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Abstract

In this paper, we study the finite orbits of the braid group Bn action on the space of
n × n upper-triangular matrices with 1’s along the diagonal. On one hand, we give a
necessary condition for a matrix M to be in a finite orbit; on the other hand, we classify
and provide lengths of finite orbits in low-dimensional matrices and some other impor-
tant cases.
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1 Introduction

The braid group Bn is generated by n− 1 generators σ1 . . . σn−1 with the relations

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi , if |i− j| > 1.
(1)

Following [3], the braid group Bn acts on the space U+ of n×n upper-triangular matrices
with 1’s on the diagonal in the following way: for any M ∈ U+, the entries of the matrix
σi(M), obtained by the action of the generator σi on M , are given by

σi(M)i,i+1 = −Mi,i+1

σi(M)ij = −Mi,i+1Mij +Mi+1,j , i+ 1 < j

σi(M)ji = −Mi,i+1Mji +Mj,i+1, j + 1 < i

σi(M)i+1,j = Mij , i+ 1 < j

σi(M)j,i+1 = Mji, j + 1 < i

σi(M)jk = Mjk, j < k, and j, k ̸= i, i+ 1.

(2)

The braid group acts from right to left on matrices: β2β1(M) = β2(β1(M)), β1, β2 ∈ Bn.
An important problem is to classify the finite orbit of the braid group action on

U+. The problem was motivated by the study of the geometry of 2D topological field
theory [3, Appendix F], and the study of algebraic solutions of some nonlinear differential
equations, see for example, [2, 4]. Past results in finding finite orbits have been focused
on either the low dimension of 3×3 matrices [4], or specific types of matrices [7]. Rather
generalized classifications of finite orbits in [5, 6, 8] focus on more abstract properties.

In this paper, we study the finite orbits in full generality. On one hand, we give a
necessary condition on a matrix M ∈ U+ such that it is in a finite orbit; on the other
hand, we classify finite orbits in low-dimensional cases and in other important cases, and
provide lengths and representatives for each orbit.

In this paper, we refer to the set of all n × n matrices that generate finite orbits
of Bn as FinOrb(Bn) ⊆ U+ and denote Orb(M) as the finite orbit in U+ generated by
M ∈ FinOrb(Bn) under the braid group.

1.1 A characterization of the matrices M ∈ FinOrb(Bn)

Our main result in this paper is

Theorem 1.1. If a matrix M ∈ FinOrb(Bn), and there exists an element M ′ in the
finite orbit Orb(M) such that σ2

i (M
′) ̸= M ′ for some i ∈ {1, ..., n− 1}, then all entries

of M are in the form of 2 cos(rπ) with r ∈ Q.

This theorem generalizes [7, Theorem 1 and Theorem 2], which prove that all
matrices M ∈ FinOrb(Bn), with the extra constraint rank(M +MT ) = 2 (i.e. all 3× 3
submatrices are degenerate), mush have the form as in Theorem 1.1.
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Note that the condition in Theorem 1.1 excludes the case σ2
i (M

′) = M ′ for all
i = 1, ..., n− 1 and M ′ ∈ Orb(M). In this case, the braid group Bn action on the finite
orbit Orb(M) becomes the symmetric group Sn action. A complement to the Theorem
1.1 is as follows. We denote the set of matrices M ∈ U+ such that σ2

i (β(M)) = β(M)
for all β ∈ Bn and i = 1, ..., n − 1 (i.e., M generates a finite Sn orbit) as FinOrb(Sn).
We give a complete description of the set FinOrb(Sn) in Section 3 by proving

Theorem 1.2. If M ∈ U+ has only k ≤ ⌊n2 ⌋ non-zero entries

|M12| = a1, |M34| = a2, . . . . . . , |M2k−1,2k| = ak ∈ R, (3)

then M ∈ FinOrb(Sn). And the orbit’s length, |Orb(M)|, is

n!

(n− 2k)!
∏s

i=1 ri!

where s is the number of the different values of a1, . . . , ak, and r1, . . . rs denotes the
cardinality of the s different values. Conversely, if M ∈ FinOrb(Sn), then there exists
β ∈ Bn, an integer k ≤ ⌊n2 ⌋ and nonzero numbers a1, ..., ak such that β(M) has only
non-zero entries as in (3).

1.2 Application of Theorem 1.1: new finite orbits and their classifica-
tion

Theorem 1.1 gives a necessary condition for matrices M ∈ FinOrb(Bn) that dra-
matically reduces the difficulty of seeking for finite orbits. In the second part of the
paper, we use Theorem 1.1 to study and classify some special finite orbits. As far as we
know, the finite orbits we obtain are new.

The case r = 0, 1/2, 1 in Theorem 1.1. The first case concerns of finite orbits
on matrices with the entries ±2 and 0, aside from 1’s on the diagonal. We provide a
classification of them and a formula that calculates the length for each orbit.

Theorem 1.3. (1) The total number of the finite orbits of Bn on U+, that only contain
matrices with upper-triangular entries 0 or ±2, is

1 +

n∑
m=2

⌊m
2
⌋∑

d=1

pd(m− d).

Here, pd(m− d) stands for the number of partitions of m− d into d integers.
(2) Each of such finite orbits corresponds to a partition of m − d into d integers.

The length of the orbit, corresponding to a partition consisting of r1 copies of t1’s, r2
copies of t2’s, ..., and rs of ts’s with t1, . . . ts being distinct integers, is

n! ·
∏s

i=1 2
tiri

(n−m)! ·
∏s

i=1 (ri! (ti + 1)!)ri)
. (4)
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The case r = ±1/3, 1/2 in Theorem 1.1. The second case concerns of finite
orbits on matrices with entries ±1 and 0. Seemingly similar to the first case, there is
a much greater variety of orbits. We only claim one conjecture here, and want to leave
the study of it to a future work. The conjecture has been verified up to 9× 9 case using
the computer search algorithm described in section 4.4.

Conjecture 1.4. The n × n Jordan block Jn (1’s on the diagonal and sub-diagonal)
generates a finite orbit (under the action of Bn) of length

|Orb(Jn)| = 2n−1 · (n+ 1)n−2.

Moreover, any matrix in a Jordan form (1’s and 0’s on the sub-diagonal) generates a
finite orbit.

Beyond matrices of Jordan form, we found all finite orbits in 4×4, 5×5, 6×6, 7×7
matrices with entries ±1 and 0 using a computer search algorithm that we developed.
See Table 1 - 4 at the end of this paper.

Certain finite orbits in 5×5 matrices. We also classify all finite orbits generated
by 5× 5 matrix M ∈ T (B5) whose three 3× 3 submatrices

M1 =

1 M12 M13

0 1 M23

0 0 1

 , M2 =

1 M23 M24

0 1 M34

0 0 1

 , M3 =

1 M34 M34

0 1 M45

0 0 1


satisfy the determinant |M1+MT

1 |, |M2+MT
2 |, |M3+MT

3 | ≠ 0 and M1,M2,M3 ∈ T (B3).
The classification is done, again, by a computer search algorithm.
All the orbits found by our own computer program are listed at the end of the

paper.

The finite orbits in 4× 4. In the end, with the help of Theorem 1.1, we proved

Theorem 1.5. If M ∈ FinOrb(B4),M /∈ FinOrb(S4) and Orb(M) is non-degenerate,
then any entry of the matrix is in the set

{2 cos(pπ
q
) | q = 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25; p ∈ Z}.

This result makes it possible for a computer algorithm to search for all 4× 4 finite
orbits.
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2 A characterization of the matrices that generate finite
Bn orbits

The first observation is that, for a matrix M ∈ U+ to be in a finite orbit of the
braid group action, there must be

σk
i (M) = M

for any i ∈ {1, . . . n − 1} and an integer k depending on the chosen i. By formula (2),
the generator σk

i only acts on two rows and two columns of the matrix M in individual
triples (Mii+1,Mij ,Mi+1j) and (Mii+1,Mji,Mji+1) where i < j and i, j ∈ {1, . . . n −
1}. The action on these two triples are symmetrical, so we only study σk

i acting on
(Mii+1,Mij ,Mi+1j) for certain fixed i, j ∈ {1, . . . n− 1}.

2.1 Odd powers: σ2t−1
i (M) = M

Now assume that σ2t−1
i (M) = M for some positive integer t. On the one hand, by

the assumption we have
σ2t−1
i (M)i,i+1 = Mi,i+1, (5)

while on the other hand, by formula (2), σi(M)i,i+1 = −σ(M)i,i+1 that gives

σ2t−1
i (M)i,i+1 = −σ2t−2

i (M)i,i+1 = · · · = σi(M)i,i+1 = −(M)i,i+1. (6)

The identities (5) and (6) then imply Mii+1 = 0. Now with Mii+1 = 0, we have
σ2t−1
i (M)ij = σi(M)ij = Mi+1j and σ2t−1

i (M)i+1j = σi(M)i+1j = Mij for j = i+1, . . . n.
Evidently, σ2t−1(M) = M yields the same conditions on M given any t ∈ Z+. This

is the case of Mii+1 = 2 cos(π2 ) in Theorem 1.1.

2.2 Chebyshev Polynomials

Now we analyze in more details the behaviors of the triple Mii+1,Mij ,Mi+1j (i, j ∈
{1, . . . n − 1}, i < j) after applying powers of σi to a M . It follows from the for-
mula (2) that the ij-entry of the matrix σk

i (M) is a polynomial of the three variables
Mii+1,Mij ,Mi+1j . It motivates us to introduce

Definition 2.1. Given any fixed j ∈ {i+1, . . . n}, let Pk denote the degree t polynomial
in the three variables Mii+1,Mij ,Mi+1j given by

Pk(Mii+1) := σk
i (M)ij . (7)

For convenient notation, we write Mij = a, Mi+1j = b, and Mii+1 = x for the
rest of this section, since we are only going to discuss solutions of polynomials with
Mi+1j ,Mij ,Mii+1 regardless of the choices of i, j. Then when restricts to the entries
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Mij = a, Mi+1j = b, and Mii+1 = x, the action of σi on M becomes the transformation

σi : (x, a, b) → (−x,−ax+ b, a).

Lemma 2.2. The polynomial

Qk(x) := δkPk(2x), δk =

{
−1 : k ≡ 1, 2 (mod 4)

1 : k ≡ 0, 3 (mod 4)
(8)

satisfies the induction formula

Qk+2 = 2x ·Qk+1 −Qk (9)

with the initial terms Q0(x) = a and Q1(x) = 2ax− b.

The induction on Pk(x), by the actions of the braid group (2), is

P2t+2 = P2t+1 · x+ P2t,

P2t+1 = −P2t · x+ P2t−1

with the first few terms being

P0(x) = a, P1(x) = −ax+ b, P2 = −ax2 + bx− a, P3 = ax3 − bx2 − 2ax+ b, . . .

Right now, P2t(x)’s highest degree term alternates in signs as t increases. We adjust
the highest-degree coefficient to be always positive and substitute x with 2x by defining
Qk(x) as in (8). This unifies the original parity-dependent induction formula to the
relation (9), with the first few terms now being

Q0(x) = a,

Q1(x) = 2ax− b,

Q2(x) = 4ax2 − 2bx− a,

Q3(x) = 8ax3 − 4bx2 − 4ax+ b,

Q4(x) = 16ax4 − 8bx3 − 12ax2 + 4bx+ a,

Q5(x) = 32ax5 − 16bx4 − 32ax3 + 12bx2 + 6ax− b.

It finishes the proof.

One can write down the explicit expression of Qk(x) as follows. Let us introduce
the well-known Chebyshev polynomials of the second kind Uk(x). It has the recursive
formula

Uk+2 = 2x · Uk+1 − Uk,

which is the same as the one for Qk(x) described in (9). Uk(x) has the initial terms

U0(x) = 1, U1(x) = 2x.
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The Chebyshev Polynomials of the second kind line up with the sequence of polynomials
Qk(x) in the following way

Qk(x) = a · Uk(x)− b · Uk−1(x).

It is known that the Chebyshev Polynomials of the second kind have the following explicit
form (see [1])

Uk(x) =
(x+

√
x2 − 1)k+1 − (x−

√
x2 − 1)k+1

2
√
x2 − 1

.

Thus, we get

Qk(x) = a · Uk(x)− b · Uk−1(x)

=
(x+

√
x2 − 1)k(ax+ a

√
x2 − 1− b) + (x−

√
x2 − 1)k(−ax+ a

√
x2 − 1 + b)

2
√
x2 − 1

. (10)

In summary, the polynomial Pk(x) (or equivalently Qk(x)) has a closed formula.

2.3 Even powers: σ2t
i (M) = M

Suppose σ2t
i (M) = M for some k ∈ Z, i ∈ {1, . . . n − 1}). It imposes the following

two equations for the entries Mij ,Mi+1j :

σ2t
i (M)ij = Mij ,

σ2t−1
i (M)ij = σ2t

i (M)i+1j = Mi+1j .
(11)

Using our notations Mij = a, Mi+1j = b, and Mii+1 = x, (11) is rewritten as

P2t(x) = a,

P2t−1(x) = b.
(12)

In terms of Chebyshev polynomials of the second kind U(x), (11) is rewritten as (recall
the definition of δ in (8))

a · U2t(x)− b · U2t−1(x) = δ2ta,

a · U2t−1(x)− b · U2t−2(x) = δ2t−1b.
(13)

The possible solutions x of the equation (13) characterize the possible subdiagonal ele-
ment (M)ii+1 in M .

Proposition 2.3. (1) Assume that a and b are not zero at the same time, then the
solution x of the equation (13) takes the form x = 2cos(rπ) for some r ∈ Q. To be more
precise, the possible

r =

{
p
t ,

2p+1
4t for p ∈ Z, if t ∈ 2Z

2p+1
2t , 2p+1

4t for p ∈ Z, if t /∈ 2Z
, (14)

6



(2) Conversely, for certain i ∈ {1, ..., n− 1}, if

Mii+1 ∈ {2 cos
(pπ

t

)
; p ∈ Z, t ∈ 2Z} ∪ {2 cos

(
(2p+ 1)π

2t

)
; p ∈ Z, t /∈ 2Z},

then σ2t
i (M) = M .

Remark 2.4. The case a = b = 0, corresponding to the finite orbits of symmetric group
Sn, will be thoroughly discussed in 3.

Proof. First of all, we show that

Lemma 2.5. All real solutions x are bounded by |x| ≤ 1.

Proof. If x > 1, we have

lim
k→∞

(x−
√
x2 − 1)k = 0, lim

k→∞
(x+

√
x2 − 1)k = ∞,

and furthermore by the expression (10), we have

lim
k→∞

Qk(x) = ∞

as long as ax+ a
√
x2 − 1− b ̸= 0. Similarly, if x < −1,

lim
k→∞

Qk(x) = −∞

as long as −ax + a
√
x2 − 1 + b ̸= 0. Obviously, if Qk(x) approaches infinity, no finite

orbit would exist. We are left with the edge cases to consider

ax+ a
√

x2 − 1− b = 0 (x > 1)

−ax+ a
√
x2 − 1 + b = 0 (x < −1).

(15)

Suppose x > 1, then the only way for (x, a, b) to be in a finite orbit is to satisfy the first
equation in (15) , which gets simplified to√

x2 − 1 =
b

a
− x (a ̸= 0)

squaring both sides,

x2 − 1 = x2 − 2b

a
x+

b2

a2
(a ̸= 0)

which gives the following expression for x:

x =
a2 + b2

2ab
(a, b ̸= 0) (16)
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After the transformation σ : (x, a, b) → (−x,−ax+ b, a), x is smaller than -1, so (x, a, b)
also needs to satisfy the second equation in (15) after the transformation, which looks
like

−(−ax+ b)(−x) + (−ax+ b)
√

x2 − 1 + a = 0

After simplification, we have

(−ax+ b)
√

x2 − 1 = ax2 − bx− a

Squaring both sides, we get

a2x4 − 2abx3 + b2x2 − a2x2 + 2abx− b2 = a2x4 − 2abx3 + b2x2 + 2abx+ a2 − 2a2x2

which simplifies to
−a2x2 − b2 = a2 − 2a2x2

and gives an expression for x:

x = ±
√
a2 + b2

a
(a ̸= 0) (17)

We need both (17) and (16) to hold. By assumption, a, b ̸= 0, we combine (17) and (16)
to form

±
√
a2 + b2

a
=

a2 + b2

2ab

which reduces to
±
√
3b = a

Substituting this into (17), we have x = ± 2√
3
, contradicting with our assumption x >

1.

Now by Lemma 2.5, any solution to the system P2t(x) = a, P2t−1(x) = b takes the
form x = cosϕ for some real number ϕ ∈ R. From (13), ϕ satisfies

a · U2t(cosϕ)− b · U2t−1(cosϕ) = δ2ta

a · U2t−1(cosϕ)− b · U2t−2(cosϕ) = δ2t−1b

The Chebyshev Polynomials of the second kind satisfies the identity

Uk(cos θ) sin θ = sin(k + 1)θ.

So, we have

a sin ((2t+ 1)ϕ)− b sin(2tϕ) = δ2ta sinϕ

a sin(2tϕ)− b sin ((2t− 1)ϕ) = δ2t−1b sinϕ
(18)

The definition in (8) guarantees δ2t = δ2t−1, which we will just call δ from now on.
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If a = 0, b ̸= 0, we have

sin(2tϕ) = 0

sin((2t− 1)ϕ) = 0

which has the only solutions ϕ = pπ p ∈ Z.
If a ̸= 0, b = 0, we have

sin(2tϕ) = 0

sin((2t+ 1)ϕ) = 0

which has the same solutions ϕ = pπ p ∈ Z.
If a, b ̸= 0, we manipulate (18) to obtain

a (sin ((2t+ 1)ϕ)− δ sinϕ) = b sin(2tϕ)

a sin(2tϕ) = b (sin ((2t− 1)ϕ) + δ sinϕ)
(19)

Suppose sin(2tϕ), (sin ((2t− 1)ϕ) + sinϕ) ̸= 0, then moving a, b to the same side gives

b

a
=

sin ((2t+ 1)ϕ)− δ sinϕ

sin(2tϕ)
=

sin(2tϕ)

sin ((2t− 1)ϕ) + δ sinϕ
(20)

eliminating the denominators,

sin((2t− 1)ϕ) sin((2t+ 1)ϕ) + δ sinϕ(sin((2t+ 1)ϕ)

− sin((2t− 1)ϕ))− sin2 ϕ− sin2(2tϕ) = 0 (21)

Using the product-to-sum formula on sin((2t − 1)ϕ) sin((2t + 1)ϕ) and sin2(2tϕ), we
simplify the left hand side of the equation to

sin((2t− 1)ϕ) sin((2t+ 1)ϕ) + δ sinϕ(sin((2t+ 1)ϕ)− sin((2t− 1)ϕ))− sin2 ϕ− sin2(2tϕ)

= −1

2
cos(4tϕ) +

1

2
cos(2ϕ) + δ sinϕ(sin((2t+ 1)ϕ)− sin((2t− 1)ϕ))− sin2 ϕ+

1

2
cos(4tϕ)− 1

2

=
1

2
− sin2 ϕ+ δ sinϕ(sin((2t+ 1)ϕ)− sin((2t− 1)ϕ))− sin2 ϕ− 1

2
= δ sinϕ(sin((2t+ 1)ϕ)− sin((2t− 1)ϕ))

We obtain equation sin((2t + 1)ϕ) = sin((2t − 1)ϕ (sinϕ ̸= 0), which implies that
(2t + 1)ϕ = (2t − 1)ϕ + 2pπ or (2t + 1)ϕ = −(2t − 1)ϕ + (2p + 1)π (p ∈ Z). The
first equation gives the same solution as earlier; the second equation gives the solution
ϕ = 2p+1

4t π. We verify that this solution satisfies (18). Note that this solution depends
on the values of a, b.

9



Now, suppose sin(2tϕ) = 0. Since a, b ̸= 0, we derive the following from (18):

sin ((2t+ 1)ϕ) = δ sinϕ

sin ((2t− 1)ϕ) = −δ sinϕ

sin(2tϕ) = 0.

(22)

The first equation is
sin ((2t+ 1)ϕ)− δ sinϕ = 0

which can be rewritten with a substitution of the second equation sin ((2t− 1)ϕ) =
−δ sinϕ:

sin ((2t+ 1)ϕ)− δ sinϕ = sin 2ϕ cos ((2t− 1)ϕ) + sin ((2t− 1)ϕ) cos 2ϕ− δ sinϕ

= 2 sinϕ cosϕ cos ((2t− 1)ϕ)− δ sinϕ(2 cos2 ϕ− 1)− δ sinϕ

= sinϕ cosϕ(cos ((2t− 1)ϕ)− δ cosϕ)

Now, we have the equation

cos ((2t− 1)ϕ) = δ cosϕ (sinϕ, cosϕ ̸= 0) (23)

Combining (22) and (23), we have

cos ((2t− 1)ϕ) = δ cosϕ

sin ((2t− 1)ϕ) = −δ sinϕ

sin(2tϕ) = 0

(24)

If δ = 1, then t ∈ 2Z and (2t−1)ϕ = −ϕ+2pπ, which gives the solution ϕ = p
tπ (p ∈ Z).

If δ = −1, then t /∈ 2Z and (2t − 1)ϕ = −ϕ + (2p + 1)π, which gives the solution
ϕ = 2p+1

2t π (p ∈ Z). It can be verified that these solutions do satisfy (18).
Doubling the value of common solutions of Q(x)2t = δa,Q(x)2t−1 = δb, we get all

the solutions to P2t = a, P2t−1 = b, which are all in the form of 2 cos(πr), r ∈ Q where
the values of r are the ones described in Proposition 2.3.

Now we prove part (2) of the proposition. From the proof of part (1), the solutions
such that sin(2tϕ) = 0 satisfy Q2t = δa,Q2t−1 = δb for any real numbers a, b. They
correspond to the following solutions of P2t = a, P2t−1 = b:{

t ∈ 2Z : {2 cos(pπt ); p ∈ Z}
t /∈ 2Z : {2 cos( (2p−1)π

2t ); p ∈ Z}

setting the entry Mii+1 to a value above, we will always have σ2t
i (M) = M , no matter

the value of other entries.
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2.4 Proof of Theorem 1.1

Note that Proposition 2.3 already implies Theorem 1.1 for any sub-diagonal entries.
Since σiσi+1 · · ·σj−1(M)ij = Mii+1 any j > i, all entries of M must be in the form of
2 cos(πr), where r ∈ Q.

3 Classification of all finite Sn orbits

The generating relation of Bn, together with the relation σ2
i = 1 for i = 1, . . . n−1,

become the generating relation of Sn. By definition, a matrix M ∈ FinOrb(Sn) if
σ2
i (β(M)) = β(M) for all i = 1, ..., n − 1 and β ∈ Bn. Thus, if M ∈ FinOrb(Sn), then

the orbit generated by M under the action of Bn is actually a finite Sn orbit. In this
section, we classify such matrices and give a proof of Theorem 1.2.

Lemma 3.1. Any matrix M ∈ FinOrb(Sn) does not have any two non-zero entries on
the same row or column.

Proof. By formula (2), σ2
i (M) = M yields the following relation:

Mij = −M2
ii+1Mij +Mii+1Mi+1j +Mij

Mi+1j = −Mii+1Mij +Mi+1j

(25)

where j ∈ {i+1, . . . n}. The second equation gives Mii+1Mij = 0. Substituting this into
the first equation, we obtain the solutions

Mii+1 = 0 or Mij = Mi+1j = Mji = Mji+1 = 0 (i < j). (26)

If Mii+1 is non-zero, all elements on the same row and column, all elements on the
preceding column, and all elements on the succeeding row are zero by (26).

Furthermore, if both Mij ,Mik (i, j, k ∈ {1, . . . n − 1}, i < j < k) are nonzero,
M ′ = σi+1 · · ·σj−1(M) has M ′

ii+1,M
′
ik ̸= 0, which means that M ′ /∈ FinOrb(Sn). The

same applies to two non-zero entries on the same column. It proves the lemma.

The lemma motives the following definition.

Definition 3.2. An n×n matrix M ∈ U+ whose only non-zero entries are M12,M34, . . .M2k−1,2k,
for some integer k ≤ ⌊n2 ⌋, is called a standard matrix.

Lemma 3.3. Given any M ∈ FinOrb(Sn), there exists a braid β ∈ Bn and a standard
matrix X such that β(M) = X. That is, any finite Sn orbit contains a standard matrix.

Proof. Suppose M ∈ FinOrb(Sn). Choose any non-zero entry Mij , i < j. It is im-
mediately true that Mi−1i = 0. Thus, σi−1(M)i−1j = Mij ̸= 0. By the same logic,
σi−1(M)i−2,i−1 = 0 and σi−2σi−1(M) = Mij ̸= 0. Repeating this process, we have
σ1 · · ·σi−1(M)1j = Mij , and further more σ2 · · ·σj−1σ1 · · ·σi−1(M)12 = Mij . No nonzero
entry ofM ′ = σ2 · · ·σj−1σ1 · · ·σi−1(M) is in the first two rows becauseM ′ ∈ FinOrb(Sn)
and M ′

12 ̸= 0.
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We can apply the same method above and set σ4 · · ·σl−1σ3 · · ·σk−1(M
′) = M ′′,

where M ′
kl ̸= 0 (k, l ∈ {1, . . . n}, k < l). Since the generators σ1, σ2 are not used during

this process, M ′
12 = M ′′

12 ̸= 0. We also have M ′′
34 ̸= 0. Hence, no nonzero entry of M ′′ is

in the first four rows besides M ′′
12,M

′′
34.

The same process puts at most ⌊n2 ⌋ nonzero entries of M to the locations of nonzero
entries in a standard matrix. If M has less than or equal to ⌊n2 ⌋ nonzero entries, then
the method described above uses a certain braid β ∈ Bn to achieve β(M) = X, where
X is a standard matrix.

Now, suppose M ∈ FinOrb(Sn) has k > ⌊n2 ⌋ nonzero entries. We may randomly
choose ⌊n2 ⌋ of them and use the braid designed earlier to map them to entries on the
subdiagonal. Specifically, we designed β ∈ Bn such thatM∗ = β(M) andM∗

12,M
∗
34, . . . ̸=

0. However, these ⌊n2 ⌋ nonzero entries don’t allow any other entry to also be nonzero,
since M ∈ FinOrb(Sn). Therefore, M can have a maximum of ⌊n2 ⌋ nonzero entries by
contradiction.

A proof of Theorem 1.2:
We discuss the stabilizers of a standard matrix X.

We may “swap” two adjacent nonzero entries as such: σiσi−1σi+1σi(X)i−1i =
Xi+1,i+2 and σiσi−1σi+1σi(X)i+1,i+2 = Xi−1i. If Xi−1i = Xi+1,i+2, then σiσi−1σi+1σi is
a stabilizer of X; if Xi−1i = −Xi+1,i+2, then σi−1σi+1σiσi−1σi+1σi is a stabilizer of X.
Combinations of such braids permute all nonzero entries of X.

Let ai = |X2i−1,2i|, i = 1, . . . k. Denote the frequencies of all the distinct numbers
in a1, . . . ak as r1, . . . rs. Then, we have ri! stabilizers that permutes the ri entries with
the same absolute values for i = 1, . . . s.

Furthermore, a standard matrix X with k < ⌊n2 ⌋ non-zero entries only has zeros on
the final n− 2k columns. So, braid generators σ2k+1, σ2k+2, . . . σn−1 and their combina-
tions are also stabilizers. There are n− 2k− 1 such stabilizing braids. Because these are
generators of Sn, the n−2k−1 generators generate all permutations of n−2k elements,
or all (n− 2k)! stabilizers of X.

The two types of stabilizers do not intersect, so we find the total number of stabi-
lizers to be

|Stab(X)| = (n− 2k)!
n∏

i=1

ri!.

We apply the Orbit-Stabilizer Theorem on X, which generates an orbit of Sn by Lemma
3.3:

|Orb(X)| = |Sn|
|Stab(X)|

=
n!

(n− 2k)!
∏n

i=1 ri!
.

It finishes the proof of Theorem 1.2.
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4 New finite orbits and their properties

Definition 4.1. An orbit generated by M ∈ FinOrb(Bn) such that rank(M +MT ) > 2
is called a degenerate orbit.

Lemma 4.2. If M ∈ FinOrb(Bn), then for any i, j, k ∈ 1, 2, . . . n and i < j < k, the
3× 3 submatrix

M(i, j, k) :=

1 Mij Mik

0 1 Mjk

0 0 1


is in FinOrb(B3).

Proof. The braid β1 = σk−2σk−3 · · ·σj applied on M ∈ U+, β1(M) = M ′, results in
M ′

ik−1 = Mij ,M
′
ik = Mik,M

′
k−1k = Mjk. Then, applying the braid β2 = σk−3σk−4 · · ·σi

to get M ′′ = β2(M
′), we have M ′′

k−2,k−1 = M ′
k−2,k−1,M

′′
k−2,k = M ′

ik,M
′′
k−1,k = M ′

k−1,k.
By formula (2), one sees that the 3×3 upper-triangular submatrix ofM ′′ formed by three
adjacent entries M ′′

k−2,k−1,M
′′
k−2,k,M

′′
k−1,k generates a finite orbit. Thus, the original

submatrix must also generate a finite orbit.

This lemma will be particularly useful because the set FinOrb(B3) is well-researched:
we have found all of FinOrb(S3); [7] finds all 3 × 3 degenerate orbits; [4] finds the re-
maining non-degenerate 3× 3 orbits.

4.1 Proof of Theorem 1.3

There are only three 3× 3 finite orbits of only entries 0 and ±2:

T1 := {

1 2 2

0 1 2

0 0 1

 ,

1 −2 −2

0 1 2

0 0 1

 ,

1 −2 2

0 1 −2

0 0 1

 ,

1 2 −2

0 1 −2

0 0 1

}, (27)

T2 := {

1 0 0

0 1 2

0 0 1

 ,

1 0 2

0 1 0

0 0 1

 ,

1 2 0

0 1 0

0 0 1

 ,

1 −2 0

0 1 0

0 0 1

 ,

1 0 −2

0 1 0

0 0 1

 ,

1 0 0

0 1 −2

0 0 1

}, (28)

and the third one being just {I}, an orbit of length 1. Note that T2, {I} ⊆ FinOrb(Sn).

4.1.1 Establish an isomorphism between matrices and partitions

Proposition 4.3. Let C ⊆ {1, . . . n} be a subset, and let Q(C, p) denote the set of all
possible partitions of C into p subsets, where each subset has at least two elements. The
subspace of FinOrb(Bn) where all matrix entries are 0 or ±2 besides the diagonal is

13



isomorphic to ⋃
C⊆{1,...n}

⌊ |C|
2

⌋⋃
p=1

Q(C, p)× Z2(|C|−p) .

Proof. Let G ∈ FinOrb(Bn) be a matrix such that all its entries are 0 or ±2 besides
the diagonal. We choose the first nonzero entry Gxj ,yj of each row i, i = 1, . . . n − 1,
skipping the rows of all 0’s. We end up with t entries Gx1,y1 , . . . Gxt,yt where xi < yi for
i = 1, . . . , t.

If there exists yi = yj , i < j, i, j ∈ {1, . . . n − 1}, then by Lemma 4.2, we have
Gxi,xj = ±2 to satisfy 1 Gxi,xj Gxi,yi

0 1 Gxj ,yj

0 0 1

 ∈ T1.

Since Gxi,xj is an entry before Gxi,yi on row i, we have contradiction. Hence, y1, . . . yn−1

are mutually distinct, and we may match pairs xi, yi with a bijective map f : xi → yi
for i = 1, . . . n − 1. With mutually distinct x1, . . . xn−1 and y1, . . . yn−1, we can always
uniquely determine index i given xi or yi.

Now, we divide C = {x1, . . . , xt} into subsets in the following algorithm:
Step 1: Create empty set Cx1 ;
Step 2: For the empty set Cxj created, add xj to it. Delete xj from C;
Step 3: For the element xk last added Cxj , if there exists xl ∈ C such that

xl = f(xk), add xl to Cxj , delete xl from C, and repeat Step 3. Otherwise, add f(xl) to
Cxj and proceed to Step 4;

Step 4: Create empty set Cxj , where xj ∈ C has j being the smallest subscript
among the remaining variables in C. Repeat Step 2, Step 3, and Step 4 until C is empty.

Now, for any subset Cx′
1
= {x′1 < . . . < x′s < x′s+1} ⊆ C produced by our

algorithm, note that f i−1(x′1) = (x′i), i = 1, . . . s + 1. Consider the matrix entries
Gx′

1,f(x
′
1)
, . . . Gx′

s+1,f(x
′
s+1)

, which are all nonzero. Since x′i+1 = f(x′i), we know from
Lemma 4.2 that 1 Gx′

i,f(x
′
i)

Gx′
i,f(x

′
i+1)

0 1 Gx′
i+1,f(x

′
i+1)

0 0 1

 ∈ T1,

for i = 1, . . . s−1. Once we know this and the fact thatGx′
i,y

′
i
, Gx′

i+1,y
′
i+1

̸= 0, Gx′
i,f(x

′
i+1)

=
Gx′

i,f
2(x′

i)
is uniquely determined from 2 and -2.

Similarly, now for i = 1, . . . s− 2,1 Gx′
i,f(x

′
i+1)

Gx′
i,f(x

′
i+2)

0 1 Gx′
i+2,f(x

′
i+2)

0 0 1

 ∈ T1
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by Lemma 4.2. Thus, Gx′
i,f(x

′
i+2)

= Gx′
i,f

3(x′
i)
is uniquely determined from 2, -2.

Using the same idea, we may uniquely determine the value of entries Gf i(x′
1),f

j(x′
1)

for any i, j ∈ {0, . . . s}, i < j. We determine these entries for every subset obtained from
C using our algorithm.

Now, suppose there existsGx0,y0 ̸= 0 that is not uniquely determined by the method
above. There definitely exists subset Cx0 = {x0, f(x0), . . . fs−1(x0), f

s(x0)} ⊆ C, since
row x0 has at least one nonzero entry. If f(x0) = y0, we have contradiction. If otherwise,
we know that 1 Gx0,f(x0) Gx0,y0

0 1 Gf(x0),y0

0 0 1

 ∈ T1, Gf(x0),y0 ̸= 0 (29)

by Lemma 4.2. If y0 < f2(x0), then Gf(x0),f2(x0) is not the first nonzero entry on row
f(x0) and we have contradiction. If y0 = f2(x0), then Gx0,y0 = Gx0,f2(x0) has been
determined using the earlier method and we have contradiction. If y0 > f2(x0), then
again, 1 Gf(x0),f2(x0) Gf(x0),y0

0 1 Gf2(x0),y0

0 0 1

 ∈ T1, Gf2(x0),y0 ̸= 0 (30)

Eventually, we find Gfs+1(x0),y0 ̸= 0, unless contradiction occurs earlier. If so, fs+1(x0)
would have been added to Cx0 in our algorithm after adding f s(x0). We have contra-
diction once again.

Therefore, our algorithm and subsequent procedures show that the first nonzero
entries (both value and location) of each row uniquely determines G ∈ FinOrb(Bn). Our
algorithm essentially partitions C, any possible subset of {1, . . . n}, into subsets where
each subset has at least two elements — xj added in Step 2 and f(xj) = yj Step 3 for
the first time.

Any such partition is possible, as we set Gx′
i,x

′
i+1

, i = 1, . . . s to be nonzero for any

subset Cx′
1
= {x′1, x′2, . . . x′s+1} that is a part of partition C =

⋃p
i=1Cxai

= {x1, x2, . . . xt},
where a1, . . . ap are the indexes for numbers in x1, x2, . . . xt that created new subset
Cxai

in our algorithm. Furthermore, we may determine, Gx′
i,x

′
i+1

, i = 1, . . . s, in each

subset Cx′
1
= {x′1, x′2, . . . x′s+1} of C, to be either 2 or -2. This can be done by the

binary information of integers 0 ≤ λxai
< 2|Cxai

|−1 for each i ∈ {1, . . . p}. Both the
partition itself and the λxai

for each subset are dependent on the choice of C. Therefore,
G ∈ FinOrb(Bn) with only entries 0 and ±2 corresponds to a particular partition (where
each part has at least two elements) of C ⊆ {1, . . . n} plus p numbers in Z(

2
|Cxai

|−1
), i =

1, . . . p, which is the same as one number in Z(∏p
i=1 2

|Cxai
|−1

) = Z(2|C|−p).
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4.1.2 Proof of Theorem 1.3 Part 1

To count all finite orbits of only entries 0 and ±2, we find a representative of each
orbit to analyze.

Definition 4.4. Consider block matrices in U+ with the upper-triangle filled with 2.
1 2 · · · 2

0 1
. . .

...
...

. . .
. . . 2

0 · · · 0 1

 .

Then an n×n segmented matrix Γ(n; (t1 > . . . > ts); (r1, . . . rs)) ∈ U+ is a concatenation
of such matrices. The first r1 blocks of 2’s are (t1 + 1) × (t1 + 1), the next r2 are
(t2 + 1) × (t2 + 1), and so on. If

∑s
i=1(ti + 1)ri < n, the final remaining rows and

columns are filled with 0. If
∑m

i=1(ti+1)ri = n, Γ is called a compact segmented matrix.

For example, below is Γ(8; (2, 1), (1, 2)), which is not compact.

1 2 2 0 0 0 0 0

0 1 2 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 2 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 2 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


Lemma 4.5. If for any i < j < k ∈ {1, . . . n}, the submatrix of a matrix G

G(i, j, k) =

1 Gij Gik

0 1 Gjk

0 0 1

 ∈ T1 ∪ T2 ∪ {I},

then G ∈ FinOrb(Bn).

Proof. Suppose G ∈ Orb(Γ) is such that G(i, j, k) ∈ T1 ∪ T2 ∪ {I} for any i < j < k ∈
{1, . . . n}.

For i ∈ {1, . . . n−1}, σi only affects Gij , Gi+1j for j = i+1, . . . n and Gji, Gji+1 for
j = 1, . . . i− 1. The changes in these entries only affect the entry triples (Gij , Gik, Gjk),
(Gi+1j , Gi+1k, Gjk), (Gji, Gkj , Gki), (Gji+1, Gkj , Gki+1) for any suitable k that puts the
triple in the upper-triangle. This is because they are the only triples triples constrained
by G(i, j, k) ∈ T1 ∪ T2 ∪ {I}. Some casework shows that for any G ∈ U+ with only
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entries 0 or ±2 such that G(i, j, k) ∈ T1 ∪ T2 ∪ {I} for any i < j < k ∈ {1, . . . n}, there
is σt(G)(i, j, k) ∈ T1 ∪ T2 ∪ {I} for t = 1, . . . n− 1.

It is only necessary to casework on one of the generators, without loss of generality.
For the sake of simplicity, we only show the casework done forGii+1 = 2, given a certain i.
If Gii+1 = 2, then Gij = Gi+1j = 0,±2 for any j > i, because G(i, i+1, j) ∈ T1∪T2∪{I}.

If Gij = Gi+1j = 0, then σi preserves the values of these two entries.
If Gij = Gi+1j = 2, we have cases Gik = Gi+1k = Gjk = ±2 and Gik = Gi+1k =

Gjk = 0. The first case gives σi(G)ij = −2, σ(G)ik = ∓2, σ(G)jk = ±2 and σi(G)i+1j =
2, σ(G)i+1k = ±2, σ(G)jk = ±2; the second case gives σi(G)ij = −2, σ(G)ik = σ(G)jk =
0 and σi(G)i+1j = 2, σ(G)i+1k = σ(G)jk = 0. In any event, G(i, j, k) ∈ T1 ∪ T2 ∪ {I} is
satisfied.

If Gij = Gi+1j = −2, we have cases Gik = Gi+1k = −Gjk = ±2 and Gik = Gi+1k =
Gjk = 0. The first case gives σi(G)ij = 2, σ(G)ik = ±2, σ(G)jk = ±2 and σi(G)i+1j =
−2, σ(G)i+1k = ∓2, σ(G)jk = ±2; the second case gives σi(G)ij = 2, σ(G)ik = σ(G)jk =
0 and σi(G)i+1j = −2, σ(G)i+1k = σ(G)jk = 0. In any event, G(i, j, k) ∈ T1 ∪ T2 ∪ {I}
is satisfied.

After the complete casework, we know that if G(i, j, k) ∈ T1 ∪ T2 ∪ {I} for any
i < j < k ∈ {1, . . . n}, then σt(G)(i, j, k) ∈ T1 ∪ T2 ∪ {I}, t = 1, . . . n − 1, and hence
β(G)(i, j, k) ∈ T1 ∪ T2 ∪ {I}, ∀β ∈ Bn as we repetitively apply the condition. This
implies that the orbit generated by G such that G(i, j, k) ∈ T1 ∪ T2 ∪ {I} will only
have matrix entries 0 or ±2. Since matrices with entries 0,±2 form a finite set and
Γ(i, j, k) ∈ T1 ∪ T2 ∪ {I}, we have Γ ∈ FinOrb(Bn).

Obviously, segmented matrices satisfy the condition in Lemma 4.5. As a immediate
consequence, we have

Proposition 4.6. Each segmented matrix generates a finite orbit of Bn.

Next, Proposition 4.3 helps us prove that

Proposition 4.7. (1) Segmented matrices generate all finite orbits with matrices that
only include entries of 0 and ±2.

(2) Distinct segmented matrices generate distinct orbits.

Proof.

Lemma 4.8. A matrix G ∈ FinOrb(Bn) in the form of
1 2δ12 · · · 2δ1n

0 1
. . .

...
...

. . .
. . . 2δn−1n

0 · · · 0 1

 .

17



where δij = ±1 and i, j ∈ {1, . . . n}, is in the same orbit as matrix
1 2 · · · 2

0 1
. . .

...
...

. . .
. . . 2

0 · · · 0 1

 .

Proof. For given i ∈ {1, . . . n}: i. If Gii+1 = 2 and Gi+1,i+2 = −2, we have Gii+2 = −2
by Lemma 4.2. G′ = σi+1(G) has G′

ii+1 = Gi+1,i+2 = 2. Let µi(2,−2) = σi for
i = 1, . . . n− 1.

ii. If Gii+1 = −2 and Gi+1,i+2 = 2, we have Gii+2 = −2 by Lemma 4.2. G′ =
σ2
i+1(G) has G′

ii+1 = Gi+1,i+2 = 2. Let µi(−2, 2) = σ2
i for i = 1, . . . n− 1.

iii. IfGii+1 = −2 = Gi+1,i+2 = −2, we haveGii+2 = 2 by Lemma 4.2. G′ = σ3
i+1(G)

has G′
ii+1 = Gi+1,i+2 = 2. Let µi(−2,−2) = σ3

i for i = 1, . . . n− 1.

Let G = G(0). We define the following recursive formula for i = 1, . . . ⌊n−1
2 ⌋ :

G(i) = µ2i(G
(i−1)
2i−1,2i, G

(i−1)
2i,2i+1)(G

(i−1)).

If n is odd, let Γ′ = G(n−1
2 ). If n is even, let Γ′ = σn−1(G

(n−1
2 )).

Since any power of σi, i ∈ {3, . . . n − 1} acting on G preserves the values of
G12, . . . Gi−2,i−1, Γ

′ is a matrix where the sub-diagonal is entirely 2. Due to Lemma
4.2, the entire upper-triangle would have to be filled with 2 in order to have G ∈
FinOrb(Bn).

Given G ∈ FinOrb(Bn), we divide the first entry of each row into sets C1, . . . Ck

as described in Proposition 4.3. Consider C1 = {x1, x2, . . . xs+1} (Recall that C1 is a set
of matrix subscripts in nature). Let

β(i, j, k) = σk−3σk−4 · · ·σiσk−2σk−3 · · ·σj

given certain i, j, k ∈ {1, . . . n}, i < j < k. The matrix

G′ :=

(
n−2∏
i=1

β(xi, xi+1, xi+2)

)
(G)

, where the product goes from right to left as i increases, gives G′
ii+1 = Gxi,xi+1 (i =

{1, 2, . . . s}), as the braids worked the same way as the ones in Lemma 4.2 to send
Mij ,Mjk to the sub-diagonal. Using the logic in the proof of Proposition 4.3, these
nonzero sub-diagonal elements determine unique values for G′

ij (i < j, i, j ∈ {1, . . . s}).
No other nonzero entries should exist in the first s rows of G′, for the same reason as the
proof by contradiction that uses (29), (30). Now we narrow down to the (n−s)× (n−s)
submatrix that excludes the first s rows and columns of G′.

Using the same idea on C2, . . . Ck and apply more braid operators, we obtain a
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matrix that has all its nonzero entries in the locations of nonzero entries of a segmented
matrix.

Applying the process described in Lemma 4.8 onto each block of ±2’s, we finally
get a segmented matrix. Thus, all G ∈ FinOrb(Bn) with only the entries 0 and ±2
belong to Orb(Γ) for a certain segmented matrix Γ.

Now we prove Part (2) of the proposition. For any matrix G in the orbit of a
segmented matrix, σi preserves the locations of all non-zero entries of G if Gii+1 = ±2,
because the entries Gij , Gi+1j (or Gji, Gji+1) must be either both zero or both non-zero
by Lemma 4.2. For instance,

1 −2 0 2 −2 0

0 1 0 −2 2 0

0 0 1 0 0 2

0 0 0 1 −2 0

0 0 0 0 1 0

0 0 0 0 0 1


σ4−→



1 −2 0 2 2 0

0 1 0 −2 −2 0

0 0 1 0 0 2

0 0 0 1 2 0

0 0 0 0 1 0

0 0 0 0 0 1


.

If Gii+1 = 0, then the non-zero entries on the i−th and i+1-th columns switch columns,
and the non-zero entries on the i-th and i+ 1-th rows switch rows. For instance,

1 −2 0 2 −2 0

0 1 0 −2 2 0

0 0 1 0 0 2

0 0 0 1 −2 0

0 0 0 0 1 0

0 0 0 0 0 1


σ3−→



1 −2 2 0 −2 0

0 1 −2 0 2 0

0 0 1 0 −2 0

0 0 0 1 0 2

0 0 0 0 1 0

0 0 0 0 0 1


.

Because of this, the numbers of non-zero entries on the different rows (or columns) form
a constant group of numbers. In other words, braid actions only switches around the
number of non-zero entries of each row (and column). Since each segmented matrix has
a distinct group of numbers for the count of non-zero entries on each row, they must
generate distinct orbits.

If the firstm =
∑s

i=1(ti+1)ri rows/columns of a segmented matrix forms a compact
segmented matrix, it is a concatenation of d =

∑s
i=1 ri blocks of submatrices with the

upper-triangle filled with 2. We have essentially described Γ as partition of m − d =∑s
i=1 tiri into d positive integers. The d integers include ri copies of ti for i = 1, . . . s.

Here, m can be any number smaller or equal to n, and d can be any number smaller or
equal to ⌊m2 ⌋.

Since each partition of m − d into d parts forms a distinct segmented matrix and
hence a distinct finite orbit by Proposition 4.7, we have the double sum for the total
number of orbits with only the entries 0 and ±2 expressed in Theorem 1.3. We add 1
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to include the trivial finite orbit {I}.

4.1.3 Proof of Theorem 1.3 Part 2

Fitting Γ(n; (t1, . . . ts); (r1, . . . rs)) into the context of Proposition 4.3, we have set
partition C =

⋃k
i=1Ci for Γ, where |C1| = · · · = |Cr1 | = t1+1, |Cr1+1| = · · · = |Cr1+r2 | =

t2, . . . We also require |C| = m.
Under these conditions, we have

n!

m!(n−m)!
(31)

ways to choose C. We also have

m!∏s
i=1 ri! · ((ti + 1)!)ri

(32)

ways to partition C such that each subset has at least two elements. (ti+1)! represents all
the permutations of elements within the same partitioned set, which we don’t distinguish;
ri! represents all the permutations of partitioned sets with the same cardinality, which
we also don’t distinguish when counting partitions.

Finally, we may choose integers 0 ≤ λij < 2ti (i = 1, . . . s; j = 1, . . . ri) for all
partitioned sets of C. That adds up to

s∏
i=1

(
2ti
)ri = s∏

i=1

2tiri (33)

possibilities. The product of (31),(32),(33) gives the expression in Part 2 of Theorem
1.3.

4.2 Preparation for computing certain 5× 5 finite orbits

Proposition 4.9. For M ∈ FinOrb(Bn), if for any β ∈ Bn and M ′ = β(M), the
submatrix

Mi =

1 Mi−1i Mi−1i+1

0 1 Mii+1

0 0 1


has Mi ∈ FinOrb(B3), Mi /∈ FinOrb(Sn), and |Mi +MT

i | ̸= 0 for i = 2, . . . n− 1, then
any entry of M is in the set {2 cos(pπq ) | q = 2, 3, 4, 5; p = 1, 2, . . . q − 1}.

Proof. Dubrovin and Mazzocco have proven this proposition for 3× 3 matrix M in [4],
but under slightly different definitions for the action of Bn on matrices. We adapt their
proof to our definition.
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Let x1 = M12, x2 = M13, x3 = M23. The braid action on coordinate (x1, x2, x3) is
the following

σ1(x1, x2, x3) = (−x1, x3 − x1x2, x2)

σ2(x1, x2, x3) = (x2 − x1x3, x1,−x3)

The triple is essentially generated under σ1 and the cyclic permutation s : (x1, x2, x3) →
(x3, x1, x2), where σ2 = s ·σ1 · s2. Thus, it suffices to consider the cyclic permutations of

σ : (xi, xj , xk) → (−xi, xk − xixj , xj)

By Theorem 1.1, suppose (x1, x2, x3) generates a finite set under the braid group, let
xi = −2 cos(πri) = 2 cos(π(1− ri)). σ acts on (ri, rj , rk) as

σ : (ri, rj , rk) → (1− ri, r
′
k, rj)

where 0 < rk < 1 is a rational number such that

cos(πr′k) = cos(πrk) + 2 cos(πri) cos(πrj)

Hence,
cos(πrk) + cos(πri + πrj)) + cos(πri − πrj) + cos(π − πr′k) = 0

From here, [4] obtains the only triples (ri, rj , rk) that satisfy the equation above.
They correspond to the following the five orbits generated by (x1, x2, x3)

(2 cos
π

2
, 2 cos

2π

3
, 2 cos

2π

3
)

(2 cos
π

2
, 2 cos

2π

3
, 2 cos

3π

4
)

(2 cos
π

2
, 2 cos

2π

3
, 2 cos

4π

5
)

(2 cos
π

2
, 2 cos

2π

3
, 2 cos

3π

5
)

(2 cos
π

2
, 2 cos

4π

5
, 2 cos

3π

5
)

Their orbit lengths are 16, 44, 40, 40, 80, respectively. Our proof is done for 3×3 matrices.
Note that our orbit lengths are different from the lengths stated in [4], because we used
a slightly different definition for the braid group action on matrices.

For an n× n matrix that is finite under Bn, the submatrix

M(i− 1, i, i+ 1) =

1 Mi−1i Mi−1i+1

0 1 Mii+1

0 0 1


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must be within FinOrb(B3). So, the entries of the sub-diagonal M12, . . .Mn−1n are
already in the set {2 cos(pπq ) | q = 2, 3, 4, 5; p = 1, 2, . . . q − 1}.

Suppose the lemma is true for an (n−1)×(n−1) matrix. Extending the n-th column
and row leaves us with the entriesM1n,M2n, . . .Mn−2 to check. ForMin, i ∈ {1, . . . n−2},
let M ′ = σn−3σn−4 · · ·σi(M). We have Mi,n−1 = M ′

n−2,n−1,Min = M ′
n−2,n,Mn−1,n =

M ′
n−1,n. The 3× 3 submatrix 1 M ′

n−2,n−1 Mn−2,n

0 1 Mn−1,n

0 0 1


must belong to FinOrb(B3). Therefore, Mi,n = M ′

n−2,n must belong to the finite set
described earlier.

To present more information for future research, in our computer algorithm for
5 × 5 matrices, we also allowed any entry of M to be ±2, expanding the set to be
{2 cos(pπq ) | q = 1, 2, 3, 4, 5; p ∈ Z}.

4.3 Preparation for computing all 4× 4 finite orbits: Proof of theorem
1.5

Suppose there exists an entry Mij = 2 cos(pπq ) (1 ≤ i < j ≤ 4), where q ∈
{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25}, p ∈ Z. The braid transformation

M ′ = σ2 · · ·σiσ3 · · ·σj(M)

gives M ′
34 = Mij .

Regardless of what the values of M ′
23 and M ′

24 are, because M ′
34 /∈ {2 cos(pπq ) | q =

1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25; p ∈ Z} and Lemma 4.2 and Proposition 4.9 holds,
the matrices 1 M ′

23 M ′
24

0 1 M ′
34

0 0 1

 ,

1 M ′
13 M ′

14

0 1 M ′
34

0 0 1

 (34)

generate degenerate orbits. Recall that we may express the two submatrices asM(2, 3, 4),M(1, 3, 4),
respectively.

Let pij , qij (i, j = 1, 2, 3, 4; i < j) be integers such that 2 cos(
pij
qij

π) = M ′
ij , and

gcd(pij , qij) = 1.
If q23 ∈ {1, 2, 3, 4, 5},

p23
q23

+
p34
q34

=
p23q34 + p34q23

q23q34
=

p24
q24

.
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We rewrite this with

p23 = gcd(p23, p34)p
′
23,

p34 = gcd(p23, p34)p
′
34,

q23 = gcd(q23, q34)q
′
23,

q34 = gcd(q23, q34)q
′
34,

yielding
(p′23q

′
34 + p′34q

′
23) · gcd(p23, p34)

q′23q
′
34 · gcd(q23, q34)

=
p24
q24

where gcd(p′23, p
′
24) = gcd(q′23, q

′
24) = gcd(p′23, q

′
23) = gcd(p′24, p

′
24) = 1. Thus, gcd(p′23q

′
34+

p′34q
′
23, q

′
23q

′
34) = 1 and gcd(gcd(p23, p34), q

′
23q

′
34) = 1. Hence, q′23q

′
34|q24.

Knowing that q34 /∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25} and q23 ∈ {1, 2, 3, 4, 5},
we have q24 ≥ q′23q

′
34 > 5, which by Proposition 4.9, shows that the matrix1 M ′

12 M ′
14

0 1 M ′
24

0 0 1

 (35)

generates a degenerate orbit.
Set rij =

pij
qij

. So far we know from (34) and (35) that

r34 + r23 = r24

r34 + r13 = r14

r12 + r24 = r14

, which implies that r12 + r23 = r13.
Therefore, the matrix M ′(1, 2, 3) also generates a degenerate orbit. Given that all

3× 3 submatrices now generate degenerate orbits, [7] tells us that M ′ itself generates a
degenerate orbit.

On the other hand, if q23 /∈ {1, 2, 3, 4, 5}, the deduction is similar. Apparently,
M ′(1, 2, 3) generates a degenerate orbit, which helps us show that r12 + r24 = r14 and
we arrive at the same conclusion. This ends the proof.

With Theorem 1.5, we only require a search algorithm to look for all finite or-
bits where matrices only have entries within the finite set Mij /∈ {2 cos(pπq ) | q =
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25; p ∈ Z} (1 ≤ i < j ≤ 4). It turns out that all
entries of M ∈ FinOrb(B4) for a non-degenerate, non-Sn orbit are within the smaller
finite set of Mij /∈ {2 cos(pπq ) | q = 1, 2, 3, 4, 5; p ∈ Z}. See Table 6.
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4.4 Computed Finite Orbits

We program an algorithm to find all finite orbits, given a finite set A containing
values that all entries of the orbit must take. For instance, Conjecture 1.4 demands the
set A = {0, 1,−1}, Section 4.2 demands A = {2 cos(pπq ) | q = 1, 2, 3, 4, 5; p ∈ Z}, and
Section 4.3 demands A = {2 cos(pπq ) | q = 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25; p ∈ Z}.

Given A, for each out of the |A|
(n−1)n

2 numerated matrices, the algorithm searches
along a tree with outdegree n− 1, since there are n− 1 possible generators of Bn. While
searching, the program parses every new matrix it visits into an (n−1)n

2 -digit hexadecimal,
where each digit represents an entry from the matrix (there are only 11 possible values).
It stores the parsed hexadecimal into a boolean map as the key and sets the value to
True. Whenever the program visits a matrix that is already visited according to the
map, it no longer branches off along that matrix. The particular order of searching is
Breadth-first search (BFS), to optimize space and runtime.

For this research, all computations are done on a Tencent Cloud server. C++ and
Python programs (primarily search algorithms for finite orbits) are run on a 20-core
80GB NVIDIA Tesla-T4.

In the following tables, a representative of a matrix in U+ is described with a
sequence ϕ1, ϕ2, . . . ϕn(n−1)

2

: the upper-triangular entries of the matrix, read left-to-right

and top-to-bottom, is the sequence 2 cosϕ1, 2 cosϕ2, . . . 2 cosϕn(n−1)
2

. For instance, the

sequence 2π
3 , 2π

3 , π
3 ,

π
5 ,

2π
5 , π

2 represents the matrix
1 2 cos(2π3 ) 2 cos(2π3 ) 2 cos(π3 )

0 1 2 cos(π5 ) 2 cos(2π5 )

0 0 1 2 cos(π2 )

0 0 0 1



Length Representative

32 2π
3 , π

2 ,
2π
3 , π

3 ,
π
3 ,

π
3

64 2π
3 , 2π

3 , π
2 ,

π
3 ,

π
2 ,

π
2

72 2π
3 , 2π

3 , 2π
3 , π

3 ,
π
3 ,

π
2

200 2π
3 , π

3 ,
2π
3 , π

2 ,
π
3 ,

π
2

Table 1: All non-degenerate non-Sn 4× 4 finite orbits with only the entries 0, ±1
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Length Representative

160 2π
3 , 2π

3 , π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

160 2π
3 , π

2 ,
2π
3 , π

2 ,
π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2

320 π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

360 2π
3 , 2π

3 , 2π
3 , π

2 ,
π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

1000 2π
3 , π

3 ,
2π
3 , π

2 ,
π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

3456 π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2

3456 2π
3 , π

2 ,
2π
3 , 2π

3 , π
3 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2

4096 2π
3 , π

3 ,
2π
3 , 2π

3 , π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

Table 2: All non-degenerate non-Sn 5× 5 finite orbits with only the entries 0, ±1

Length Representative

320 2π
3 , 2π

3 , π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

480 2π
3 , π

2 ,
2π
3 , π

2 ,
π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

960 π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2

1080 2π
3 , 2π

3 , 2π
3 , π

2 ,
π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

1920 π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

2160 π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

2560 π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

3000 2π
3 , π

3 ,
2π
3 , π

2 ,
π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

6000 2π
3 , π

2 ,
π
2 ,

π
3 ,

2π
3 , π

2 ,
π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

20736 2π
3 , π

2 ,
2π
3 , 2π

3 , π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

20736 π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

24576 2π
3 , π

3 ,
2π
3 , 2π

3 , π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

34560 π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2

38880 2π
3 , π

2 ,
2π
3 , π

2 ,
2π
3 , π

3 ,
π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

76832 2π
3 , π

2 ,
π
2 ,

π
3 ,

2π
3 , π

3 ,
π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

81920 2π
3 , π

2 ,
π
3 ,

2π
3 , π

2 ,
π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

100000 π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

110592 2π
3 , 2π

3 , π
2 ,

π
3 ,

2π
3 , π

3 ,
π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

209952 2π
3 , π

2 ,
2π
3 , π

3 ,
2π
3 , π

3 ,
π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

Table 3: All non-degenerate non-Sn 6× 6 finite orbits with only the entries 0, ±1
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Length Representative

560 2π
3 , 2π

3 , π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

1120 2π
3 , π

2 ,
2π
3 , π

2 ,
π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

2520 2π
3 , 2π

3 , 2π
3 , π

2 ,
π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

6720 π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

6720 π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

6720 π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

7000 2π
3 , π

3 ,
2π
3 , π

2 ,
π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

15120 π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

17920 π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

17920 π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

40320 π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

42000 2π
3 , π

2 ,
π
2 ,

π
3 ,

2π
3 , π

2 ,
π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

72576 2π
3 , π

2 ,
2π
3 , 2π

3 , π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

72576 π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

86016 2π
3 , π

3 ,
2π
3 , 2π

3 , π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

112000 π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

145152 π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

145152 π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

172032 2π
3 , π

2 ,
π
2 ,

π
3 ,

2π
3 , 2π

3 , π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

241920 π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

272160 2π
3 , π

2 ,
2π
3 , π

2 ,
2π
3 , π

2 ,
π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

362880 2π
3 , π

2 ,
π
3 ,

π
2 ,

π
3 ,

2π
3 , π

3 ,
π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

537824 2π
3 , π

2 ,
π
2 ,

π
3 ,

2π
3 , π

2 ,
π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

573440 2π
3 , π

2 ,
π
3 ,

2π
3 , π

2 ,
π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

700000 π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

774144 2π
3 , 2π

3 , π
2 ,

π
3 ,

2π
3 , π

2 ,
π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

1469664 2π
3 , π

2 ,
2π
3 , π

3 ,
2π
3 , π

2 ,
π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

2097152 2π
3 , π

2 ,
π
2 ,

π
2 ,

π
3 ,

2π
3 , π

2 ,
π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

2211840 π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

2400000 2π
3 , π

2 ,
π
2 ,

π
2 ,

π
3 ,

2π
3 , π

3 ,
π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

2985984 2π
3 , π

2 ,
π
2 ,

π
3 ,

2π
3 , 2π

3 , π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

7558272 π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

9953280 π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

10800000 π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

15059072 2π
3 , π

2 ,
π
3 ,

2π
3 , π

2 ,
2π
3 , π

2 ,
π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

Table 4: All non-degenerate non-Sn 7× 7 finite orbits with only the entries 0, ±1
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Length Representative

4 π, π, 0

16 2π
3 , 2π

3 , π
3

16 π, 2π
3 , π

3

40 4π
5 , 4π

5 , π
3

40 3π
5 , 3π

5 , π
3

44 3π
4 , 3π

4 , π
3

48 3π
5 , 2π

5 , π
5

80 3π
5 , 2π

3 , π
5

Table 5: All non-degenerate non-Sn 3× 3 finite orbits

Length Representative

8 π, π, π, 0, 0, 0

16 π, π, π
2 , 0,

π
2 ,

π
2

32 2π
3 , π

3 ,
2π
3 , π

3 , 0,
π
3

32 2π
3 , π

2 ,
2π
3 , π

3 ,
π
3 ,

π
3

64 2π
3 , 2π

3 , π
2 ,

π
3 ,

π
2 ,

π
2

64 π, 2π
3 , π

2 ,
π
3 ,

π
2 ,

π
2

72 2π
3 , 2π

3 , 2π
3 , π

3 ,
π
3 ,

π
2

72 π, π, 2π
3 , 0, π

3 ,
π
3

80 2π
3 , π

2 ,
3π
5 , 2π

5 , 2π
5 , π

3

80 2π
3 , π

2 ,
4π
5 , π

5 ,
π
5 ,

π
3

96 π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
3 ,

π
2

96 4π
5 , 3π

5 , 4π
5 , π

5 , 0,
π
5

144 π
2 , 0,

π
4 ,

π
2 ,

π
2 ,

π
4

160 4π
5 , 4π

5 , π
2 ,

π
3 ,

π
2 ,

π
2

160 3π
5 , 3π

5 , π
2 ,

π
3 ,

π
2 ,

π
2

176 3π
4 , 3π

4 , π
2 ,

π
3 ,

π
2 ,

π
2

184 2π
3 , π

3 ,
3π
5 , 2π

5 , π
5 ,

π
3

Length Representative

192 3π
5 , 2π

5 , π
2 ,

π
5 ,

π
2 ,

π
2

200 3π
5 , 3π

5 , 2π
5 , 0, π

5 ,
π
5

200 π, 3π
5 , 4π

5 , 2π
5 , π

5 ,
π
5

200 2π
3 , π

3 ,
2π
3 , π

2 ,
π
3 ,

π
2

216 2π
3 , π

3 ,
2π
3 , π

3 ,
π
3 ,

π
2

312 3π
5 , 2π

3 , π
2 ,

π
5 ,

π
2 ,

π
2

720 2π
3 , π

3 ,
3π
5 , π

2 ,
2π
5 , π

2

720 2π
3 , π

3 ,
4π
5 , π

2 ,
π
5 ,

π
2

864 2π
3 , 2π

3 , π
3 ,

π
5 ,

2π
5 , π

2

1224 4π
5 , 2π

5 , 2π
3 , π

2 ,
2π
5 , π

2

1224 3π
5 , π

5 ,
2π
3 , π

2 ,
π
5 ,

π
2

1338 2π
3 , π

3 ,
4π
5 , π

3 ,
π
5 ,

π
2

1338 2π
3 , π

3 ,
3π
5 , π

3 ,
2π
5 , π

2

1418 3π
5 , π

3 ,
2π
3 , π

2 ,
π
5 ,

π
2

1418 4π
5 , π

3 ,
2π
3 , π

2 ,
2π
5 , π

2

1680 3π
5 , 2π

3 , 3π
5 , π

5 ,
π
3 ,

π
2

2432 4π
5 , 3π

5 , 4π
5 , π

5 ,
π
3 ,

π
2

2580 4π
5 , 3π

5 , 4π
5 , π

3 ,
π
3 ,

π
2

Table 6: All non-degenerate non-Sn 4× 4 finite orbits
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Length Representative

16 π, π, π, π, 0, 0, 0, 0, 0, 0

40 π, π, π, π
2 , 0, 0,

π
2 , 0,

π
2 ,

π
2

40 π, π, π
2 ,

π
2 , 0,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

80 π
2 , 0, 0,

π
2 ,

π
2 ,

π
2 , 0, 0,

π
2 ,

π
2

80 π, π
2 ,

π
2 , π,

π
2 ,

π
2 , 0,

2π
5 , π

2 ,
π
2

80 π, π
2 ,

π
2 , π,

π
2 ,

π
2 , 0,

π
5 ,

π
2 ,

π
2

80 π, π
2 ,

π
2 , π,

π
2 ,

π
2 , 0,

π
4 ,

π
2 ,

π
2

80 π, π
2 ,

π
2 , π,

π
2 ,

π
2 , 0,

π
3 ,

π
2 ,

π
2

160 2π
3 , π

3 ,
2π
3 , π

2 ,
π
3 , 0,

π
2 ,

π
3 ,

π
2 ,

π
2

160 2π
3 , π

2 ,
2π
3 , π

2 ,
π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2

160 2π
3 , 2π

3 , π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

160 π, 2π
3 , π

2 ,
π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

320 π
2 , 0,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
4 ,

π
3 ,

π
2 ,

π
2

320 π
2 ,

2π
5 , π

2 ,
π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

320 π
2 , 0,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

320 π
2 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

320 π
2 ,

π
4 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

320 π
2 , 0,

π
3 ,

π
2 ,

π
2 ,

π
2 , 0,

π
3 ,

π
2 ,

π
2

320 π
2 , 0,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
5 ,

π
3 ,

π
2 ,

π
2

320 π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

320 π
2 , 0,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2

320 π
2 , 0,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

2π
5 , π

3 ,
π
2 ,

π
2

360 π
2 , 0,

π
4 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
4 ,

π
2 ,

π
2

360 2π
3 , 2π

3 , 2π
3 , π

2 ,
π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

360 π, π, 2π
3 , π

2 , 0,
π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2

400 π, 3π
4 , π

2 ,
3π
4 , π

4 ,
π
2 ,

π
4 ,

π
2 , 0,

π
2

400 4π
5 , 4π

5 , π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

400 3π
5 , 3π

5 , π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

400 2π
3 , π

2 ,
4π
5 , π

2 ,
π
5 ,

π
5 ,

π
2 ,

π
3 ,

π
2 ,

π
2

400 2π
3 , π

2 ,
3π
5 , π

2 ,
2π
5 , 2π

5 , π
2 ,

π
3 ,

π
2 ,

π
2

440 3π
4 , 3π

4 , π
2 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

Length Representative

480 π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

480 4π
5 , 3π

5 , 4π
5 , π

2 ,
π
5 , 0,

π
2 ,

π
5 ,

π
2 ,

π
2

480 3π
5 , 2π

5 , π
2 ,

π
2 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

640 π, π, π, 2π
3 , 0, 0, π

3 , 0,
π
3 ,

π
3

640 2π
3 , 2π

3 , 2π
3 , 2π

3 , π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

720 3π
4 , π

2 ,
π
2 ,

3π
4 , π

2 ,
π
2 , 0,

π
4 ,

π
2 ,

π
2

720 3π
4 , π

2 ,
π
2 ,

3π
4 , π

2 ,
π
2 , 0,

π
5 ,

π
2 ,

π
2

720 3π
4 , π

2 ,
π
2 ,

3π
4 , π

2 ,
π
2 , 0,

2π
5 , π

2 ,
π
2

720 3π
4 , π

2 ,
π
2 ,

3π
4 , π

2 ,
π
2 , 0, 0,

π
2 ,

π
2

768 3π
5 , 2π

3 , π
2 ,

π
2 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

π
2 ,

π
2

800 π
2 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

2π
5 , π

3 ,
π
2 ,

π
2 ,

π
2

800 π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

2π
5 , π

3 ,
π
2 ,

π
2 ,

π
2

800 π
2 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

π
5 ,

π
3 ,

π
2 ,

π
2 ,

π
2

800 π
2 ,

π
4 ,

π
2 ,

π
2 ,

π
2 ,

2π
5 , π

3 ,
π
2 ,

π
2 ,

π
2

800 π
2 , 0,

π
2 ,

π
2 ,

π
2 ,

2π
5 , π

3 ,
π
2 ,

π
2 ,

π
2

800 π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
5 ,

π
3 ,

π
2 ,

π
2 ,

π
2

800 π
2 ,

π
4 ,

π
2 ,

π
2 ,

π
2 ,

π
5 ,

π
3 ,

π
2 ,

π
2 ,

π
2

800 π
2 ,

2π
5 , π

2 ,
π
2 ,

π
2 ,

π
5 ,

π
3 ,

π
2 ,

π
2 ,

π
2

800 π
2 ,

2π
5 , π

2 ,
π
2 ,

π
2 ,

2π
5 , π

3 ,
π
2 ,

π
2 ,

π
2

800 π
2 , 0,

π
2 ,

π
2 ,

π
2 ,

π
5 ,

π
3 ,

π
2 ,

π
2 ,

π
2

880 π
2 , 0,

π
2 ,

π
2 ,

π
2 ,

π
4 ,

π
3 ,

π
2 ,

π
2 ,

π
2

880 π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
4 ,

π
3 ,

π
2 ,

π
2 ,

π
2

880 π
2 ,

2π
5 , π

2 ,
π
2 ,

π
2 ,

π
4 ,

π
3 ,

π
2 ,

π
2 ,

π
2

880 π
2 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

π
4 ,

π
3 ,

π
2 ,

π
2 ,

π
2

880 π
2 ,

π
4 ,

π
2 ,

π
2 ,

π
2 ,

π
4 ,

π
3 ,

π
2 ,

π
2 ,

π
2

888 2π
3 , π

3 ,
3π
5 , π

2 ,
2π
5 , π

5 ,
π
2 ,

π
3 ,

π
2 ,

π
2

960 π
2 ,

2π
5 , π

5 ,
π
2 ,

π
2 ,

π
2 , 0,

π
5 ,

π
2 ,

π
2

960 π
2 ,

2π
5 , π

5 ,
π
2 ,

π
2 ,

π
2 ,

2π
5 , π

5 ,
π
2 ,

π
2

960 π
2 ,

2π
5 , π

5 ,
π
2 ,

π
2 ,

π
2 ,

π
5 ,

π
5 ,

π
2 ,

π
2

960 3π
5 , π

2 ,
π
2 ,

2π
5 , π

2 ,
π
2 ,

π
5 ,

π
3 ,

π
2 ,

π
2

960 3π
5 , π

2 ,
π
2 ,

2π
5 , π

2 ,
π
2 ,

π
5 ,

π
4 ,

π
2 ,

π
2

Table 7: All non-degenerate non-Sn 5 × 5 finite orbits with entries in {2 cos(pπk ) | k =
1, 2, 3, 4, 5; p ∈ Z} (Part 1)
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Length Representative

1000 2π
3 , π

3 ,
2π
3 , π

2 ,
π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

1000 π, 3π
5 , 4π

5 , π
2 ,

2π
5 , π

5 ,
π
2 ,

π
5 ,

π
2 ,

π
2

1000 3π
5 , 3π

5 , 2π
5 , π

2 , 0,
π
5 ,

π
2 ,

π
5 ,

π
2 ,

π
2

1080 2π
3 , π

3 ,
2π
3 , π

2 ,
π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

1536 π
2 ,

π
4 ,

π
2 ,

π
2 ,

π
2 ,

2π
5 , π

5 ,
π
2 ,

π
2 ,

π
2

1536 π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

2π
5 , π

5 ,
π
2 ,

π
2 ,

π
2

1536 π
2 ,

2π
5 , π

2 ,
π
2 ,

π
2 ,

2π
5 , π

5 ,
π
2 ,

π
2 ,

π
2

1536 π
2 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

2π
5 , π

5 ,
π
2 ,

π
2 ,

π
2

1536 π
2 , 0,

π
2 ,

π
2 ,

π
2 ,

2π
5 , π

5 ,
π
2 ,

π
2 ,

π
2

1920 π, 2π
3 , 2π

3 , 2π
3 , π

3 ,
π
3 ,

π
3 , 0,

π
2 ,

π
2

2560 2π
3 , π

3 ,
π
3 ,

2π
3 , π

3 ,
π
3 ,

π
3 , 0,

π
2 ,

π
2

3456 π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
3 ,

π
2 ,

π
2 ,

π
2

3456 2π
3 , π

3 ,
π
3 ,

2π
3 , π

3 ,
π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2

3456 2π
3 , π

2 ,
2π
3 , 2π

3 , π
3 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2

3600 2π
3 , π

3 ,
4π
5 , π

2 ,
π
2 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

π
2

3600 2π
3 , π

3 ,
3π
5 , π

2 ,
π
2 ,

2π
5 , π

2 ,
π
2 ,

π
2 ,

π
2

3648 π, 3π
5 , 4π

5 , 2π
3 , 2π

5 , π
5 ,

π
3 ,

π
2 ,

π
2 ,

π
2

3840 2π
3 , π

3 ,
2π
3 , 2π

3 , π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

4096 2π
3 , π

3 ,
2π
3 , 2π

3 , π
2 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

4096 π
2 , 0,

π
3 ,

π
2 ,

π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2

4176 2π
3 , 2π

3 , π
3 ,

π
2 ,

π
5 ,

2π
5 , π

2 ,
π
2 ,

π
2 ,

π
2

Length Representative

4992 π, π, 3π
5 , 4π

5 , 0, 2π
5 , π

5 ,
2π
5 , π

5 ,
π
5

5976 4π
5 , 2π

5 , 2π
3 , π

2 ,
π
2 ,

2π
5 , π

2 ,
π
2 ,

π
2 ,

π
2

5976 3π
5 , π

5 ,
2π
3 , π

2 ,
π
2 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

π
2

6552 2π
3 , π

3 ,
3π
5 , π

2 ,
π
3 ,

2π
5 , π

2 ,
π
2 ,

π
2 ,

π
2

6552 2π
3 , π

3 ,
4π
5 , π

2 ,
π
3 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

π
2

6952 4π
5 , π

3 ,
2π
3 , π

2 ,
π
2 ,

2π
5 , π

2 ,
π
2 ,

π
2 ,

π
2

6952 3π
5 , π

3 ,
2π
3 , π

2 ,
π
2 ,

π
5 ,

π
2 ,

π
2 ,

π
2 ,

π
2

8256 3π
5 , 2π

3 , 3π
5 , π

2 ,
π
5 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

11904 4π
5 , 3π

5 , 4π
5 , π

2 ,
π
5 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

12624 4π
5 , 3π

5 , 4π
5 , π

2 ,
π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2 ,

π
2

48136 4π
5 , 3π

5 , 2π
3 , 4π

5 , π
5 ,

2π
5 , π

3 ,
π
2 ,

π
2 ,

π
2

48136 3π
5 , π

5 ,
2π
3 , 3π

5 , 2π
5 , π

5 ,
π
3 ,

π
2 ,

π
2 ,

π
2

55728 π, 4π
5 , 4π

5 , 2π
3 , π

5 ,
π
5 ,

π
3 , 0,

π
2 ,

π
2

81328 2π
3 , π

3 ,
3π
5 , 4π

5 , π
3 ,

2π
5 , π

5 ,
π
2 ,

π
2 ,

π
2

168208 π
2 ,

2π
5 , π

3 ,
π
2 ,

π
3 ,

π
3 ,

π
3 ,

π
2 ,

π
2 ,

π
2

168208 2π
3 , π

5 ,
3π
5 , 2π

3 , π
2 ,

π
5 ,

π
3 ,

π
2 ,

π
2 ,

π
2

211975 3π
5 , π

3 ,
3π
5 , 2π

3 , π
3 ,

π
3 ,

π
5 ,

π
3 ,

π
2 ,

π
2

211975 2π
3 , π

2 ,
3π
5 , 4π

5 , 2π
5 , 2π

5 , π
5 ,

π
3 ,

π
2 ,

π
2

235136 π
2 ,

π
5 ,

π
3 ,

π
2 ,

2π
5 , π

2 ,
π
3 ,

π
2 ,

π
2 ,

π
2

404696 2π
3 , π

3 ,
3π
5 , 2π

3 , 2π
5 , π

5 ,
π
3 ,

π
3 ,

π
2 ,

π
2

468254 2π
3 , 2π

3 , π
3 ,

2π
3 , π

5 ,
2π
5 , π

3 ,
π
2 ,

π
2 ,

π
2

Table 8: All non-degenerate non-Sn 5 × 5 finite orbits with entries in {2 cos(pπk ) | k =
1, 2, 3, 4, 5; p ∈ Z} (Part 2)
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