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Abstract

In this paper, we study the finite orbits of the braid group B, action on the space of
n X n upper-triangular matrices with 1’s along the diagonal. On one hand, we give a
necessary condition for a matrix M to be in a finite orbit; on the other hand, we classify
and provide lengths of finite orbits in low-dimensional matrices and some other impor-
tant cases.
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1 Introduction
The braid group B, is generated by n — 1 generators o7 ...0,_1 with the relations

0i0i+10; = 0i410i0+1 (1)

0;0j = 0;0; , if |7, —j‘ > 1.

Following [3], the braid group B, acts on the space U of n xn upper-triangular matrices
with 1’s on the diagonal in the following way: for any M € U, the entries of the matrix
0;(M), obtained by the action of the generator o; on M, are given by

oi(M)iiq1 = —M; i1
oi(M)ij = —M; i1 Mij + M5, 1+1<j
oi(M)ji = —M; i1 Mj; + Mj i1, j+1<i
oi(M)it1;=M;j, i+1<
Uz‘(M)j,i—H = Mji, j+1<q
oi(M)jx = My, j <k, and j,k#i,i+ 1.

The braid group acts from right to left on matrices: 5251 (M) = B2(81(M)), 51, B2 € Bh.

An important problem is to classify the finite orbit of the braid group action on
U,. The problem was motivated by the study of the geometry of 2D topological field
theory [3, Appendix F], and the study of algebraic solutions of some nonlinear differential
equations, see for example, [2, 4]. Past results in finding finite orbits have been focused
on either the low dimension of 3 x 3 matrices [4], or specific types of matrices [7]. Rather
generalized classifications of finite orbits in [5, 6, 8] focus on more abstract properties.

In this paper, we study the finite orbits in full generality. On one hand, we give a
necessary condition on a matrix M € Uy such that it is in a finite orbit; on the other
hand, we classify finite orbits in low-dimensional cases and in other important cases, and
provide lengths and representatives for each orbit.

In this paper, we refer to the set of all n X n matrices that generate finite orbits
of By, as FinOrb(By,,) C Uy and denote Orb(M) as the finite orbit in U, generated by
M € FinOrb(By,) under the braid group.

1.1 A characterization of the matrices M € FinOrb(B,)

Our main result in this paper is

Theorem 1.1. If a matriz M € FinOrb(By,), and there exists an element M’ in the
finite orbit Orb(M) such that o2(M') # M’ for some i € {1,....,n — 1}, then all entries
of M are in the form of 2cos(rm) with r € Q.

This theorem generalizes [7, Theorem 1 and Theorem 2], which prove that all
matrices M € FinOrb(B,), with the extra constraint rank(M + MT) =2 (i.e. all 3 x 3
submatrices are degenerate), mush have the form as in Theorem 1.1.



Note that the condition in Theorem 1.1 excludes the case o2(M’) = M’ for all
i=1,...n—1and M" € Orb(M). In this case, the braid group B,, action on the finite
orbit Orb(M) becomes the symmetric group S,, action. A complement to the Theorem
1.1 is as follows. We denote the set of matrices M € U, such that o?(3(M)) = B(M)
forall 8 € B, and i = 1,...,n — 1 (i.e., M generates a finite S,, orbit) as FinOrb(S,).
We give a complete description of the set FinOrb(S,,) in Section 3 by proving

Theorem 1.2. If M € Uy has only k < [ 5] non-zero entries
’Mu’ =a, |M34| =ag, ...... R |M2k_172]§| =ai € R, (3)

then M € FinOrb(S,). And the orbit’s length, |Orb(M)|, is

n!
(n—2k) T !
where s is the number of the different values of ay,...,ar, and r1,...7rs denotes the

cardinality of the s different values. Conversely, if M € FinOrb(S,,), then there exists
B € By, an integer k < | 5] and nonzero numbers ay, ...,ay such that (M) has only

non-zero entries as in (3).

1.2 Application of Theorem 1.1: new finite orbits and their classifica-
tion

Theorem 1.1 gives a necessary condition for matrices M € FinOrb(B,,) that dra-
matically reduces the difficulty of seeking for finite orbits. In the second part of the
paper, we use Theorem 1.1 to study and classify some special finite orbits. As far as we
know, the finite orbits we obtain are new.

The case r = 0,1/2,1 in Theorem 1.1. The first case concerns of finite orbits
on matrices with the entries £2 and 0, aside from 1’s on the diagonal. We provide a
classification of them and a formula that calculates the length for each orbit.

Theorem 1.3. (1) The total number of the finite orbits of By, on UL, that only contain
matrices with upper-triangular entries 0 or £2, is

w[3

n %]
1+ > ) pa(m —d).

m=2 d=1

Here, pg(m — d) stands for the number of partitions of m — d into d integers.

(2) Each of such finite orbits corresponds to a partition of m — d into d integers.
The length of the orbit, corresponding to a partition consisting of r1 copies of t1’s, 1o
copies of to’s, ..., and rs of ts’s with t1,...ts being distinct integers, is

n! . H§:1 tiTi

(n—m)! - TTioy (ri! (G + 1H™)

(4)



The case r = £1/3,1/2 in Theorem 1.1. The second case concerns of finite
orbits on matrices with entries £1 and 0. Seemingly similar to the first case, there is
a much greater variety of orbits. We only claim one conjecture here, and want to leave
the study of it to a future work. The conjecture has been verified up to 9 x 9 case using
the computer search algorithm described in section 4.4.

Conjecture 1.4. The n x n Jordan block J, (1’s on the diagonal and sub-diagonal)
generates a finite orbit (under the action of B, ) of length

0rb(J,)| = 21 - (n + 1)"2,

Moreover, any matriz in a Jordan form (1’s and 0’s on the sub-diagonal) generates a
finite orbit.

Beyond matrices of Jordan form, we found all finite orbits in 4 x 4,5 x 5,6 x6,7x 7
matrices with entries 1 and 0 using a computer search algorithm that we developed.
See Table 1 - 4 at the end of this paper.

Certain finite orbits in 5x5 matrices. We also classify all finite orbits generated
by 5 x 5 matrix M € T'(Bs) whose three 3 x 3 submatrices

1 M M3 1 Maz Moy 1 Mszy M3y
My=10 1 DMsyl|, Ma= |0 1 Msy|, Ms= |0 1 DMy
0O O 1 0 O 1 0O O 1

satisfy the determinant | M+ M{ |, | M+ MJ|,|M3+ M| # 0 and My, My, M3 € T(Bs3).
The classification is done, again, by a computer search algorithm.
All the orbits found by our own computer program are listed at the end of the

paper.
The finite orbits in 4 x 4. In the end, with the help of Theorem 1.1, we proved

Theorem 1.5. If M € FinOrb(By), M ¢ FinOrb(Ss) and Orb(M) is non-degenerate,
then any entry of the matrix is in the set

2cos(P%) | g =1,2,3,4,5,6,8,9,10,12,15, 16, 20, 25; p € Z}.
q

This result makes it possible for a computer algorithm to search for all 4 x 4 finite
orbits.



2 A characterization of the matrices that generate finite
B,, orbits

The first observation is that, for a matrix M € Uy to be in a finite orbit of the
braid group action, there must be

of(M) =M

for any ¢ € {1,...n — 1} and an integer k depending on the chosen i. By formula (2),
the generator af only acts on two rows and two columns of the matrix M in individual
triples (Mii+1aMij7Mi+1j) and (MZ’/L'Jrl,Mji’Mj/L'Jrl) where 7 < ] and Z,j € {1, oo =
1}. The action on these two triples are symmetrical, so we only study Uf acting on
(Miig1, Mij, Miy1;) for certain fixed i,j € {1,...n—1}.

2.1 Odd powers: o' '(M) =M

Now assume that U?t_l(M ) = M for some positive integer ¢. On the one hand, by
the assumption we have
o2 N M) is1 = M4, (5)

)

while on the other hand, by formula (2), (M) ;41 = —o(M); ;41 that gives
o T (M)iip1 = =07 A (M)sipr =+ = 0(M)iig1 = —(M)iig. (6)

The identities (5) and (6) then imply M;;y; = 0. Now with M;;+1 = 0, we have
U?t_l(M)ij = O’Z(M)ZJ = Mi—Hj and O’?t_l(M)i_i_lj = Ui(M)i+1j = Mij for ] = i—l—l, ..oon.

Evidently, 0%~1(M) = M yields the same conditions on M given any t € Z*. This
is the case of M;;1 = 2cos(5) in Theorem 1.1.

2.2 Chebyshev Polynomials

Now we analyze in more details the behaviors of the triple M1, M;j, Mi11j (4,7 €
{1,...n — 1},7 < j) after applying powers of o; to a M. It follows from the for-
mula (2) that the ij-entry of the matrix o¥(M) is a polynomial of the three variables
Mii+17 Mija MiJrlj- It motivates us to introduce

Definition 2.1. Given any fized j € {i+1,...n}, let Py denote the degree t polynomial
in the three variables M1, M;j, M;11; given by

Py(Mjisr) = of (M);. (7)

For convenient notation, we write M;; = a, M;;1; = b, and M;; 11 = x for the
rest of this section, since we are only going to discuss solutions of polynomials with
M; 15, M;j, M1 regardless of the choices of 4,j. Then when restricts to the entries



M;; = a, M;11; = b, and M;;11 = x, the action of o; on M becomes the transformation
o;: (z,a,b) — (—z,—ax + b, a).
Lemma 2.2. The polynomial

—1:k=1,2 (mod4)

Qr(x) == 6P (22), 6, = {1 :k=0,3 (mod 4)

satisfies the induction formula

Qi2 =22 Qi1 — Q (9)
with the initial terms Qo(xz) = a and Q1(x) = 2ax — b.

The induction on Py (x), by the actions of the braid group (2), is

Potio = Pory1-x + Py,
Popi1 = =Py -xw+ Py

with the first few terms being
Py(z) = a, Py(x) = —ax + b, Py = —az?® + bx — a, Py = ax® — ba> — 2azx +b,...

Right now, Py (x)’s highest degree term alternates in signs as ¢ increases. We adjust
the highest-degree coefficient to be always positive and substitute x with 2z by defining
Qr(x) as in (8). This unifies the original parity-dependent induction formula to the
relation (9), with the first few terms now being

Qo(z) = a,

Q1(x) = 2ax — b,

Q2(z) = 4az?® — 2bx — a,

Q3(x) = 8ax® — 4bx® — dax + b,

Qu(x) = 16az* — 8bz® — 12a2? + 4bx + a,
(z) =3

It finishes the proof. O

One can write down the explicit expression of Qx(x) as follows. Let us introduce
the well-known Chebyshev polynomials of the second kind Ug(x). It has the recursive
formula

Ukyo = 2x - Ugq1 — Uy,

which is the same as the one for Qy(x) described in (9). Ug(z) has the initial terms

Uo(z) = 1,U1(z) = 2.



The Chebyshev Polynomials of the second kind line up with the sequence of polynomials
Qk(x) in the following way

Qr(x) =a -Uk(x) = b-Uk_1(x).

It is known that the Chebyshev Polynomials of the second kind have the following explicit

form (see [1])
(z + V2T —D)F! — (z — Va2 — 1)k

Ur(@) = T

Thus, we get

Qr(x) =a-Ug(z) —b- Uk_1(z)
(V22 —DFar+ava? —1-b) + (x — Va2 — 1)¥(—az + avV2Z — 1+ ) (10)
B 2vz? —1 ‘

In summary, the polynomial Py(x) (or equivalently Qx(x)) has a closed formula.

2.3 Even powers: ¢ (M) =M

i
Suppose o2t(M) = M for some k € Z,i € {1,...n — 1}). It imposes the following

two equations for the entries M;;, M; i1 :
o (M) = My,

)

o T M)y = 07 (M)ig1j = Migaj.

)

(11)

Using our notations M;; = a, M;y1; = b, and M;; 41 = x, (11) is rewritten as

Py(x) = a,

PQt_l(l‘) =b. (12)

In terms of Chebyshev polynomials of the second kind U(x), (11) is rewritten as (recall
the definition of ¢ in (8))

a-Ug(x) —b-Uy_1(x) = da,

(13)
a-U—1(x) = b-Uy—a(x) = d24—1b.

The possible solutions x of the equation (13) characterize the possible subdiagonal ele-
ment (M) 41 in M.
Proposition 2.3. (1) Assume that a and b are not zero at the same time, then the
solution x of the equation (13) takes the form x = 2cos(rm) for some r € Q. To be more
precise, the possible

2p+1 .
_{f,it forpeZ, ifte2Z 7 (14)

2"2—11,21;—?]”07‘136& ift ¢ 27



(2) Conversely, for certain i € {1,....,n — 1}, if

(2p+ D)

M1 € {2cos (?) ip € Z,t € 27} U {2 cos < 57

);pez,t¢2Z},

then o?(M) = M.

i
Remark 2.4. The case a = b =0, corresponding to the finite orbits of symmetric group
Sn, will be thoroughly discussed in 3.

Proof. First of all, we show that

Lemma 2.5. All real solutions x are bounded by |x| < 1.

Proof. If x > 1, we have

lim (z — /22 —1)¥ =0, klim (x4 Va2 —1)F = oo,
—00

k—o0

and furthermore by the expression (10), we have

lim Qp(z) = o0

k—o0

as long as ax + avx? — 1 — b # 0. Similarly, if x < —1,
lim Qi(x) = —o0
k—o0

as long as —ax + avz? — 1+ b # 0. Obviously, if Qx(z) approaches infinity, no finite
orbit would exist. We are left with the edge cases to consider

ar+avaz?—1—-b=0(z>1)

—ax+avaz?—14b=0(z < -1).

(15)

Suppose x > 1, then the only way for (z,a,b) to be in a finite orbit is to satisfy the first
equation in (15) , which gets simplified to

\/3:2—1:2—.@(@7&0)

squaring both sides,

2b b
x2—1:x2——x+—2(a7§0)
a a

which gives the following expression for x:

a? + b?
2ab

(a,b#0) (16)

€r =



After the transformation o : (z,a,b) — (—z, —az + b,a), x is smaller than -1, so (z, a, b)
also needs to satisfy the second equation in (15) after the transformation, which looks
like

—(—azx+b)(—z)+ (—ax+b)Va> —1+a=0

After simplification, we have

(—az +b)Va2 —1=az® —bxr—a

Squaring both sides, we get
a’z* — 2abx® + b22? — a’2? + 2abx — b? = a2 — 2abz® + b%2? + 2abx + a® — 2a°z?

which simplifies to

—a’z?® — b = a® — 2a°%2?

and gives an expression for x:

x = iw“ifb? (a #0) (17)

We need both (17) and (16) to hold. By assumption, a,b # 0, we combine (17) and (16)

to form
LV b a’ +b?
a  2ab

+V3b=a

Substituting this into (17), we have = = :t%, contradicting with our assumption x >
1. O

which reduces to

Now by Lemma 2.5, any solution to the system P (z) = a, Por—1(x) = b takes the
form x = cos ¢ for some real number ¢ € R. From (13), ¢ satisfies

a - Ug(cos @) — b - Uy—1(cos ¢) = dosa
a - Ugt_l(COS (;3) —b- Ugt_Q(COS ¢) = 52t_1b

The Chebyshev Polynomials of the second kind satisfies the identity
Uk(cos ) sinf = sin(k + 1)6.
So, we have

asin ((2t + 1)¢) — bsin(2t¢) = dyasin ¢

asin(2t¢) — bsin ((2t — 1)¢) = do—1bsin ¢ (18)

The definition in (8) guarantees do; = d9;—1, which we will just call § from now on.



If a =0,b+# 0, we have
sin(2t¢p) =0
sin((2t —1)¢) =0

which has the only solutions ¢ = pm p € Z.
If a # 0,b =0, we have

sin(2tg) =0
sin((2t +1)¢) =0

which has the same solutions ¢ = p7 p € Z.
If a,b # 0, we manipulate (18) to obtain

a(sin ((2t + 1)¢) — d sin ¢p) = bsin(2t¢)

asin(2t¢) = b(sin (2t — 1)¢) + dsin ¢) (19)

Suppose sin(2t¢), (sin ((2¢t — 1)¢) + sin ¢) # 0, then moving a, b to the same side gives

b sin((2t+1)¢) —dsing sin(2t¢) (20)
a sin(2t¢) ~ sin((2t — 1)¢) + dsing

eliminating the denominators,

sin((2t — 1)¢) sin((2t + 1)¢) + d sin ¢(sin((2t + 1))
—sin((2t — 1)p)) — sin? ¢ — sin*(2tp) =0 (21)

Using the product-to-sum formula on sin((2¢t — 1)¢)sin((2t + 1)¢) and sin?(2t¢), we
simplify the left hand side of the equation to

sin((2t — 1)¢) sin((2t + 1)¢) + § sin (sin((2t 4 1)¢) — sin((2t — 1)¢)) — sin® ¢ — sin?(2t¢))
1

= 5 cos(416) + 5 cos(26) + sin H(sin((2f +1)6) — sin((2t — 1)6)) — sin® ¢ +  cos(416) —
= % — sin® ¢ + dsin ¢(sin((2t + 1)¢) — sin((2t — 1)¢)) — sin® ¢ — %
= §sin ¢(sin((2t + 1)@) — sin((2t — 1)¢))

We obtain equation sin((2t + 1)¢) = sin((2t — 1)¢ (sin¢ # 0), which implies that
2t+1)p = 2t —Dop+2pror (2t +1)p = —(2t —1)p+ (2p+ )7 (p € Z). The
first equation gives the same solution as earlier; the second equation gives the solution
¢ = %W. We verify that this solution satisfies (18). Note that this solution depends
on the values of a, b.



Now, suppose sin(2t¢) = 0. Since a, b # 0, we derive the following from (18):

sin ((2t + 1)¢) = dsing
sin ((2t — 1)¢) = —dsin¢ (22)
sin(2t¢) = 0.

The first equation is
sin ((2t +1)¢) —0sing =0

which can be rewritten with a substitution of the second equation sin ((2t —1)¢) =
—0sin ¢:

sin ((2t + 1)¢) — 0sin ¢ = sin 2¢ cos ((2t — 1)¢) + sin ((2t — 1)¢) cos 2¢ — Jsin ¢
= 2sin ¢ cos ¢ cos ((2t — 1)¢) — dsin (2 cos® ¢ — 1) — dsin ¢
= sin ¢ cos ¢(cos ((2t — 1)¢) —  cos ¢)

Now, we have the equation

cos ((2t — 1)) = d cos ¢ (sin ¢, cos p # 0) (23)
Combining (22) and (23), we have

cos ((2t — 1)) = dcos ¢
sin ((2t — 1)¢) = —dsin¢ (24)
sin(2t¢g) =0

If § = 1, then ¢t € 2Z and (2t —1)¢ = —¢ + 2pm, which gives the solution ¢ = 27 (p € Z).
If § = —1, then t ¢ 2Z and (2t — 1)¢p = —¢ + (2p + 1)m, which gives the solution
o= 2%%1% (p € Z). Tt can be verified that these solutions do satisfy (18).

Doubling the value of common solutions of Q(x)2 = da, Q(z)2—1 = b, we get all
the solutions to Py = a, Poy—1 = b, which are all in the form of 2 cos(nr),r € Q where
the values of r are the ones described in Proposition 2.3.

Now we prove part (2) of the proposition. From the proof of part (1), the solutions
such that sin(2t¢) = 0 satisfy Qo = da,Qo—1 = 0b for any real numbers a,b. They
correspond to the following solutions of Po; = a, Poy_1 = b:

{t € 2Z: {2cos(5);p € Z}

t ¢ 27 : {2cos((2p2_t1)7r);p €Z}

setting the entry M;; 41 to a value above, we will always have o2!(M) = M, no matter
the value of other entries.
O

10



2.4 Proof of Theorem 1.1

Note that Proposition 2.3 already implies Theorem 1.1 for any sub-diagonal entries.
Since 0041+ 0j—1(M)ij = M1 any j > i, all entries of M must be in the form of
2 cos(mr), where r € Q.

3 Classification of all finite S,, orbits

The generating relation of B,,, together with the relation aiz =1lfori=1,...n—1,
become the generating relation of S,. By definition, a matrix M € FinOrb(S,) if
o2(B(M)) = B(M) for all i = 1,...,.n — 1 and 8 € B,,. Thus, if M € FinOrb(S,), then

the orbit generated by M under the action of B, is actually a finite S, orbit. In this
section, we classify such matrices and give a proof of Theorem 1.2.

Lemma 3.1. Any matriz M € FinOrb(S,,) does not have any two non-zero entries on
the same row or column.

Proof. By formula (2), 02(M) = M yields the following relation:
Mij = =M 1 My + My My + My

(25)
Mit1j = =M1 Mij + Mipa;

where j € {i+1,...n}. The second equation gives M;;1M;; = 0. Substituting this into
the first equation, we obtain the solutions

Mii—H =0or Mij = Mi+1j = Mji = Mji+1 =0 (Z < j) (26)

If Mj;41 is non-zero, all elements on the same row and column, all elements on the
preceding column, and all elements on the succeeding row are zero by (26).
Furthermore, if both M;j;, M, (i,5,k € {1,...n —1},i < j < k) are nonzero,
M’ = 0i1---0j_1(M) has My, , M}, # 0, which means that M’ ¢ FinOrb(S,). The
same applies to two non-zero entries on the same column. It proves the lemma. ]

The lemma motives the following definition.

Definition 3.2. Annxn matriz M € U, whose only non-zero entries are My2, M3y, ... Mog_1 21,
for some integer k < | 5], is called a standard matriz.

Lemma 3.3. Given any M € FinOrb(S,), there exists a braid f € B, and a standard
matriz X such that (M) = X. That is, any finite S, orbit contains a standard matriz.

Proof. Suppose M € FinOrb(Sy,). Choose any non-zero entry M;;, i < j. It is im-
mediately true that M;_q; = 0. Thus, 0;1(M);—1; = M;; # 0. By the same logic,
O'ifl(M)ifzyl;l = 0 and O'i,QO'ifl(M) = Mij 75 0. Repeating this process, we have
o1 0i—1(M)1; = M;;, and further more o - - - 0101 - - 0;—1(M )12 = M;;j. No nonzero
entry of M' = 0y ---0j_101 - 0;_1(M) is in the first two rows because M’ € FinOrb(S,)
and Mi, # 0.

11



We can apply the same method above and set o4---0;_103---0,_1(M') = M",
where M}, # 0 (k,l € {1,...n},k < ). Since the generators 01,02 are not used during
this process, M|, = M}, # 0. We also have M, # 0. Hence, no nonzero entry of M" is
in the first four rows besides M, Mj),.

The same process puts at most |5 | nonzero entries of M to the locations of nonzero
entries in a standard matrix. If M has less than or equal to | 5] nonzero entries, then
the method described above uses a certain braid g € B, to achieve S(M) = X, where
X is a standard matrix.

Now, suppose M € FinOrb(Sy) has k > | 5] nonzero entries. We may randomly
choose | 5] of them and use the braid designed earlier to map them to entries on the
subdiagonal. Specifically, we designed 3 € B,, such that M* = (M) and M7y, M3,, ... #
0. However, these |5 | nonzero entries don’t allow any other entry to also be nonzero,
since M € FinOrb(Sy). Therefore, M can have a maximum of [ ] nonzero entries by

contradiction. O

A proof of Theorem 1.2:

We discuss the stabilizers of a standard matrix X.

We may “swap” two adjacent nonzero entries as such: o;0;_10;110(X)i—1; =
Xit1,i+2 and 050;-1054104(X)it1i42 = Xi—1i- If Xi—1; = Xiq1,i4+2, then 0051054105 is
a stabilizer of X; if Xi—li = —AG41,i42 then 0;-1044+1040;—10;4+10; is a stabilizer of X.
Combinations of such braids permute all nonzero entries of X.

Let a; = | X2i—12i],4 = 1,... k. Denote the frequencies of all the distinct numbers
in ay,...ag as r1,...rs. Then, we have r;! stabilizers that permutes the r; entries with
the same absolute values for i = 1,...s.

Furthermore, a standard matrix X with k& < [ %] non-zero entries only has zeros on
the final n — 2k columns. So, braid generators ook 11,0252, ..0p—1 and their combina-
tions are also stabilizers. There are n — 2k — 1 such stabilizing braids. Because these are
generators of .S, the n — 2k — 1 generators generate all permutations of n — 2k elements,
or all (n — 2k)! stabilizers of X.

The two types of stabilizers do not intersect, so we find the total number of stabi-
lizers to be

|Stab(X)| = (n— 2k)! T [ ri!-
=1

We apply the Orbit-Stabilizer Theorem on X, which generates an orbit of S, by Lemma

3.3:
|| B n!

T Stab(X)]  (n— 2k) [ !
It finishes the proof of Theorem 1.2.

|0rb(X)]
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4 New finite orbits and their properties

Definition 4.1. An orbit generated by M € FinOrb(B,,) such that rank(M + M™*) > 2
1s called a degenerate orbit.

Lemma 4.2. If M € FinOrb(By,), then for any i,j,k € 1,2,...n and i < j < k, the
3 x 3 submatrix

1 Mij Mik
M(i,j,k):= 1[0 1 My,
0 0 1

is in FinOrb(Bs3).

Proof. The braid 1 = oy_20%_3---0; applied on M € Uy, Bi1(M) = M’, results in
M/, | = My, M}, = M, M]_,, = Mji. Then, applying the braid f2 = o}_30%_4 -

to get M" = Pa(M’), we have My 5, 4 = My o4 3y Myl oy = My, Mi”, = Mk 1,k
By formula (2), one sees that the 3 x 3 upper-triangular submatrix of M"” formed by three
adjacent entries M} , k—l?Ml::I—Q,kka—l,k generates a finite orbit. Thus, the original
submatrix must also generate a finite orbit. O

This lemma will be particularly useful because the set F'inOrb(Bsz) is well-researched:
we have found all of FinOrb(Ss); [7] finds all 3 x 3 degenerate orbits; [4] finds the re-
maining non-degenerate 3 x 3 orbits.

4.1 Proof of Theorem 1.3
There are only three 3 x 3 finite orbits of only entries 0 and +2:
1 2 2 1 -2 -2 1 -2 2 1 2 -2

001 0 0 1 0 0 1 00 1

100] fto2] [t20] [t —20] [to -2] [to o
Ty:={|012,]010]|,[010], ol,[01 o],l01 —2[}, (28)
001| [oo1] [oo1] [0 0o 1] [00 1] |00 1

and the third one being just {I}, an orbit of length 1. Note that T5,{/} C FinOrb(S,).

4.1.1 Establish an isomorphism between matrices and partitions

Proposition 4.3. Let C C {1,...n} be a subset, and let Q(C,p) denote the set of all
possible partitions of C' into p subsets, where each subset has at least two elements. The
subspace of FinOrb(B,) where all matrixz entries are 0 or £2 besides the diagonal is

13



isomorphic to
15
U U Q@p) x Zyci-».

CC{1,..n} p=1

Proof. Let G € FinOrb(B,,) be a matrix such that all its entries are 0 or +2 besides
the diagonal. We choose the first nonzero entry G, ,, of each row i, i =1,...n — 1,
skipping the rows of all 0’s. We end up with ¢ entries G, y,, ... Gz, y, Where x; < y; for
i=1,... t
If there exists y; = y;, @ < j, 4,j € {1,...n — 1}, then by Lemma 4.2, we have

Gz, = £2 to satisty

1 Gﬁﬂz‘wj Gé%yi

0 1 G$j7yj eT.

0 0 1

Since Gy, ; is an entry before G, ,, on row i, we have contradiction. Hence, y1,...yn—1
are mutually distinct, and we may match pairs z;,y; with a bijective map f : z; — y;
for i = 1,...n — 1. With mutually distinct z1,...2,-1 and y1,...yn_1, We can always
uniquely determine index i given x; or y;.
Now, we divide C' = {x1,...,z;} into subsets in the following algorithm:
Step 1: Create empty set Cy,;
Step 2: For the empty set C,, created, add x; to it. Delete z; from C;
Step 3: For the element zj last added ij, if there exists x; € C such that
7 = f(x1), add z; to Cy,, delete x; from C', and repeat Step 3. Otherwise, add f(z;) to
Cz; and proceed to Step 4;
Step 4: Create empty set C,;, where z; € C has j being the smallest subscript
among the remaining variables in C. Repeat Step 2, Step 3, and Step 4 until C is empty.
Now, for any subset Cpy = {7} < ... < 2y < 2} C C produced by our
algorithm, note that f~1(z}) = (2}),s = 1,...s + 1. Consider the matrix entries
Gy p@t)s - G, f(a,, ), Which are all nonzero. Since zi . = f(x}), we know from
Lemma 4.2 that
U Guppy Gatotal,y)
0 1 G1’§+1vf(x;+1)
0 0 1

e Ty,

fori=1,...s—1. Once we know this and the fact that G,/ ./, Gx;H’
G/ p2(22) 18 uniquely determined from 2 and -2.
Similarly, now for i = 1,...5 — 2,

v 7 0:Galfar, ) =

L Garper,) Galfal,y)
0 1 Gx;+2,f($(i+2)
0 0 1

T
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by Lemma 4.2. Thus, Ga:;,f(x;+2) = Gx(”fg(x;) is uniquely determined from 2, -2.

Using the same idea, we may uniquely determine the value of entries GG FCANCA
for any i,j € {0,...s},i < j. We determine these entries for every subset obtained from
C' using our algorithm.

Now, suppose there exists G, 4, # 0 that is not uniquely determined by the method
above. There definitely exists subset C,, = {zo, f(0), ... f* (x0), f*(x0)} C C, since
row x( has at least one nonzero entry. If f(zg) = yo, we have contradiction. If otherwise,
we know that

1 Gu’vo,f(ﬂﬁo) Go,y0
0 1 Graga| €T1:Gwo)me 70 (29)

0 0 1

by Lemma 4.2. If yo < f?(x0), then Gy, f2(z) is Dot the first nonzero entry on row
f(zo) and we have contradiction. If yo = f%(x¢), then Guyyy = G, f2(0) has been
determined using the earlier method and we have contradiction. If yy > f*(zg), then
again,
L Gao)r2@o)  Grtao)wo
0 1 G r2(20) 00

0 0 1

e 1, GfQ(xo),yo #0 (30)

Eventually, we find G ys+1(4),, 7 0, unless contradiction occurs earlier. If so, 5 (o)
would have been added to Cy, in our algorithm after adding f*(xp). We have contra-
diction once again.

Therefore, our algorithm and subsequent procedures show that the first nonzero
entries (both value and location) of each row uniquely determines G € FinOrb(B,,). Our
algorithm essentially partitions C, any possible subset of {1,...n}, into subsets where
each subset has at least two elements — x; added in Step 2 and f(z;) = y; Step 3 for
the first time.

Any such partition is possible, as we set G%%H, i=1,...s to be nonzero for any
subset Cpr = {, @, ... 2%, 1} that is a part of partition C' = Uj_; C,, = {1, 22,... 24},
where ai,...a, are the indexes for numbers in x1,22,...2; that created new subset
Cy,, In our algorithm. Furthermore, we may determine, Gx; @l i =1,...s, in each
subset Cp = {2, 25,... 254} of C, to be either 2 or -2. This can be done by the

binary information of integers 0 < Az, < 2Ca;I=1 for each i € {1,...p}. Both the
partition itself and the A;, for each subset are dependent on the choice of C'. Therefore,
G € FinOrb(By,) with only entries 0 and £2 corresponds to a particular partition (where
each part has at least two elements) of C' C {1,...n} plus p numbers in Z<2\Cmai ‘_1), i=

1,...p, which is the same as one number in Z( » 2‘0%‘_1) = Z(z‘c‘,p).
1=1
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4.1.2 Proof of Theorem 1.3 Part 1

To count all finite orbits of only entries 0 and +2, we find a representative of each
orbit to analyze.

Definition 4.4. Consider block matrices in Uy with the upper-triangle filled with 2.

1 2 2
0 1

2
0 0 1]

Then an nxn segmented matriz T'(n; (t1 > ... > ts); (r1,...7rs)) € Uy is a concatenation
of such matrices. The first 1 blocks of 2’s are (t1 + 1) x (t1 + 1), the next ro are
(ta + 1) x (t2 + 1), and so on. If Y i (ti + 1)r; < n, the final remaining rows and
columns are filled with 0. If 3", (t;+1)r; = n, T' is called a compact segmented matriz.

For example, below is I'(8; (2,1), (1,2)), which is not compact.

12200000
01200000
00100000
00012000
00001000
00000120
00000010
0000000 I}

Lemma 4.5. If for any i < j < k € {1,...n}, the submatriz of a matriz G

1 Gl'j Gk
Gi,5,k)= [0 1 Gj| e huTU{I},
0 0 1

then G € FinOrb(By,).

Proof. Suppose G € Orb(T") is such that G(i,7,k) € Ty UTo U{[} for any i < j < k €
{1,...n}.

For i € {1,...n—1}, o; only affects Gj;, Giy1; for j =i+1,...n and Gj;, Gji41 for
j=1,...i—1. The changes in these entries only affect the entry triples (G;, Gir, Gjk),
(Gi+1j, Gitik, ij), (Gji, ij, Gri)s (Gji-i-ly ij, G]mqu) for any suitable k that puts the
triple in the upper-triangle. This is because they are the only triples triples constrained
by G(i,j,k) € Ty UTy U{I}. Some casework shows that for any G € U, with only
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entries 0 or £2 such that G(i,j,k) € Ty UTo U{I} for any i < j < k € {1,...n}, there
is 0¢(G)(i,5,k) e MUTo U{l} fort=1,...n— 1.

It is only necessary to casework on one of the generators, without loss of generality.
For the sake of simplicity, we only show the casework done for G;; 11 = 2, given a certain .
If Giiy1 = 2, then G;; = G115 = 0,£2 for any j > i, because G(i,1+1,j) € T1UT>U{I}.

If G;j = Gi11; = 0, then o; preserves the values of these two entries.

If Gij = Gz’_;,_lj = 2, we have cases sz = Gi+1k = G]’k = +2 and le = Gi+1k =
G = 0. The first case gives 0;(G)ij = —2,0(G)ir = F2,0(G)jx = £2 and 04(G)i+1j =
2,0(G)iv1k = £2,0(G) 1, = £2; the second case gives 0;(G)ij = —2,0(G)i = 0(G) ik =
0 and 0;(G)iy15 = 2,0(Q)ix1k = 0(G)jx = 0. In any event, G(i,5,k) € Ty UTp U {I} is
satisfied.

If Gij = Giy15 = —2, we have cases G, = Gip1x = —Gjr, = £2 and Gy, = G =
Gjir = 0. The first case gives 0;(G);j = 2,0(Q)ir = £2,0(G) i = £2 and 0;(G)iy1; =
—2,0(G)ig1r = F2,0(G) i = £2; the second case gives 0;(G)ij = 2,0(G)i = 0(Q) j, =
0 and 04(G)iv1; = —2,0(G)iy1r = 0(G)jr = 0. In any event, G(i,j, k) € Ty UTp U {I}
is satisfied.

After the complete casework, we know that if G(i,j,k) € T3 UTy U {I} for any
i <j<ke{l,. . .n}, then 0y(G)(i,5,k) € Th UTob U{I},t = 1,...n — 1, and hence
B(G)(i,j,k) € Ty UTy U{I},VB € B, as we repetitively apply the condition. This
implies that the orbit generated by G such that G(i,j,k) € Th U T> U {I} will only
have matrix entries 0 or £2. Since matrices with entries 0, £2 form a finite set and
I'(i,j,k) € Ty UT, U{I}, we have I" € FinOrb(By,). O

Obviously, segmented matrices satisfy the condition in Lemma 4.5. As a immediate
consequence, we have

Proposition 4.6. Fach segmented matriz generates a finite orbit of B,,.
Next, Proposition 4.3 helps us prove that

Proposition 4.7. (1) Segmented matrices generate all finite orbits with matrices that
only include entries of 0 and +2.
(2) Distinct segmented matrices generate distinct orbits.

Proof.
Lemma 4.8. A matriz G € FinOrb(By,) in the form of

(1 2015 -+ 201, |
0 1

. 2(571—171
0 - 0 1
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where §;; = £1 and i,j € {1,...n}, is in the same orbit as matric

(1 2 2]
0 1

2
0 0 1

Proof. For given i € {1,...n}: i. If Gii41 = 2 and G142 = —2, we have Gjiy0 = —2
by Lemma 4.2. G' = 0441(G) has Gj;; = Giy1442 = 2. Let p3(2,-2) = oy for
1=1,...n—1.

ii. If Gjip1 = —2 and Giyq,i42 = 2, we have Gj42 = —2 by Lemma 4.2. G’ =
021(G) has Gj; 1 = Git1,42 = 2. Let pi(—2,2) = o fori=1,...n— 1.

iii. If G/L'/L'Jrl =-2= Gi+1,i+2 = *2, we have Gii+2 =2 by Lemma 4.2. G/ = U?+1(G)
has G, | = Gig1,i42 = 2. Let p;(—2,-2) = o} fori=1,...n—1.

Let G = GO, We define the following recursive formula for i = 1,. .. |22

i i— i—1 i—
G = :u’?i(Géifll),ZWG;i,Qill)(G( 1))-

If n is odd, let IV = G, It n s even, let IV = an_l(G(nT_l)).

Since any power of o;, i € {3,...n — 1} acting on G preserves the values of
Gi2,...Gi—24-1, I is a matrix where the sub-diagonal is entirely 2. Due to Lemma
4.2, the entire upper-triangle would have to be filled with 2 in order to have G €
FinOrb(By,). O

Given G € FinOrb(B,,), we divide the first entry of each row into sets C1,...Cy
as described in Proposition 4.3. Consider Cy = {x1,z2,...zs+1} (Recall that C is a set
of matrix subscripts in nature). Let

B(i,j, k) = Ok—30k—a - 0i0k—20%-3--- 0}

given certain i, j, k € {1,...n},i < j < k. The matrix

n—2
G = <H 5($ia$i+1yxi+2)> (G)

i=1

, where the product goes from right to left as i increases, gives G| = Gu, 0,y (1 =
{1,2,...s}), as the braids worked the same way as the ones in Lemma 4.2 to send
M;j, M, to the sub-diagonal. Using the logic in the proof of Proposition 4.3, these
nonzero sub-diagonal elements determine unique values for G;]- (1 < j,i,7 € {1,...s}).
No other nonzero entries should exist in the first s rows of G’, for the same reason as the
proof by contradiction that uses (29), (30). Now we narrow down to the (n—s) x (n—s)
submatrix that excludes the first s rows and columns of G'.

Using the same idea on Cs, ...} and apply more braid operators, we obtain a
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matrix that has all its nonzero entries in the locations of nonzero entries of a segmented
matrix.

Applying the process described in Lemma 4.8 onto each block of £+2’s, we finally
get a segmented matrix. Thus, all G € FinOrb(B,) with only the entries 0 and 42
belong to Orb(T") for a certain segmented matrix T

Now we prove Part (2) of the proposition. For any matrix G in the orbit of a
segmented matrix, o; preserves the locations of all non-zero entries of G if G411 = 2,
because the entries Gj, Git1; (or Gji, Gji+1) must be either both zero or both non-zero
by Lemma 4.2. For instance,

1 -20 2 =20 1 -20 2 2 0
01 0 -2 2 0 01 0 -2 -20
0 01 0 0 2440 01 0 0 2
0 001 =20 0 001 2 0
0 0 0 O 0 0 000 1 0
0 000 01 0 0 00 01

If Gji+1 = 0, then the non-zero entries on the ¢ —th and ¢+ 1-th columns switch columns,
and the non-zero entries on the i-th and 7 + 1-th rows switch rows. For instance,

1 20 2 =20 1 -2 2 0 -20

01 0 -2 2 0 01 =20 2 O

0 01 0 0 2|4 (00 1 0-20
_>

0 001 =20 0 0 01 0 2

0 0 0 O 0 0 0 0 0 1 O

0 000 01 0 0 0 0 0 1

Because of this, the numbers of non-zero entries on the different rows (or columns) form
a constant group of numbers. In other words, braid actions only switches around the
number of non-zero entries of each row (and column). Since each segmented matrix has
a distinct group of numbers for the count of non-zero entries on each row, they must
generate distinct orbits. O

If the first m = >_7_, (t;+1)r; rows/columns of a segmented matrix forms a compact
segmented matrix, it is a concatenation of d = Y7, r; blocks of submatrices with the
upper-triangle filled with 2. We have essentially described I' as partition of m — d =
> i, tiri into d positive integers. The d integers include r; copies of ¢; for i = 1,...s.
Here, m can be any number smaller or equal to n, and d can be any number smaller or
equal to | ].

Since each partition of m — d into d parts forms a distinct segmented matrix and
hence a distinct finite orbit by Proposition 4.7, we have the double sum for the total
number of orbits with only the entries 0 and +2 expressed in Theorem 1.3. We add 1
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to include the trivial finite orbit {I}.

4.1.3 Proof of Theorem 1.3 Part 2

Fitting T'(n; (t1,...ts); (r1,...7s)) into the context of Proposition 4.3, we have set
partition C' = Ule C; for T', where |C)| = --- = |Cy, | = t1+1, |Cr 11| = - = |Cry4ry| =
to, ... We also require |C| = m.

Under these conditions, we have

n!
_— 31
m!(n —m)! (31)
ways to choose C'. We also have
|
m! (32)

[T it (G + D"

ways to partition C such that each subset has at least two elements. (¢;41)! represents all
the permutations of elements within the same partitioned set, which we don’t distinguish;
r;! represents all the permutations of partitioned sets with the same cardinality, which
we also don’t distinguish when counting partitions.

Finally, we may choose integers 0 < \;; < 2% (i = 1,...8j = 1,...7;) for all
partitioned sets of C'. That adds up to

s

1" =2 e
=1

=1

possibilities. The product of (31),(32),(33) gives the expression in Part 2 of Theorem
1.3.

4.2 Preparation for computing certain 5 x 5 finite orbits

Proposition 4.9. For M € FinOrb(B,), if for any 8 € B, and M' = (M), the
submatrix
1 M1 Mi1i4a1

M;=10 1 Miiq
0 0 1
has M; € FinOrb(Bs), M; ¢ FinOrb(S,), and |M; + M| #0 fori=2,...n—1, then
any entry of M is in the set {2005(%) l¢g=2,3,4,5;p=1,2,...q— 1}.
Proof. Dubrovin and Mazzocco have proven this proposition for 3 x 3 matrix M in [4],

but under slightly different definitions for the action of B,, on matrices. We adapt their
proof to our definition.

20



Let 1 = M2, x9 = Mj3, x3 = Mas. The braid action on coordinate (x1,x2,x3) is
the following
o1(x1,r2,73) = (=21, T3 — 122, T2)

UQ(xla :E27:E3) = (xQ — I173,T1, _':U?))

The triple is essentially generated under o1 and the cyclic permutation s : (z1, x9, x3) —
(w3, 21, 22), Where o3 = 5-07 - s2. Thus, it suffices to consider the cyclic permutations of

o (z:i,xj,mk) — (—fﬁi,xk - iUiijal‘j)

By Theorem 1.1, suppose (x1,x2,r3) generates a finite set under the braid group, let
x; = —2cos(mr;) = 2cos(m(1 — ;). o acts on (14,7, 7)) as

o:(ri,rj,rE) — (1— ri,rfc,rj)
where 0 < 7, < 1 is a rational number such that
cos(mry,) = cos(mry) + 2 cos(mr;) cos(mr;)

Hence,
cos(mry) + cos(mr; + wrj)) 4 cos(wr; — wr;) + cos(mw — 7)) =0

From here, [4] obtains the only triples (r;,7;,7) that satisfy the equation above.
They correspond to the following the five orbits generated by (z1,x2,x3)
2w

2
(2 cos g, 2 cos ?ﬁ’ 2 cos ?)

2 3
(2 cos g, 2 cos ?ﬁ’ 2 cos ZW)

2 4
(2 cos g, 2 cos g, 2 cos g)

2 3
(2 cos g, 2 cos g, 2 cos %)

4
2cosz,2cos—7r,2005—
2 5 )

Their orbit lengths are 16, 44, 40, 40, 80, respectively. Our proof is done for 3 x3 matrices.
Note that our orbit lengths are different from the lengths stated in [4], because we used
a slightly different definition for the braid group action on matrices.

For an n x n matrix that is finite under B,,, the submatrix

1 Mi—1i Mi—1i11
MG—14i+1)=1{0 1 M
0 0 1
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must be within FinOrb(Bs). So, the entries of the sub-diagonal Mo, ... M,_1, are
already in the set {2 cos(%) lg=2,3,4,5;p=1,2,...q— 1}.

Suppose the lemma is true for an (n—1) x (n—1) matrix. Extending the n-th column
and row leaves us with the entries My,,, Moy, ... M, _5 to check. For M;,,i € {1,...n—2},
let M = op_30n-4---0i(M). We have M; 1 = M;_5, 1, Min = M, Mp_1n =
M The 3 x 3 submatrix

n—1ln-*

—2,n

1 MT/L72,n71 My 2
0 1 Mn—l,n
0 0 1

must belong to FinOrb(Bs). Therefore, M;, = M;l—z,n must belong to the finite set
described earlier. O

To present more information for future research, in our computer algorithm for
5 x 5 matrices, we also allowed any entry of M to be 42, expanding the set to be
{2 cos(%“) |g=1,2,3,4,5;p € Z}.

4.3 Preparation for computing all 4 x 4 finite orbits: Proof of theorem
1.5

Suppose there exists an entry M;; = QCOS(%) (1 <i < j < 4), where q €
{1,2,3,4,5,6,8,9,10,12,15,16,20,25}, p € Z. The braid transformation

M =0y 003 0;(M)

gives M4, = M;;.
Regardless of what the values of Mj; and Mj, are, because Mg, ¢ {2cos(5F) [ ¢ =
1,2,3,4,5,6,8,9,10,12,15,16,20,25; p € Z} and Lemma 4.2 and Proposition 4.9 holds,
the matrices
1 Mz My, | |1 Mz My,
0 1 My|,lo 1 M (34)
0 0 1 0 O 1
generate degenerate orbits. Recall that we may express the two submatrices as M (2,3,4), M (1, 3,4),

respectively.
Let pij,qi; (4,7 = 1,2,3,4;% < j) be integers such that QCOS(%W) = M!., and

K
ged(pij, qij) = 1.
If 23 € {1,2,3,4,5},

P23 | P34 _ P23ds4 + P34g23 _ P24
423 434 423934 424
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We rewrite this with

P23 = ng(p23,P34)P/23,
P34 = ged(pa3, P3a)Psys
23 = gcd(q23, q34) b3,
34 = gcd(q23, q34) 34,

yielding
(Ph3d3s + P3a23) - 8¢d (P23, P31) _ P24
053934 - 8cd(q23, g34) q24
where ged(phs, phy) = ged(gh3, 4as) = ged(phs, da3) = 8ed(phy, Phy) = 1. Thus, ged(phags+
P5453, Ga3q34) = 1 and ged(ged(pas, psa), ghsq3q) = 1. Hence, gh3q34]goa.
Knowing that ¢34 ¢ {1,2,3,4,5,6,8,9,10,12,15,16,20,25} and ¢o3 € {1,2,3,4,5},
we have ga4 > gh3qs, > 5, which by Proposition 4.9, shows that the matrix

1 Mi, M,
0 1 M), (35)
0 0 1

generates a degenerate orbit.
Set 15 = %. So far we know from (34) and (35) that

T34 + T23 = T24
T34 + 713 =714

12 + T4 =114

, which implies that ris + r93 = r13.

Therefore, the matrix M’(1,2,3) also generates a degenerate orbit. Given that all
3 x 3 submatrices now generate degenerate orbits, 7] tells us that M’ itself generates a
degenerate orbit.

On the other hand, if g3 ¢ {1,2,3,4,5}, the deduction is similar. Apparently,
M’'(1,2,3) generates a degenerate orbit, which helps us show that 719 + ro4 = r14 and
we arrive at the same conclusion. This ends the proof.

With Theorem 1.5, we only require a search algorithm to look for all finite or-
bits where matrices only have entries within the finite set M;; ¢ {2 cos(’"r) | ¢ =
1,2,3,4,5,6,8,9,10,12,15,16,20,25;p € Z} (1 < i < j < 4). Itturnsoutthatall
entries of M € FinOrb(By) for a non-degenerate, non-S,, orbit are within the smaller
finite set of M;; ¢ {2 COS(%) |g=1,2,3,4,5;p € Z}. See Table 6.
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4.4 Computed Finite Orbits

We program an algorithm to find all finite orbits, given a finite set A containing
values that all entries of the orbit must take. For instance, Conjecture 1.4 demands the
set A = {0,1,—1}, Section 4.2 demands A = {2 COS(%) | ¢ =1,2,3,4,5;p € Z}, and

Section 4.3 demands A = {2 cos(%”) |l¢=1,2,3,4,5,6,8,9,10,12,15,16,20,25;p € Z}.

Given A, for each out of the |A\w numerated matrices, the algorithm searches
along a tree with outdegree n — 1, since there are n — 1 possible generators of B,,. While
searching, the program parses every new matrix it visits into an @—digit hexadecimal,
where each digit represents an entry from the matrix (there are only 11 possible values).
It stores the parsed hexadecimal into a boolean map as the key and sets the value to
True. Whenever the program visits a matrix that is already visited according to the
map, it no longer branches off along that matrix. The particular order of searching is
Breadth-first search (BFS), to optimize space and runtime.

For this research, all computations are done on a Tencent Cloud server. C++ and
Python programs (primarily search algorithms for finite orbits) are run on a 20-core
80GB NVIDIA Tesla-T4.

In the following tables, a representative of a matrix in Uy is described with a
sequence ¢1, 2, ... Pnwm-1): the upper-triangular entries of the matrix, read left-to-right

2
and top-to-bottom, is the sequence 2cos ¢1,2cos ¢s,...2co8pnm-1). For instance, the
2

sequence 2% 2T T T 2T T yepresents the matrix

1 2cos(2§) 2 cos( %) 2cos(%)

3
0 1 2cos(%) 2cos(Z)
0 0 1 2cos(3)
0 0 0 1

‘ Length ‘ Representative

2r w 2m W™ W T
32 | ¥ 93383
2r 2r m W™ W T
64 | 3.3 93390 2
792 2r 2w 27 @w W W

200 2r m 2n m m™ T

Table 1: All non-degenerate non-S,, 4 x 4 finite orbits with only the entries 0, &1
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Representative

‘ Length ‘

Rl RIS zw. RIS zw zw.
Kl Kl i E Kl i F R
Kl &l o Emu Kl s ,%,o Emu
i Kl an E1 el i E B
KIow Klo> o Envo SIS Eqao Envo
z3£3£r1wz2£yzwzw
I Kl i E Kl e &l &l
s AR - e
&l g e Sl 65 KD GR e
Sln &leo 51 koo Koo N len Koo
22538888
SERE33IE

Table 2: All non-degenerate non-S,, 5 x 5 finite orbits with only the entries 0, +1

Representative

‘ Length ‘

RINRIN S e e e BITEIREIT I BT R e S
RN I 2 T R R i ST EIR R B R S e e SR
R RIS o ST R i g IR RIS IR I ST R e I R
I L AT L ORI
KIS RIO o B oo g EIRIR B RIS I e e o Y e
B o N R R g I S RN S e 2 S S
BRI o SN R g g IR I SN RN S e e S S
BN EIO o I i i BN IR B S iy e B
I i w5 e e e K I M7 ga B e B SaE s TSI
K Kl o B oo g EIRIR R RIS I e e I
KN I I S kI %TM RNl 2.“73%? i i A &
Klew klew 25 sz A &l Kl &l A g e S
SN Kl g S R R e S kR K ki Sl ki S 68 kR e N K
S i oo Sl 6 K KR 6 RN & 6 g5 KN gD EIR RN R Sl g
Koo §leo &l %T Kl K1 KIS Koo Koo nﬂmo Kl %T Kl nﬂmo &len §loo &I 21% Qimo
522532328858 Z852¢8¢%
N F SIS AT RIRKRIBocdFFxo o883

N A m» =S o8

Table 3: All non-degenerate non-S,, 6 x 6 finite orbits with only the entries 0, +1
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Representative

Length
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kN

Kl
ke

Sl

KIS SN e e B9
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EWEWEWE%EWEW
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SN ST R e e S
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EWEWEWEWE?E%
EWEWEWEylyﬂw
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ETEWEWEWEWEW
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KN ko kN k[N
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kN kN k| k|
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I ke kv klew

KN ko ko k[N

KN k| k| k™
ko &l ko &l

Bl kI k™ k|
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KN ko kv k[N

KN kN ke ke
KN K k| EQ%TU
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Kl EMA e Eﬁaz IR el e EM/. s ENA Kl EIN Kl e Enaz Enaz Kl e ko EMA
RIS I i i i T e T B Kl Kl SRR e e SN
RIo EIN 2 EIN  de T g I R R ey RIS g Bl
I I R R e I g I e s e FIN I e i S
Kl EMA e Ena/. I R el EMA e Emo Kl Kl Kl e EM/. En.,/. Kl e el Envz
Klen Ewu i EMA Kl ki Enyo el Enyo Kl Kl Kl e Ewo EMO Kl - Kl Enyo
EWE%EWEWEWE?E&E%E?EWE&EWE?ETEWK%EWE&E&E%
€ R i i e T g T S e o SRS e g e B
BRI S i e T g T S s e FIN I ey e S
Ko ano e Ewo I s Kl EMA K Emo I Kl Kl e EM/. En.w Kl o Kl sz
Kl Enao 1 Enaz IRl B ﬂry;. el Ewu Kl Kl Kl e EMO EMO Kl - - Ewu
SN I S Y R iR el g I e S Ry NI e e

Eﬂl?ﬂﬂﬂ%E&E&EW&&ESEW&3EW£W&3%3

8 &l

T Ky o~ - S . S T P,
Sl IR 1 KNS IR K1 K15 K1 KR S K10 Sl KIN KIN RIN 2, K10 S Klo KIa K1 15 BN Son k1o Kl k1N gD,

IR K1 K1 0 KIA RN i il ka K1 B9 G k18 kI8 5 K1 1o ki §e

BRI Kl KIO oy

E3£2%3£3£3£2£3£31313£3£2£W£3£W£3£2E2£W£2£W£2£2£2£3E3£W£212121W£2£3£3£W

7RI EIA RN Koy K1 RN RN RN Ko 2 I 7 I RIS RIN ) RN ) Kl Ko Elon BINU 7 o) oy I Koy o] KIS EIN KIS
§len 1o 5o 15 I K1Y o IR 1 10N IO o e, 163 1 IO IR IR 17 10N 110 Ko o Koo K1 k10 17, el 163 oo g WIS I e g
coococoovooe2daNocoFxo T IRITSIRI 3 B

0O 0000 oSS LLLESn NI ATFSIFTIERISRNEYR S o
DTN ANANS TS NI WO IETEIZ2IRIPISTESI S H 0n R
S ELEESELPEPEIIRN LTI A tadEndtlE 0SS BRISIB
— N O © O~ 50 0 F G - IIFEAFLO MO SO F S XD
o= = =AM 00 AN NS S

—

Table 4: All non-degenerate non-S,, 7 x 7 finite orbits with only the entries 0, +1
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‘ Length ‘ Representative

4

16
16
40
40
44
48
80

m, m, 0
2m 2m
37 30
2
Tr’?”?
dr  4Ar
57 57
3m 3w
57 57
3m 3w
40 4>
3 2m
57 57
3 2w
57 3

GUN ol woly oy wly PP )y

Table 5: All non-degenerate non-S,, 3 x 3 finite orbits

. Length Representative
Length Representative

192 3m 2n T om om oW
8 m, m 0,00 57 57275722
s My Iy Uy Yy 200 gi?’iQiOﬂﬂ
16 . E (0.5 T 57 57 5 F1 5§
T 20 20 2 37 47 2% ®T T«
39 oz o2 gz | 200 | TEE T 55
373 373 3 2r ™ 2r Wm™ W T
32 2r 7T 2 m T T 200 373773227372
372 3733”3 2r ® 2w W T
64 2r 21 ®m T mT T 216 373732332
37 3723 22 3 2r ®m m W™ T
64 r. 28 T omomoT 312 573225722
7372237202 720 2r m 3 m 2m m
9 2 2m 2 m om T 373> 572" 572
37 3?2 3737372 2r ® 47 T W™ T
79 o 2 T T 720 1 F3 5,951
> 5 30 30 3 2t 2r W™ W 27 ™
g |2 m 3m o2 2 x| S04 1 %5555
372252 57 573 1994 | 4r 27 2r 7w 27w
{0 2n m o 4dn mom ow 57 57 372 572
372 575753 3n m 2n W™ wm™ T
96 Tor T omomoT 1224 505 30252
27 37 32 37" 37 2 2r ® 47 wm™ W™ T
06 | 4z sr ar x gz | ¥ | F 5 E 552

Ut | 50555 ANy
T T T T T T
160 Am 4r T T T 1418 50337252
57 5727 37 22 47 w® 2 ®™ 2 T
160 3m 3r o om o 1418 52373722572
57 57230 22 3 2m 3w W™ W™ T
176 | st sroxoxox x| P80 S5 55 55, g
40 40 20 37 27 2 47 3m 4Am W™ T W
184 |20 x 3z 2n x| W2 | T T 5 50
373" 57 5573 2580 Ar 3w 4mr m T T
5757 5733 2

Table 6: All non-degenerate non-S,, 4 x 4 finite orbits
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Representative

H Length ‘

‘ Length ‘ Representative
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Table 7: All non-degenerate non-S,, 5 x 5 finite orbits with entries in {2cos(5F) | &

1,2,3,4,5;p € Z} (Part 1)
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‘ Length ‘ Representative ‘ Length ‘ Representative

B S MIE] NE B roly @

oy ol B 2ol MERNIERNE]

Table 8: All non-degenerate non-S, 5 x 5 finite orbits with entries in {2cos(5) | &
1,2,3,4,5;p € Z} (Part 2)
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