both border a strand that connects α to another crossing (the top of
Figure 2 shows two ACC faces). Faces are opposite crossing connected (OCC)
via α if they are crossing connected via α and are on opposite sides of α (the top
of Figure 3 shows two OCC faces).

Note that the crossing segment connecting two opposite crossing connected
faces is equivalent to a crossing covering circle by extending the crossing segment
through the crossing. Next, we will need the following known lemma to gain
insights into ACC and OCC faces.

Lemma 2.3. If all vertices of a planar graph G have even degree, then the dual
graph Ĝ is 2-colorable.

Proof. Recall that a graph is 2-colorable precisely when it has no odd cycles. Now
suppose Ĝ has an odd cycle. Then Ĝ contains a simple closed odd cycle. As the
vertices of G have even degree, all the faces of Ĝ have an even number of edges.
Then the sum total of the number of edges of all faces inside a simple closed odd
cycle must be even. As the edges on the interior of the cycle are counted twice,
there must be an even number of edges in the cycle. But then the cycle is even,
contradicting the assumption that it is odd. Thus Ĝ does not have an odd cycle
and Ĝ is 2-colorable. □

Lemma 2.4. Let n be odd. In an n-crossing projection of a knot, a crossing
segment connecting two ACC or OCC faces passes through an odd number of
crossings.
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Proof. Every crossing in an n-crossing knot projection has degree 2n. So, Lem-
ma 2.3 gives that there exists a checkerboard coloring for the faces of any n-
crossing knot projection. It is easy to see that opposite and adjacent sides are
different colors for odd n. And since, for odd n, face color alternates when the
crossing segment passes through a crossing, a crossing segment connecting two
ACC or OCC faces passes through an odd number of crossings. □

Theorem 2.5. Given an n-crossing projection of knot K with odd n and two
adjacent or opposite crossing connected faces, there exists a (2n − 1)-crossing
diagram of K with one fewer crossing.

Proof. Regardless of whether there is an ACC or OCC, we know the crossing
segment intersects an odd number of crossings due to Lemma 2.4. Then, if two
faces are ACC via a crossing α, we can pull the n−1 strands of α that don’t border
both ACC faces around the crossing segment. This move is shown in Figure 2
for the n = 5 case. Similarly, if two faces are OCC via a crossing α, we can pull
the n − 2 strands of α that don’t border both OCC faces and one of α’s two
strands that do border α around the crossing segment. This move is shown in
Figure 3 for the n = 5 case. Both moves eliminate a crossing while turning the n-
crossings along the crossing segment into (2n−1)-crossings. We can then perform
the move shown in Figure 1 a total of n−1

2 times on all remaining crossings to
convert them from n-crossings to (2n − 1)-crossings. This construction provides
a (2n − 1)-projection of K with one fewer crossing than the original n-crossing
projection. □

. . .

↓

. . .

Figure 2. An n-crossing projection with two ACC faces can be
transformed into an (n + 2)-crossing projection with one fewer
crossing

Limiting the n-crossing projection of K in Theorem 2.5 to an n-crossing pro-
jection with cn(K) crossings, we achieve the following result:

Corollary 2.6. For odd n and knot K with cn(K) > 1, if there exists a minimal
n-crossing projection with two adjacent or opposite crossing connected faces, then
c2n−1(K) < cn(K).
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. . .

↓

. . .

Figure 3. An n-crossing projection with two OCC faces can be
transformed into an (n + 2)-crossing projection with one fewer
crossing

Though the above results hold for n-crossing projections for any odd n, the next
part of Section 2 will focus on results specific to the 5- and 9- crossing numbers.
In addition, since cn+2(K) ≤ cn(K) for all n, we know that c9(K) ≤ c5(K) for
any knot K. So, we are primarily interested in determining if there exist any
knots K such that c9(K) = c5(K).

Definition 2.7 (Adjoined Bigon). Define an adjoined bigon to be a polygon with
one vertex and two edges, as seen in Figure 4.

12
e

f

Figure 4. An adjoined bigon as part of a 5-crossing diagram

Corollary 2.8. If a minimal 5-crossing projection of K for knot K with c5(K) > 1
contains an adjoined bigon, then c9(K) < c5(K).

Proof. We will use the labeled strands of the adjoined bigon seen in Figure 4.
It is easy to see that if both strand 1 and strand 2 connect back to the original
crossing, forming a monogon or adjoined bigon, K will either be a link with more
than one component or have c5(K) = 1. So, strand 1 or 2 must connect to
some other crossing—call it β. Without a loss of generality, assume that strand 1
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α β
f

e

Figure 5. Crossing with two consecutive monogons

α
β

f

e

Figure 6. Crossing with three non-consecutive monogons

connects to crossing β. This means that faces e and f are ACC via crossing β,
and c9(K) < c5(K). □

Corollary 2.9. If a minimal 5-crossing projection of K for knot K with c5(K) > 1
contains a crossing with three or more monogons, then c9(K) < c5(K).

Proof. A crossing of K can’t have five monogons as then c5(K) = 1. If a crossing
of K has four monogons, two of the monogons must be consecutive. This gives the
crossing seen in Figure 5. Faces e and f are ACC via α, and we are done. The only
crossing with at least three monogons and no two consecutive monogons is seen in
Figure 6. Again, faces e and f are ACC via α, which means c9(K) < c5(K). □

Definition 2.10 (Almost Opposite). Two monogons are almost opposite if they
share the same vertex and if there are exactly two strands in between them.

These three corollaries give the following theorem:

Theorem 2.11. Let K be a knot with c5(K) > 1. Then c5(K) = c9(K) can only
hold if the following three conditions hold in every minimal 5-crossing projection
of K: (1) every crossing has either no monogons, one monogon, or two almost
opposite monogons; (2) no crossing has an adjoined bigon; and (3) no two faces
are ACC or OCC.

Proof. Parts (2) and (3) have already been proven in Corollary 2.8 and Corol-
lary 2.6, respectively. Corollary 2.9 gives that c9(K) = c5(K) only if all crossings
have at most two monogons. Consider the case where a crossing has two mono-
gons. The monogons can’t be opposite as K would be a link with more than
one component. If the monogons are consecutive or separated by one strand, this
gives crossings similar to the ones in Figure 5 and Figure 6. But then face e
and f are ACC via α, and c9(K) < c5(K). Then every crossing in the minimal
5-crossing diagram of K must be a crossing with no monogons, a crossing with
one monogon, or a crossing with two almost opposite monogons. So the claim
holds. □
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Knot c5(K) c9(K)
85 2 1
817 2 1
818 2 1

41#41 2 1
947 2 1
949 2 1

Table 1. Knots with c5(K) = 2 and previously unknown 9-
crossing number

Corollary 2.12. If knot K has c5(K) = 2, then c9(K) = 1.

Proof. Consider a 5-crossing diagram of K with two crossings. By Theorem 2.11,
each crossing can contain at most two monogons. With only two crossings, both
crossings must have the same number of monogons. Disregarding crossing infor-
mation, there are fifteen total knot diagrams with two crossings and where each
crossing has either no monogons, one monogon, or two almost opposite monogons.
In each of the fifteen cases, one can check that there exists two ACC or OCC faces.
Then by Theorem 2.11, c9(K) = 1. □

Corollary 2.12 allows us to obtain previously unknown values of c9(K) for a
few knots. Multi-crossing tabulation in [4] obtained the fifth crossing number but
not the ninth crossing number of the knots in Table 2.

3. A 9-crossing Number Inequality

In this section, we will prove:

Theorem 3.1. Let K be a knot that is not the trivial, trefoil, or figure-eight knot.
Then

c9(K) ≤ c3(K)− 2.

The reason we have the restriction on K is because the trivial, trefoil, and
figure-eight knot are exactly the knots such that c3(K) ≤ 2 [5]. As c9(K) ≥ 1,
the inequality requires that we exclude these knots. We then prove the inequality
for all other knots.

We will establish Theorem 3.1 by proving three propositions. We consider
the case where a minimal triple-crossing diagram of K contains two or more
monogons, contains one monogon, and contains zero monogons. Proposition 3.2,
Proposition 3.4, and Proposition 3.9 respectively prove the inequality in each case.

We start with the case where a minimal triple-crossing diagram of K contains
two or more monogons.

Proposition 3.2. Let K be a knot that is not the trivial, trefoil, or figure-eight
knot. If a minimal 3-crossing diagram of K contains at least two monogons, then
c9(K) ≤ c3(K)− 2.

Proof. For the minimal 3-crossing diagram of K with two monogons, take a cross-
ing α that contains a monogon. The crossing α cannot be the crossing seen in
Figure 7 because then it would be a link with more than one component. The
crossing also can’t be the crossing seen in Figure 8 as no matter how the crossing
information is filled in, the crossing could be removed by the 3-crossing 1-move
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↔

Figure 7. Crossings that are part of a link with more than one component

described in [3, p. 3]. The remaining case is then the crossing seen in Figure 9.
Since α has only one monogon, there exists at least one other crossing with a
monogon. Let β be such a crossing.

Call the crossings that connect to α by the 1 and 2 strands its adjacent crossings.
Crossing β has similar adjacent crossings. All the adjacent crossings of α and β
can’t be α and β as that would make K a link with more than one component,
as seen in Figure 10. So, without a loss of generality, let α be the crossing that
contains at least one adjacent crossing that is not the other crossing. So, take
an adjacent crossing to α that is not β. Call it γ. There now exists an ACC
via γ. We can wrap strands of γ around α to eliminate the former crossing while
converting the latter to a 5-crossing, as described in [3, p. 16].

Let us also transform all other 3-crossings to 5-crossings using the move shown
in Figure 1. This adds two monogons to all these crossings, leaving β with at
least three monogons. Now this is one of the crossings detailed in Theorem 2.11,
meaning there exists a 9-crossing projection of K with one fewer crossing than
the 5-crossing projection. The 9-crossing projection has one fewer crossing than
the 5-crossing projection, which in turn has one fewer crossing than the minimal
3-crossing projection. Hence c9(K) ≤ c3(K)− 2. □

Lemma 3.3. Let K be a knot that is not the trivial, trefoil, or figure-eight knot
whose minimal 3-crossing diagram:

(1) Contains a crossing α with a monogon; and
(2) Contains two faces that are crossing connected via a crossing different from

α through a crossing segment that does not intersect α.

Then c9(K) ≤ c3(K)− 2.

↔

Figure 8. Crossing that can be removed with a 3-crossing 1-move

21

Figure 9. Diagram of α
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Figure 10. If β and α’s 1 and 2 stands are joined, K is a link
with more than one component

d

g

e

21

f h

Figure 11. Labeling the faces adjacent to α

Proof. By the methods used in Theorem 2.5 and [3, p. 17], we can transform
the 3-crossings around the crossing connection into 5-crossings, eliminating one
crossing in the process. We will now apply the transformation seen in Figure 1 to
all the remaining 3-crossings, which includes α. This results in c3(K)−1 crossings,
all of which are 5-crossings. The second move adds two monogons to a crossing,
meaning α contains three monogons. As explained in the proof of Corollary 2.9,
this 5-crossing projection contains two ACC faces. By Theorem 2.5, there exists
a 9-crossing projection with one fewer crossing. Thus,

c9(K) ≤ (c3(K)− 1)− 1 = c3(K)− 2.

□

Proposition 3.4. Let K be a knot that is not the trivial, trefoil, or figure-eight
knot. If a minimal 3-crossing diagram of K contains exactly one monogon, then
c9(K) ≤ c3(K)− 2.

Proof. Consider a 3-crossing projection of K with c3(K) crossings and one mono-
gon. Let α be the crossing containing the monogon, and label its adjacent faces as
seen in Figure 11. We will separately consider the cases when face g is and isn’t a
bigon. In each case, we will show that there exist two faces satisfying conditions
(1) and (2) of Lemma 3.3. Consequentially, c9(K) ≤ c3(K)− 2.

Case 1: Face g is a bigon. Refer to the labels shown in Figure 12. If both f
and h are bigons, then the outer edges of f and h would form a link component,
and K wouldn’t be a knot. So one of f and h is not a bigon. By symmetry, we
can assume that face f is not a bigon and, consequentially, that f has an edge
connecting α to a crossing γ that is different from β. By Lemma 3.6, there is a
loop q on the 3-crossing projection that (i) connects crossings by passing through
faces, only intersecting the strands of the knot projection at crossings; (ii) bisects
at least n − 1 of the n crossings it intersects; (iii) doesn’t intersect α; and (iv)
doesn’t intersect any crossing more than once.

Case 2: Face g isn’t a bigon. Let m be the number of edges of face e. We first
show that we need only consider the situation when m > 3. The case when m = 1
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cannot occur as d is the only monogon in the projection. The case when m = 2
also cannot occur, for if face e has two sides, then K is a link with more than
one component. Now suppose that m = 3. Then, since face e has three sides,
the diagram must look like the left side of Figure 13. Using Lemma 8 of [6], the
move in Figure 13 makes face g a bigon. This situation is then covered by Case 1.
We can then assume that face e has m > 3 edges. The projection must then be
as in Figure 14. Using the figure’s labels, note that crossings ε and β might be
the same and crossings δ and γ might be the same. By Lemma 3.8, there is a
loop q on the 3-crossing projection that (i) connects crossings by passing through
faces, only intersecting the strands of the knot projection at crossings; (ii) bisects
at least n − 1 of the n crossings it intersects; (iii) doesn’t intersect α; and (iv)
doesn’t intersect any crossing more than once.

In each case, we have constructed a loop q that satisfies the above four criteria.
We now modify q to find the path needed for Lemma 3.3. Loop q never intersects a
crossing more than once. Then if q self-intersects with itself, this self-intersection
must occur at a point z on a face. Let loop l be the part of q from the first time
it intersects z to the second time it intersects z. If l doesn’t intersect a crossing,
we modify q by replacing l with the point z. We do this with all loops l in q that
don’t intersect a crossing. Thus, any loop coming from a self-intersection of q
must intersect a crossing.

From graph theory, the loop q contains a simple cycle l. By the modification of q
above, l must intersect at least one crossing. Since l is a subloop of q and q satisfies
property (ii) above, l also satisfies (ii) and there exists at most one crossing that l
intersects but doesn’t bisect. If this crossing exists, call it δ. If it doesn’t exist,
let δ be an arbitrary crossing that l intersects.

Then removing δ from the loop l, we obtain a crossing segment as l never
intersects a crossing more than once, and l now bisects all crossings it intersects.
This crossing segment connects two faces that are crossing connected via δ and
doesn’t intersect α (since q satisfies property (iii)). Then the crossing segment
satisfies conditions (1) and (2) of Lemma 3.3. Hence c9(K) ≤ c3(K)− 2.

□

d

g

e

f h

β

αγ

Figure 12. Face g is a bigon

Lemma 3.5. Let C be a 3-crossing projection of knot K with one monogon.
Assume that the monogon borders the crossing α and that the faces near α are
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d

g

e

f h

α

β

→
g

d

e

f h

α

β

Figure 13. Face e is a triangle

d

g

e

f h

β

α

γ

εδ

Figure 14. Face g is not a bigon, and face e has more than three edges

labeled as in Figure 12, with face g a bigon and face f having more than two
vertices. Let p be a path on C that starts at the crossing β and initially travels
through the face f to crossing γ, as illustrated in Figure 12. Assume that p satisfies
these rules:

1. The path p travels between crossings by passing through faces and will only
intersect strands of the knot projection at crossings.

2. When p intersects a crossing, it travels to the exact opposite side of the crossing,
bisecting the crossing.

Assume further that p ends by intersecting a crossing ζ ̸= α into a face z and p
has never previously intersected ζ. Then the face z has a crossing ζ ′ ̸= ζ, α.

Proof. Assume that the face z does not border any crossings that are distinct
from ζ and α.

If z just borders ζ, then z is a monogon or an adjoined bigon. But z can’t be an
adjoined bigon as then K isn’t a knot, as shown in Figure 7. So z is a monogon.
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As face d is the only monogon, then z = d. Now, the path p can only reach face d
by intersecting the crossing α. Hence ζ = α. As this contradicts the hypothesis
on ζ, face z cannot just border ζ.

Now suppose that z only borders the crossings ζ and α. Then face z must
border α and have only two vertices. Since face f borders at least three vertices,
from Figure 12, face z must be e, g, or h. We will obtain a contradiction in
each case.

Suppose z = g. Since ζ ̸= α by hypothesis, p can only reach face g by inter-
secting ζ = β. But as p started at β, this would be the second intersection of β,
which contradicts the assumption that p has never previously intersected ζ.

Suppose z = e. Since z only borders ζ and α, e only borders γ and α. Be-
cause ζ ̸= α, path p must have intersected ζ = γ to reach face e. Because d is the
only monogon, γ does not have a monogon. So γ borders six unique faces and the
face opposite f through γ is not e. This shows that p reaches e after intersecting
the crossing ζ = γ for a second time, which contradicts the hypothesis on ζ.

Suppose z = h. Since z only borders ζ and α, and h borders both β and α,
then ζ = β. But as p began at β and p never previously intersected ζ, ζ ̸= β,
giving a contradiction.

As we found a contradiction in all cases, the assumption is false and the face z
has a crossing ζ ′ that is distinct from α, ζ. □

Lemma 3.6. Let C be a 3-crossing projection of knot K with one monogon.
Assume that the monogon borders the crossing α and that the faces near α are
labeled as in Figure 12, with face g a bigon and face f having more than two
vertices. Then there is loop q on C such that:

1. Loop q connects crossings by passing through faces, only intersecting the strands
of the knot projection at crossings.

2. Loop q bisects at least n− 1 of the n crossings it intersects.
3. Loop q doesn’t intersect α.
4. Loop q doesn’t intersect any crossing more than once.

Proof. We start with the path p that begins at β, traverses the face f , and travels
into another face z by bisecting crossing γ. By Lemma 3.5, the face z has a
crossing ζ ′ ̸= α, γ. We extend p by traversing z and traveling to the opposite
side of ζ ′, bisecting the crossing. If ζ ′ hasn’t been previously intersected, we can
continue this process, by applying Lemma 3.5 to extend p. As C has only finitely
many crossings, eventually the path p intersects a crossing ζ ′ that it previously
intersected. We then take the loop q to be the part of p from the first time it
intersects ζ ′ to the second time it intersects ζ ′. By construction, loop q only
intersects strands of the knot projection at crossings, bisects every crossing it
intersects that isn’t ζ ′, doesn’t intersect α as each crossing ζ ′ is distinct from α,
and intersects each crossing at most once. □

Lemma 3.7. Let C be a 3-crossing projection of knot K with one monogon.
Assume that the monogon borders the crossing α and that the faces near α are
labeled as in Figure 14, with face g having more than two vertices, and face e
having more than three edges. Let p be a path on C that starts at the crossing δ
and initially travels through the face e to crossing ε, as illustrated in Figure 14.
Assume that p satisfies these rules:

1. The path p travels between crossings by passing through faces and will only
intersect strands of the knot projection at crossings.
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2. When p intersects a crossing, it travels to the exact opposite side of the crossing,
bisecting the crossing.

Assume further that p ends by intersecting a crossing ζ ̸= α into a face z and p
has never previously intersected ζ. Then the face z has a crossing ζ ′ ̸= ζ, α.

Proof. Assume that the face z does not border any crossings that are distinct
from ζ and α. The same proof as in Lemma 3.5 shows that z cannot just border ζ.
Hence, z must only border the crossings ζ and α. Then face z must border α and
have only two vertices. As illustrated in Figure 14, since face g and e both border
at least three vertices, face z must be f or h. We will obtain a contradiction in
each case.

Suppose z = f . Since z only borders ζ and α and f borders both δ and α, then
ζ = δ = γ (despite the drawing in Figure 14, δ and γ aren’t necessarily distinct).
But as p began at δ, this implies that ζ = δ is a vertex that was previously crossed,
contradicting the hypothesis on ζ.

Now suppose z = h. Since z only borders ζ and α, then ζ = β = ε (again,
despite the figure, ε and β need not be distinct). But p previously intersected ε,
which contradicts the assumption on ζ = ε.

As we found a contradiction in all cases, the assumption is false and the face z
has a crossing ζ ′ that is distinct from α, ζ. □

Lemma 3.8. Let C be a 3-crossing projection of knot K with one monogon.
Assume that the monogon borders the crossing α and that the faces near α are
labeled as in Figure 14, with face g having more than two vertices, and face e
having more than three edges. Then there is loop q on C such that:

1. Loop q connects crossings by passing through faces, only intersecting the strands
of the knot projection at crossings.

2. Loop q bisects at least n− 1 of the n crossings it intersects.
3. Loop q doesn’t intersect α.
4. Loop q doesn’t intersect any crossing more than once.

Proof. The proof is exactly the same as that for Lemma 3.6, except that we start
with the path p that begins at δ, traverses the face e, and travels into another
face z by bisecting crossing ε. We also use Lemma 3.7 instead of Lemma 3.5. □

Remark. Using the 3-crossing knot tabulation done in [5], we find that Proposi-
tion 3.2 and Proposition 3.4 account for all prime knots K with c3(K) = 3. The
only prime knots K with c3(K) = 4 that Proposition 3.2 and Proposition 3.4
do not account for are the 10140, 11n139, and 12n462 knots. Proposition 3.2 and
Proposition 3.4 account for all prime knots K with c3(K) = 5.

Proposition 3.9. Let K be a knot that is not the trivial, trefoil, or figure-
eight knot. If a minimal 3-crossing diagram of K contains zero monogons, then
c9(K) ≤ c3(K)− 2.

Proof. Consider a 3-crossing diagram of K with c3(K) crossings. Let fi represent
the number of faces with i edges in a 3-crossing diagram. This includes the outer
region. Adams, Hoste, & Palmer prove in [3] that 2f1 + f2 = 6+ f4 +2f5 +3f6 +
4f7 + ... using the Euler Characteristic. Since there are no monogons, we have

(1) f2 = 6 + f4 + 2f5 + 3f6 + 4f7 + . . . .

We will use proof by contradiction by assuming c9(K) > c3(K)− 2. We will then
derive a contradiction with (1), proving the claim.
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→

Figure 15. Two adjacent bigons reduce to a 5 crossing with an
adjoined bigon

→

Figure 16. An n-gon with even n

→

Figure 17. An n-gon with odd n

Note that two bigons can’t be adjacent; otherwise, we can do the manipulations
seen in Figure 15, meaning c9(K) ≤ c3(K)−2. So, we can count the total number
of bigons by counting the number of bigons that can border each n-gon.

An n-gon must have fewer than n−1 adjacent bigons. If not, then at most one
of the edges isn’t adjacent to a bigon. But this means c9(K) ≤ c3(K)− 2: If n is
even, c9(K) ≤ c3(K)− 2 by the construction seen in Figure 16. And if n is odd,
c9(K) ≤ c3(K)− 2 by the construction seen in Figure 17. So every n-gon borders
at most n− 2 bigons.

In counting bigons this way, we have counted them all twice. So, we obtain the
inequality:

f2 ≤
1

2
f3 + f4 +

3

2
f5 + 2f6 + . . .
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Figure 18. The maximum number of surrounding triangles

To improve this bound and thus reach a contradiction with (1), look towards each
triangle in the knot projection.

If two triangles share no vertices and are each adjacent to their own bigon, a
move is described in [3, p. 17] that allows us to convert the triple-crossings of
each triangle into 5-crossings. In the process, one crossing is eliminated from each
triangle. Then c5(K) ≤ c3(K)− 2 and c9(K) ≤ c3(K)− 2.

Now, pick a triangle with an adjacent bigon—if no triangles have an adjacent
bigon,

f2 ≤ f4 +
3

2
f5 + 2f6 + . . .

and we achieve a contradiction with (1) regardless. There are at most ten other
triangles that can share a crossing with our first triangle (see Figure 18), for a
total of eleven triangles. Each of these triangles can have at most one adjacent
bigon. Our new bound becomes

f2 ≤
11 + 2f4 + 3f5 + 4f6 + . . .

2
.

So,

(2) f2 ≤
11

2
+ f4 +

3

2
f5 + 2f6 + . . . .

This contradicts (1), meaning the claim must hold. □

We now prove Theorem 3.1.

Proof. Consider a minimal 3-crossing projection of a knot K that is not the triv-
ial, trefoil, or figure-eight knot. Let m ≥ 0 be the number of monogons in the
projection. If m ≥ 2, we are done by Proposition 3.2. If m = 1, we are done
by Proposition 3.4. Lastly, if m = 0, we are done by Proposition 3.9. Since the
inequality holds for all possible m, c9(K) ≤ c3(K) − 2 for all knots K that are
not the trivial, trefoil, or figure-eight knot. □

This inequality is optimal. [5] shows that c3(51) = 3 and c3(62) = 3. Since
c9(51) = 1 and c9(62) = 1, these knots realize the upper bound.
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