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Abstract 

The electrocatalytic oxygen reduction reaction (ORR) plays a crucial role in numerous energy and 

sustainability systems, such as fuel cells, metal-air batteries, and water electrolysers. It holds 

significant potential for renewable energy generation, transportation, and storage, heralding a 

cleaner and more sustainable future. Recent trends have shown increased use of single-atom 

catalysts (SACs), particularly metal-N4 moieties grown on graphene-based 2D materials, for 

enhancing ORR efficiency. However, the rational design of SACs for high-performance ORR faces 

challenges due to unclear structure-property relationships and the limits of conventional 

experimental trial-and-error approaches. In this study, we leveraged the power of the density 

functional theory (DFT) calculations, combined with cutting-edge machine learning (ML) 

techniques, to explore 144 SACs featuring dual interacting M1-N4 and M2-N4 moieties (M1, M2 = 

Mn, Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag Ir, Pt, Au), denoted as M1-M2, grown on graphene. Of all the 

catalysts we examined, Fe-Pd emerged as the top performer, achieving an impressive overpotential 

of 0.980 V in alkaline conditions — outperforming most previously reported SACs. Even more 

striking, 25 of the evaluated SACs surpassed the renowned Fe-N4 SAC in catalytic efficiency, 

including more economically viable alternatives like Fe-Ag. Venturing further, we developed three 

ML models that accurately predict the overpotentials of various M1-M2 SACs, showing their strong 

ability to capture the relationship between single-atom metal site properties and overpotential. These 

models provide useful navigation toolkits for the rational design of effective electrocatalysts. Our 

study sheds light on the path toward achieving efficient SAC-catalyzed ORR, contributing to a more 

sustainable and energy-efficient future. 
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1. Introduction 

Oxygen Reduction Reaction (ORR) is a fundamental electrochemical process that plays a 

crucial role in numerous energy conversion systems and technologies. It involves the reduction of 

oxygen molecules to form water or other oxygen-containing species1. The significance of ORR lies 

in its direct connection to practical applications, particularly in fuel cells and metal-air batteries, 

which are considered promising alternatives to conventional combustion-based power sources due 

to their environmental benefits and high energy efficiency1-4. For example, in the galvanic battery 

reaction (Figure 1a), ORR occurs at the cathode, where oxygen reacts with electrons and protons to 

produce water (Figure 1b). This reaction is crucial for generating electricity in fuel cells, which have 

the potential to power various transportation modes and provide clean energy for industrial and 

residential sectors. Similarly, in metal-air batteries5, ORR takes place during the discharge phase, 

where oxygen is reduced to form metal oxides and release electrical energy. 

 

Figure 1. Schematic illustration of (a) the galvanic battery reaction and (b) ORR on M1-M2 SACs. 

Efficient ORR is paramount for improving the overall performance and longevity of these 

energy conversion systems. To date, various materials and catalysts have been utilized to facilitate 

ORR, including Pt-based electrocatalysts6, carbon nanotubes7, and transition metals alloys8. 

However, the challenge lies in finding cost-effective catalysts that can enhance the kinetics of the 

ORR process and reduce energy losses. Researchers and engineers continue to explore new 

materials and design strategies to enhance ORR efficiency. Among many types of materials, single-

atom catalysts (SACs) stand out because of their minimal metal usage, superior efficiency, and 
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enhanced selectivity9-11. Recently, Chen, Ji, et al. suggested a metal-organic framework (MOF) 

supported Fe SAC12, which demonstrated excellent stability and catalytic performance with a 

positive half-wave potential of 0.912 V vs. Reversible Hydrogen Electrode (RHE). Liu et al. 

designed carbon-supported Pt SACs to improve the durability and efficiency of Pt SACs, achieving 

a positive half-wave potential of 0.87 vs RHE13. Rao et al. used novel “plasma bombing” strategies 

to design cheap Co single site SACs for enhanced ORR kinetics, with a Tafel slope of 79 mV dec−1 

14. These pioneering studies highlighted the efficacy and potential of SACs in enhancing ORR. 

While researchers have made considerable progress in the development of SACs, the rational 

design of high-performance SACs for ORR remains a challenging task, primarily due to the limited 

understanding of the complex structure-property relationships governing their catalytic activity, 

especially at the atomic level15. Conventional experimental trial-and-error approaches often suffer 

from inefficiency and high costs. The iterative nature of this method necessitates a large number of 

time-consuming experiments and extensive materials testing, resulting in significant resource 

expenditure. Moreover, without a thorough comprehension of the underlying mechanisms, the 

outcomes of these experiments may lack consistency and fail to reach their full potential. 

To address these challenges and accelerate SAC design, quantum chemistry methods, 

especially at the first-principles density functional theory (DFT) level16,17, have been increasingly 

applied as powerful toolkits to enable a more systematic approach to predict and understand the 

catalytic behaviors of catalysts18,19. These techniques empower researchers to explore a wide range 

of potential catalyst configurations and identify promising candidates for experimental synthesis, 

reducing the number of trial-and-error experiments and streamlining the design process. For 

example, Deng et al. adopted DFT to develop Co-based SACs on defective boron nitride (Co/BN) 

for efficient ORR20. Similarly, Yang et al. employed DFT to quantify the performance of two-

dimensional conjugated aromatic networks (CAN) with a high single-metal-atom-site density that 

surpassed the performance of a conventional ORR catalyst, Pt/C SAC21. Further, Han et al. 

conducted DFT calculations to explore the ORR reaction mechanism and to evaluate the impact of 

the modulation effect on the ORR performance of Fe-N4/Pt-N4 SACs22. 

In recent years, there has been a notable surge in the utilization of cutting-edge machine 

learning (ML) techniques for materials design23-25. By training predictive models on data from 
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theoretical simulations, researchers have rapidly and accurately screened promising catalytic 

materials for various applications, including ORR26,27. This innovative approach has substantially 

minimized the need for time-consuming DFT calculations and tedious experimental trial-and-error 

processes. Furthermore, the integration of DFT and ML offers in-depth insights into the intricate 

structure-property relationships governing catalyst activity, providing essential guidance for the 

rational design of SACs. This thereby accelerates the development of efficient and sustainable SACs 

for enhanced ORR, propelling the progress of clean energy technologies and addressing pressing 

environmental challenges. 

In this study, using DFT and ML, we exhaustively investigated the ORR activity of 144 SACs 

with two M-N4 moieties, denoted as M1-M2, where M1 and M2 = Mn, Fe, Ni, Co, Cu, Ru, Rh, Pd, 

Ag, Ir, Pt, Au (Figure 1b). These late transition metals were selected due to their promising potential 

in catalytic applications, especially ORR28-31. For each of the 144 SACs, we assessed their ORR 

performance by determining their overpotential, which refers to the extra voltage necessary beyond 

the theoretical potential to drive the ORR at a desired rate. Through extensive overpotential 

calculations under alkaline conditions (pH = 13), we discovered twenty-five highly active SACs 

that exhibit superior performance compared to pristine Fe-N4 SACs, previously regarded as active 

catalysts for ORR. Notably, we identified the Fe-Pd system as the most active SAC among all those 

investigated. Its overpotential (0.980 V) is even slightly lower than that of the previously discovered 

Fe-Pt SAC22. Furthermore, we found economical alternatives such as Fe-Ag, which exhibit 

comparable ORR activity with an overpotential of 1.008 V but at a significantly reduced cost. More 

intriguingly, we harnessed multiple ML methods to investigate the correlation between the intrinsic 

properties of the single-atom sites and their corresponding overpotentials. These ML models 

demonstrated high predictive power in estimating the overpotential, thereby effectively predicting 

promising SAC materials for ORR. These findings illuminate the ORR capabilities of various SAC 

materials, greatly broadening our understanding of material design and providing theoretical 

guidance for the future design and optimization of SAC materials, holding implications that 

transcend the realm of ORR. 
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2. Methodology 

2.1. ORR Pathways 

This study primarily focuses on the 4-electron pathway, the most prevalent and desired 

pathway for ORR. This pathway directly produces water, avoiding the production of intermediate 

hydrogen peroxide seen in the 2-electron pathway. The reaction, O2 + 4H+ + 4e− → 2H2O (4e− 

process), can be broken down into four steps: 

(1) O2 + H2O + e− → OOH* + OH− 

(2) OOH* + e− → O* + OH− 

(3) O* + H2O +e− → OH* + OH− 

(4) OH* + e− → OH− 

Here, * denotes that the oxygen species are anchored to the single-atom metal sites. Considering the 

equilibrium condition where H2O ↔ H+ + OH-, H2O in the original equations were replaced by H+ 

+ OH-, simplifying the equations to: 

(1) O2 + H+ + e− → OOH* 

(2) OOH* + H+ + e− → O* + H2O 

(3) O* + H+ + e− → OH* 

(4) OH* + H+ + e− → H2O 

Based on Nørskov’s analytic model32, considering the impact of pH value, the free energy change 

of each step can be expressed as: 

Δ𝐺𝐺1 = 𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂∗ − 𝐺𝐺𝑂𝑂2
− �

1

2
𝐺𝐺𝐻𝐻2

− 0.0592 ∙ 𝑃𝑃𝑃𝑃� − 𝐺𝐺∗ 

Δ𝐺𝐺2 = 𝐺𝐺𝑂𝑂∗ + 𝐺𝐺𝐻𝐻2𝑂𝑂
− 𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂∗ − (

1

2
𝐺𝐺𝐻𝐻2

− 0.0592 ∙ 𝑃𝑃𝑃𝑃) 

Δ𝐺𝐺3 = 𝐺𝐺𝑂𝑂𝑂𝑂∗ − 𝐺𝐺𝑂𝑂∗ − (
1

2
𝐺𝐺𝐻𝐻2

− 0.0592 ∙ 𝑃𝑃𝑃𝑃) 

Δ𝐺𝐺4 = 𝐺𝐺𝐻𝐻2𝑂𝑂
+ 𝐺𝐺∗ − 𝐺𝐺𝑂𝑂𝑂𝑂∗ − (

1

2
𝐺𝐺𝐻𝐻2

− 0.0592 ∙ 𝑃𝑃𝑃𝑃) 

The RHE model was used to ensure consistency and standardization in assessing the catalyst 

performance, allowing for meaningful comparisons and a comprehensive understanding of catalytic 

activity across varying experimental conditions and material systems. By referencing the 

electrochemical potentials to the RHE scale, where the RHE potential is taken as 0V, the 

overpotential (𝜂𝜂) is calculated by 𝜂𝜂 = {max[(Δ𝐺𝐺1𝑃𝑃𝑃𝑃=13), (Δ𝐺𝐺2𝑃𝑃𝑃𝑃=13), (Δ𝐺𝐺3𝑃𝑃𝑃𝑃=13), (Δ𝐺𝐺4𝑃𝑃𝑃𝑃=13)] +
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1.23}/𝑒𝑒. 

In addition, the binding free energies of the intermediates OOH*, O*, and OH* were defined 

by the following equations respectively:  

(1) Δ𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂∗ = Δ𝐺𝐺[2𝐻𝐻2𝑂𝑂(𝑔𝑔) +∗→ 𝑂𝑂𝑂𝑂𝑂𝑂 ∗+ 3 2⁄ 𝐻𝐻2(𝑔𝑔)] = 𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂∗ + 1.5 × 𝐺𝐺𝐻𝐻2 − 2 ×

𝐺𝐺𝐻𝐻2𝑂𝑂 − 𝐺𝐺∗,  

(2) Δ𝐺𝐺𝑂𝑂𝑂𝑂∗ = Δ𝐺𝐺[𝐻𝐻2𝑂𝑂(𝑔𝑔) +∗→ 𝑂𝑂𝑂𝑂 ∗ + 1 2⁄ 𝐻𝐻2(𝑔𝑔)] = 𝐺𝐺𝑂𝑂𝑂𝑂∗ + 0.5 × 𝐺𝐺𝐻𝐻2 − 𝐺𝐺𝐻𝐻2𝑂𝑂 − 𝐺𝐺∗ 

(3) Δ𝐺𝐺𝑂𝑂∗ = Δ𝐺𝐺[𝐻𝐻2𝑂𝑂(𝑔𝑔) +∗→ 𝑂𝑂 ∗+𝐻𝐻2(𝑔𝑔)] = 𝐺𝐺𝑂𝑂∗ + 𝐺𝐺𝐻𝐻2 − 𝐺𝐺𝐻𝐻2𝑂𝑂 − 𝐺𝐺∗ 

Based on these definitions, the free energy of each step under alkaline environment (pH = 13) can 

be written as: 

Δ𝐺𝐺1𝑃𝑃𝑃𝑃=13 = Δ𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂∗
𝑃𝑃𝑃𝑃=13 − 1.8416 

Δ𝐺𝐺2𝑃𝑃𝑃𝑃=13 = Δ𝐺𝐺𝑂𝑂∗
𝑃𝑃𝑃𝑃=13 − Δ𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂∗

𝑃𝑃𝑃𝑃=13 

Δ𝐺𝐺3𝑃𝑃𝑃𝑃=13 = Δ𝐺𝐺𝑂𝑂𝑂𝑂∗
𝑃𝑃𝑃𝑃=13 − Δ𝐺𝐺𝑂𝑂∗

𝑃𝑃𝑃𝑃=13 

Δ𝐺𝐺4𝑃𝑃𝑃𝑃=13 = −Δ𝐺𝐺𝑂𝑂𝑂𝑂∗
𝑃𝑃𝑃𝑃=13 

 

2.2. DFT Methods 

Understanding a system's electronic structure and energetics is critical for determining its 

catalytic behavior. In the context of quantum chemistry, this information can be attained through 

the wavefunction derived from the Schrödinger equation. However, directly solving the Schrödinger 

equation is typically impractical due to its computational complexity, especially for multi-electron 

systems. To overcome this challenge, Hohenberg and Kohn introduced the concept of electron 

density. Their first theorem asserts that the ground state energy and wavefunction of a system are 

uniquely determined by the functional of its electron density. Their second theorem builds on the 

first, stating that the energy-minimizing electron density corresponds to the full solution of the 

Schrödinger equation. These theorems provide a more efficient way to calculate the energy and 

properties from the viewpoint of electron density33. 

For material systems with a collection of atoms, the electron density can be obtained using the 

self-consistent field (SCF) method. As depicted in Figure 2, starting from an initial guess of the 

electron density, the SCF method involves iteratively adjusting the electron density based on 

wavefunctions until a self-consistent electron density is achieved. This approach relies on the Kohn-
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Sham equation33, �− 1
2
𝛻𝛻2 + 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) + 𝑉𝑉𝐻𝐻(𝑟𝑟) + 𝑉𝑉𝑋𝑋𝑋𝑋(𝑟𝑟)�𝜓𝜓𝑖𝑖(𝑟𝑟) = 𝜀𝜀𝑖𝑖𝜓𝜓𝑖𝑖(𝑟𝑟), to determine the new 

electron density, where 𝜓𝜓𝑖𝑖  and 𝜀𝜀𝑖𝑖  represent the wavefunction and energy; −1
2
𝛻𝛻2 , 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒(𝑟𝑟) , 

𝑉𝑉𝐻𝐻(𝑟𝑟), and 𝑉𝑉𝑋𝑋𝑋𝑋(𝑟𝑟) are the operators of the kinetic energy, the external potential, the Hartree 

potential, and the exchange-correlation term, respectively. 

 

  
Figure 2. Illustration of self-consistent field (SCF) calculations. The Kohn-Sham (KS) equations are solved 

iteratively until the electron density converges to a given criterion. 

To date, various functionals have been proposed for the exchange-correlation term, each 

providing varying levels of computational accuracy and efficiency. One of the most widely used 

functionals is the Perdew-Burke-Ernzerhof (PBE) functional34. Renowned for its favorable balance 

between accuracy and efficiency in modeling condensed materials, the PBE functional was chosen 

for this study. In addition, periodic boundary conditions (PBC) were utilized to mimic real-world 

solid-state materials. On this basis, the plane wave basis set was used to express the wavefunction, 

successfully encapsulating the periodic nature of crystal structures. In addition, the Projector 

Augmented Wave (PAW) pseudopotential method was used to mimic core electrons, effectively 

reducing the computational expense35. These methodologies empower us to conduct efficient and 

precise DFT calculations, thus enabling the study of various materials and their properties. 

 

2.3. Performing DFT Calculations using VASP 

Herein, we constructed material models based on an earlier work22 featuring dual M-N4 
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moieties, denoted M1-M2. We substituted 12 metals, i.e., Mn, Fe, Ni, Co, Cu, Ru, Rh, Pd, Ag, Ir, Pt, 

and Au, on both the M1 and M2 sites, resulting in 144 different configurations. Utilizing the 

Avogadro software36, we built the slab, OOH*, O*, and OH* models for one material and then 

automated the generation of the remaining configurations. As an illustration, Figure 3a displays an 

example model of M1-M2. 

 
Figure 3. Performing DFT calculations in VASP. (a) Top and side views of Fe-Pd models in order of slab, OOH*, 

O*, OH*. The gold, silver, brown, red, and white spheres refer to Fe (the M1 metal), Pd (the M2 metal), C, O, and 

H, respectively. (b) Workflow for determining overpotential through DFT calculations utilizing VASP. 

The workflow for the DFT calculations in this study is shown in Figure 3b, implemented using 

the Vienna Ab initio Simulation Package (VASP)37 for all DFT calculations. We automated the 

generation of all input files for the 144 SACs, including INCAR (DFT calculation settings), 

KPOINTS (sampling points in the Brillouin zone), POSCAR (atomic coordinates and lattice 

parameters), and POTCAR (pseudopotentials for each element), with our custom bash scripts. A 

kinetic energy cutoff of 450 eV was used for the plane-wave expansion, with convergence criteria 

for force and energy set at 0.01 eV Å-1 and 10-5 eV, respectively. Gaussian smearing of 0.1 eV was 

applied for geometric optimizations, and a 2 × 2 × 1 Gamma-centered mesh k-point grid was used 

for the SAC models. Strong on-site coulomb interaction involving d-orbital electrons on the 

transition state metal sites was treated using the GGA+U approach38. The U values and initial spin 

state of each transition metal were adopted from a previous benchmark study39. 

Next, thermodynamic corrections were computed for all the models binding the OOH*, O*, 

and OH* intermediates using vibrational frequency calculations within the harmonic oscillation 

approximation. We kept the slab model fixed while relaxing the adsorbates in these calculations, 

allowing for the efficient computation of thermal corrections associated with respective adsorbates. 
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These correction values were then added to the DFT total electronic energy values, enabling the 

computation of free energy profiles for each intermediate step along the reaction pathway. The 

incorporation of vibrational effects into the overall free energy analysis provided a more 

comprehensive and accurate assessment of ORR catalytic behavior, as detailed by the Nørskov 

model mentioned earlier. 

 

2.4. Calculations of Electronic Properties 

Our investigation considered both intrinsic and calculated atomic properties pertinent to 

catalysis. The intrinsic properties, which include electronegativity, atomic radius, ionization energy, 

and atomic mass, are fundamental characteristics inherent to the metal atoms and are readily 

accessible from standard reference materials. 

We utilized VASPkit40 and Chargemol41, computational tools that compute DFT-derived 

properties, to calculate a set of electronic properties that are often invoked in the context of catalysis. 

These include the d-band center, HOMO-LUMO gap, partial charge, and spin density. The d-band 

center represents the average energy level of d orbitals near the Fermi level, providing fundamental 

insights into the nature of adsorption interactions between the metal and adsorbate species42. The 

energy difference between the highest occupied molecular orbital (HOMO) and the lowest 

unoccupied molecular orbital (LUMO) is defined as the HOMO-LUMO gap, which is an essential 

electronic property for metal-adsorbate systems. Partial charge, reflecting the net atomic charge, 

indicates the unequal sharing of electrons between the metal and adsorbate, thereby offering 

information about the adsorbate binding strength. Spin density characterizes the distribution of 

unpaired electrons within the metal-adsorbate system, which helps understand its electronic 

properties and reactivity. These DFT-calculated properties yield valuable information regarding the 

electronic structures of the SACs, enabling us to understand their catalytic performance from the 

viewpoint of electronic structures. 

 

2.5. SISSO Method 

The Sure Independence Screening and Sparsity Optimization (SISSO)43 is an ML algorithm 

developed to discover accurate and interpretable models that can predict material properties and 



15 
 

behavior. SISSO utilizes the principles of compressed sensing and sparse regression to efficiently 

handle large feature spaces while maintaining interpretability. It focuses on identifying the most 

relevant features (or descriptors) that contribute significantly to the target property or behavior being 

studied. By diminishing the dimensionality of the feature space, SISSO improves model 

interpretability and reduces computational costs. Notably, the effectiveness of SISSO is not heavily 

reliant on the availability of big data, a characteristic that sets it apart from many conventional ML 

algorithms. This is particularly beneficial for material science studies, where access to extensive 

data sets can be challenging. In this project, we used SISSO to generate effective and interpretable 

descriptors that can predict the overpotential and adsorbate binding energies of different SACs. 

 

2.6. ETR Method 

We utilized the Extra Trees Regressor (ETR)44 ML algorithm, implemented via the Scikit-learn 

code45, for both feature importance analysis and regression tasks. It works by building a suite of 

decision trees during model training. However, unlike conventional decision trees or random forest 

algorithms, ETR incorporates two key distinctions: random feature selection and random node 

splitting. These two methods of randomization allow ETR to create a large variety of uncorrelated 

decision trees. In the prediction phase, the outputs from all individual trees are averaged to obtain 

the final regression result. This process of averaging helps negates individual errors, resulting in 

more robust and accurate predictions. ETR is especially adept at managing noisy, high-dimensional 

datasets and problems where the relationships between features and the target variable are complex 

and nonlinear. This makes it a fitting choice for our analysis. 

 

3. Results and Discussion 

3.1. Overpotential Heatmaps 

Overpotential has been widely applied as a quantitative metric for assessing the performance 

of ORR, which is determined based on the binding free energies of the OOH*, O*, and OH* 

intermediates, as detailed in Section 2.1. Figure 4 presents the overpotentials of the 144 catalysts 

investigated in this work. While it is recognized that there is competition between M1 and M2 sites 

in binding the intermediates, for this simulation study that emphasizes the relationship between 
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structure and properties, we assume that M1 is the primary site responsible for intermediate binding. 

Given this premise, it's not surprising that the M1 site can exert a more substantial influence on the 

overpotential of the system compared to M2. This is evidenced by the distinct patterns that emerged 

for specific M1 metals. For example, the SACs with M1 metals Ir, Rh, and Fe tend to exhibit lower 

overpotential values for most M2 species, while catalysts involving Pd, Pt, and Ru generally show 

higher overpotentials. Nevertheless, we also show that the choice of M2 is not insignificant - it can 

impact the catalytic behavior of M1. This is exemplified by the different performances of Fe-Mn 

and Fe-Pd. Fe-Mn presents a prohibitive overpotential of 1.985 V, denoting poor performance, 

whereas Fe-Pd demonstrates the lowest overpotential of 0.980 V, indicating superior performance. 

This observation underlines the importance of tuning the M1-M2 composition for optimal ORR 

activity. 

 
Figure 4. Overpotential of the 144 SACs. Green values indicate low overpotential (high activity), Orange/Red 

values indicate high overpotential (low activity). Promising SACs with η <1.18 V are highlighted with red squares. 

In our exhaustive study of the 144 M1-M2 combinations, we have successfully pinpointed 

twenty-five SACs (highlighted with red squares in Figure 4) exhibiting lower overpotential than 

that of the benchmark catalyst, pristine Fe-N4 (1.18 V)46. This discovery is especially notable given 

the well-established efficacy of Fe-N4 for ORR. Among the promising catalysts identified, Fe-Pt 

(with an overpotential of 0.983 V) and Fe-Pd (with an overpotential of 0.980 V) have been validated 

by previous experimental studies22, 47. 
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This congruence between computational prediction and experimental validation not only 

bolsters the reliability of our computational methodology but also substantiates the promising 

potential of these catalyst candidates. Furthermore, our exploration unveiled four M1-M2 

combinations (Fe-Ag, Ag-Cu, Ag-Pd, Ag-Ag) that are not only close to the overpotential 

performance of Fe-Pd but are significantly less expensive. This crucial discovery opens the 

tantalizing possibility of achieving efficient ORR catalysis at a significantly reduced cost. These 

advancements could significantly accelerate the development and commercialization of cost-

effective, high-performance ORR catalysts. 

 

3.2. Understanding Adsorption Behaviors 

3.2.1. Relationship among ΔGOOH*, ΔGO*, and ΔGOH* 

Next, we moved on to delve deeper into the determinants of overpotential, which hinges on the 

binding free energies of the OOH*, O*, and OH* intermediates. Through a comprehensive 

assessment of the ΔGOOH*, ΔGOH*, and ΔGO* binding free energies, we successfully delineated the 

scaling relationships between these quantities, as depicted in [1]-[3]: 

𝛥𝛥𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂∗   =   0.492657064  ×   𝛥𝛥𝐺𝐺𝑂𝑂∗   +   1.106113111 ………………….. [1] 

𝛥𝛥𝐺𝐺𝑂𝑂𝑂𝑂∗   =   0.556863752  ×   𝛥𝛥𝐺𝐺𝑂𝑂∗   −   0.352882071 …………………….. [2] 

𝛥𝛥𝐺𝐺𝑂𝑂𝑂𝑂𝑂𝑂∗   =   0.826082575  ×   𝛥𝛥𝐺𝐺𝑂𝑂𝑂𝑂∗   +   1.445296836 …………………. [3] 

 

The strong linear relationships (Figure 5a-c and Table 1) suggested that the binding energies of these 

intermediates on a given metal site tend to be intertwined, which presents a dilemma: a catalyst 

cannot simultaneously optimize the binding energy for all intermediates, leading to a trade-off 

where the optimization of the binding energy for one intermediate may result in a suboptimal 

binding energy for another intermediate. While overcoming this limitation is an ongoing research 

pursuit beyond the scope of this study, the discerned correlations offer a powerful analytical tool: 

they allow for the estimation of ΔGOOH*, ΔGO*, ΔGOH* binding energies directly from each other, 

significantly streamlining the analysis of the interplay between binding energies and overpotential. 

 

 Multiple R Standard Error 
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ΔGOOH* vs. ΔGO* 0.887 0.306 

ΔGOH* vs. ΔGO* 0.903 0.314 

ΔGOOH* vs. ΔGOH* 0.916 0.265 

Table 1. ΔGOOH* vs ΔGO*, ΔGOH* vs ΔGO*, and ΔGOOH* vs ΔGOH* regression statistics for 144 SACs. Correlation 

between experimental and predicted values of ΔGOOH*, ΔGOH*, and ΔGO* are quantified using Multiple R and 

standard error.  

 

Figure 5. Plots of the relationships between ΔGOOH*, ΔGO*, and ΔGOH* for 144 SACs. (a) ΔGOOH* vs. ΔGOH* 

(b)ΔGOH* vs. ΔGO*, and (c) ΔGOOH* vs. ΔGO* 

 

3.2.2. Volcano Plots 

Using one of the three binding free energies – in this case, ΔGOOH* – as the x-axis and plotting the 

overpotential as the y-axis, we observed a distinctive volcano-shaped trend, also known as the 

Sabatier principle48  shown in Figure 6. The peak of this volcano plot, ranging from approximately 

1.59 – 1.78 eV, indicates an optimized region for catalytic activity based on catalysts whose 

overpotential is affected by ΔGOOH* and has an overpotential ≤1.18 V. Catalysts falling within this 

optimal range of binding energies demonstrate enhanced activity for ORR, prominently displayed 

by the five best-performing catalysts: Fe-Pd (η = 0.980 V), Fe-Pt (η = 0.986 V), Fe-Ag (η = 1.008 

V), Rh-Mn (η = 1.010 V), and Ir-Ni (η = 1.018 V). The presence of perfect linear correlations on 

the right wing of the volcano shape in the ΔGOOH* graph (Figure 6) and on the left wing of the 

volcano shape in the ΔGOH* graph (Appendix 1(a), Section 7.1) signifies that the overpotential-

determining step for ORR is primarily contributed either by the first step of *OOH formation or the 

fourth step of *OH desorption. These findings agree well with previous reports49,50. In comparison, 

the importance of ΔGO* in determining the overpotential is relatively less, as demonstrated in the 

ΔGO* volcano plot (Appendix 1(b), Section 7.1). 
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Figure 6. Overpotential as a function of ΔGOOH* for the 144 SACs. The five best-performing M1-M2 SACs are 

highlighted in green and labeled. The peak of the volcano plot underscores the range of optimal binding energies 

for ΔGOOH* (~1.59-1.78 eV). 

Optimizing the ΔGOOH* and/or ΔGOH* values emerge as a compelling strategy to enhance ORR 

activity. This can be achieved through various strategies, including modifying the coordination 

environment surrounding the active metal site. For instance, the introduction of ligands, such as an 

OH group51 near the active metal site, can alter its electronic structure. This could be achieved by 

the ligand either donating or withdrawing electrons from the metal center, thereby tuning the metal's 

electronic properties and enhancing its catalytic activity. Such modifications exert a direct influence 

on the strength and nature of the interactions between the metal and the adsorbate, thereby shaping 

the activity of the SACs. This emphasizes the critical significance of precise control over the 

electronic properties of catalysts, as it empowers the facilitation of efficient and targeted reactions. 

 

3.2.3. Binding Energies of the Metals 

Since binding energies play a crucial role in determining the overpotential, we presented them 

in the form of three distinct heat maps for ΔGOOH* (Figure 7), ΔGOH* (Appendix 2(a) in Section 7.2), 

and ΔGO* (Appendix 2(b) in Section 7.2). Most of the Ir-M2, Fe-M2, and Rh-M2 combinations 

exhibit optimal binding energies that are neither too strong nor too weak. These metal pairings 

enable sufficiently strong interactions to facilitate the reaction while avoiding overly strong binding 
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that could impede the desorption of reaction intermediates. Conversely, the heat maps indicate that 

Ru-M2 combinations generally display relatively weak binding energies with adsorbates. This 

suggests that the interaction between the Ru and the adsorbates may not be strong enough, which 

could potentially slow down reaction kinetics. On the other hand, the Pd-M2, Pt-M2, and Au-M2 

systems show exceedingly strong binding energies with adsorbates. Such intense interactions may 

hamper the release of adsorbed intermediates, which could result in decreased reactivity and 

sluggish reaction rates. These findings emphasize the delicate balancing act required in designing 

efficient SACs for ORR. 

 

Figure 7. ΔGOOH* for 144 SACs. Optimal binding energies (~1.59 -1.78 eV) are represented in green, overly strong 

binding energies are marked in red, and excessively weak binding energies are denoted in yellow. 

 

3.3. Synergistic Effect of M1 and M2 Sites 

To understand how varying M1-M2 combinations result in different binding free energies, we 

directed our attention toward 12 systems with Fe as the M1 site (Fe-M2). Previous work by Rosen 

et al.52 suggested a strong correlation between the binding energies of a molecule on different metal 

sites and the group number of the metal elements, which is understandable given that the number of 

outermost electrons tends to increase as one moves across the periodic table. It is therefore 

reasonable to infer that an increase in M2's group number may subtly modify M1's behavior, leading 

to a gradual change in the binding affinity of intermediates on M1. In light of this hypothesis, we 

plotted ΔGOOH* against M2's group number, as visualized in Figure 8a. Contrary to expectations, a 
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careful examination of the data from group 7 to group 11 yielded a pattern resembling a volcano 

plot rather than a clear linear trend. The absence of a linear correlation suggests that different M2 

elements interact uniquely with Fe, beyond simple electron donation or withdrawal mechanisms. 

Further complicating our understanding, no discernible pattern emerged when comparing the M2’s 

group number with overpotential (Figure 8b). These observations prompt us to look beyond intrinsic 

properties and delve into the more complex interactions between the M1 and M2 sites. More in-depth 

analysis, such as molecular orbital hybridization analysis, might offer a more nuanced perspective 

on the complex interactions between M1 and M2, and, in turn, shed more light on how these 

interactions influence the binding of intermediates on M1 sites. 

     
Figure 8. (a) Correlation between the group number of M2 and ΔGOOH* for Fe-M2. (b) Correlation between the 

group number of M2 and overpotential for Fe-M2. 

 

3.4. Case Study: ORR activity of Fe-Pd and Mn-Pd 

To further illuminate how binding free energies of the reaction intermediates can influence 

overpotential, we turned our focus to two extreme cases, Fe-Pd and Mn-Pd, which represent the best 

and worst-performing SACs, respectively. Their free energy profiles along the 4-electron pathway 

are shown in Figure 9. The Mn-Pd catalyst displays a significantly higher overpotential of 2.895 V 

compared to the Fe-Pd catalyst (0.980 V), demonstrating its inferior performance. Under U = 1.23 

V, it is apparent that energy increments at each step are more smoothly transitioned in the Fe-Pd 

catalyst compared to the Mn-Pd catalyst. For the latter, the energy steps on the three binding 

configurations are significantly more stable than the former, especially for the OH* desorption step. 

In fact, Mn-Pd showcases the smallest ΔGOH* value (-1.67 eV) amongst all the 144 systems studied, 

leading to a prohibitive barrier in the OH* desorption step, leading to a notable decrease in its 



22 
 

activity. Conversely, the Fe-Pd catalyst exhibits an optimal ΔGOH* value (0.35 eV), corresponding 

to an enhanced ORR activity. 

       
Figure 9. Comparison of the free energy profiles of (a) the best-performing SAC (Fe-Pd) and (b) the worst-

performing SAC (Mn-Pd). 

To rationalize the huge difference in ΔGOH* between Fe-Pd and Mn-Pd, we computed the 

projected density of states (PDOS) for the d-orbitals of M1 sites (Fe and Mn) and p-orbitals of O 

after OH* binding in both systems. Specifically, we visualized the spatial distribution of molecular 

orbitals for the electronic states with high density or those close to the Fermi level (EF). These 

electronic states are depicted in Figure 10, as they are believed to play a critical role in determining 

the bonding strength of M1–OH*. In the case of OH* binding on Fe-Pd (Figure 10a), the frontier 

orbitals for Fe-O bonding are primarily the π* and σ* antibonding orbitals, leading to relatively 

weak Fe-OH bonding. In contrast, the orbital energy levels and spatial distributions are remarkably 

different in the Mn-Pd system (Figure 10b). Near the Fermi level, we observed σ and π bonding 

orbitals, which considerably strengthens the Mn-O bonding. This leads to a significantly more 

negative ΔGOH* value of -1.67 eV, which in turn results in a much higher overpotential of 2.895 V 

(Figure 9). This detailed analysis of molecular orbital hybridization provides further insight into 

how different M1-M2 combinations can dramatically affect the binding free energies and the overall 

ORR activity. 
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Figure 10. Computed PDOS for (a) Fe-Pd and (b) Mn-Pd, after OH adsorbate binding. The bonding 

molecular orbitals, denoted as σ and π, correspond to bonding interactions between the d-orbitals of Fe or 

Mn and the p-orbitals of O. σ* and π* denote the antibonding molecular orbitals arising from interactions 

between the d orbitals of Fe or Mn and p orbitals of O. 

 

4. Structure-Property Relationships using Machine Learning 

While molecular orbital analysis provides qualitative insights into the bonding strength 

between metal and intermediate reactants, quantitatively predicting overpotential from the readily 

available intrinsic atomic properties or easy-to-compute electronic properties of single-atom 

catalysts (SACs) remains a formidable task. This necessitates an in-depth, quantitative grasp of the 

structure-property relationship, a challenge intensified by the intricate interplay among, in our 

context, M1-M2, and M1-intermediates. Although DFT is invaluable in analyzing these relationships, 

its usage is constrained by its time-consuming nature. Consequently, we turn to employing data-

driven methodologies like Machine Learning (ML), as a potentially efficient and accurate 

alternative for overpotential prediction. As illustrated in Figure 11, we considered 16 intrinsic or 

electronic features, including inherent properties such as electronegativity (χ), atomic radius (ra), 

atomic mass (ma), ionization energy (EI) of M1 and M2 metal atoms (denoted by subscripts 1 and 2), 

alongside DFT-derived electronic properties like spin-up and spin-down d-band centers (εd↑ and εd↓), 

partial charge (q), spin density (ρ) on M1 and M2, and the HOMO-LUMO gap (Eg) of the M1-M2 

systems. We employed two types of ML algorithms - the Sure Independence Screening and 

Sparsifying Operator (SISSO) for feature space dimensional reduction, and Extremely Randomized 

Trees (ETR), a decision-tree-based approach. These algorithms were trained using 80% of the 

dataset comprising of 144 SACs and tested on the remaining 20% of the data, as detailed in Sections 

2.5 and 2.6. 
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Figure 11. Workflow of the ML process for predicting overpotential from intrinsic atomic properties and DFT-

computed electronic properties. 

 

4.1. All-Feature-Trained SISSO Prediction Model (ASPM) 

Firstly, we employed the SISSO method to bridge the input features – namely, the intrinsic 

atomic properties and DFT-computed electronic properties – and the target property (ORR 

overpotential). For this supervised learning task, SISSO constructed a feature space by 

mathematically combining each feature using a specified set of operators, represented as Ĥ ≡ {I, +, 

₋, ×, ÷, log, exp, exp₋, -1, 2, 3, 6, √, | |, sin, cos, scd}43. Only physically meaningful combinations, 

i.e., those with identical units, were retained. Sure-independence screening (SIS) was then used to 

rank and select descriptors based on their correlations with the target property. The sparsifying 

operator (SO) method was subsequently adopted to further promote descriptor space sparsity, 

effectively reducing the feature space dimensionality. This procedure generated a set of feature-

operator combinations, which serve as descriptors for connecting features and overpotential. 

The equation derived from these descriptors (eq. [4]) is as follows: 

𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −0.365 × �cos(
𝑚𝑚𝑎𝑎1

𝜒𝜒1
)� − 1.408 × �𝑠𝑠𝑠𝑠𝑠𝑠�𝐸𝐸𝑔𝑔↓� − sin(𝑞𝑞1)�+ 1.331 × �

𝜒𝜒1 − 𝜒𝜒2
(𝜀𝜀𝑑𝑑↓𝐸𝐸𝑔𝑔↓

)
�+  1.915 [4] 

This equation demonstrated statistically significant accuracy in predicting overpotential, with a 

significant correlation coefficient (r) of 0.852 for the training datasets (Figure 12a). The Root Mean 

Square Error (RMSE) value of 0.193 V falls within the computational error of DFT, signifying a 

strong agreement between SISSO-predicted and DFT-computed values. When predicting for the 

testing datasets, the performance slightly deteriorated (r = 0.747, RMSE = 0.271 V, Figure 12b), 

hinting at possible overfitting. This may be attributed to including too many unrelated or interrelated 

features or a lack of sufficient datasets (in this instance, 144). Despite comprehensive attempts to 
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improve the prediction accuracy of the SISSO model — such as incorporating more informative 

features (refer to Appendix 3 in Section 7.3), refining the selection of input features53 (detailed in 

Section 4.2), and exploring alternative approaches to overpotential prediction (Appendix 4 in 

Section 7.4) — we failed to achieve significant improvement. This outcome underscores the 

complexity of the problem and invites further investigation into novel predictive methodologies. 

Nevertheless, the results emphasize the relative precision of the descriptors generated by SISSO in 

capturing the quantitative relationship between features and overpotential. 

   

Figure 12. Comparison between DFT-computed and SISSO-predicted overpotential using all the 16 features 

(ASPM) for the (a) training and (b) testing datasets. 

More interestingly, upon closer inspection, eq. 4 is mainly comprised of M1 properties, which 

is expected since M1 is the site directly bonding with the reaction intermediates and should, therefore, 

govern the overpotential. The equation includes three key terms. The first term, cos(𝑚𝑚𝑎𝑎1

𝜒𝜒1
), relates to 

M1's intrinsic properties, such as mass and electronegativity, which naturally influence the catalytic 

properties of the M1 site. The second term, 𝑠𝑠𝑠𝑠𝑠𝑠�𝐸𝐸𝑔𝑔↓� − sin(𝑞𝑞1), represents the partial charge on the M1 

site and the M1-M2 material's electronic bandgap, both crucial to catalytic activity. These parameters 

are influenced implicitly by the properties of M2, hence indirectly incorporating M2's chemical 

information. The third term's numerator, 𝜒𝜒1 − 𝜒𝜒2, is the electronegativity difference between M1 and 

M2, conveying the information of charge transfer between the metal sites, while the denominator, 

𝜀𝜀𝑑𝑑↓
𝐸𝐸𝑔𝑔↓

, carries molecular orbital information. These terms validate our hypothesis that the catalytic 

properties of M1-M2 are impacted by the interactions between the M1-N4 and M2-N4 sites. This 

happens even though the M1-N4 and M2-N4 sites are not directly connected, and extends beyond 

simple electron donation or withdrawal mechanisms. Importantly, these complex interactions can 

be quantified using the SISSO-generated descriptors. 
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4.2. Refined-Feature-Trained SISSO Prediction Model (RSPM) 

To mitigate the overfitting resulting from the small data problem, it is potentially beneficial to 

evaluate the relevance and significance of each feature. Less important features may introduce noise 

or bias, potentially leading to inaccurate predictions. Consequently, we refined the initial sixteen 

features used for training the model. 

The importance analysis for each feature was performed using the ETR algorithm, a commonly 

utilized decision tree-based ML method. This allowed us to assess the relative importance of each 

feature in determining the overpotential (Table 2). The refined features were selected based on a 

mean importance cutoff of 0.05, ensuring only the most informative and impactful features were 

retained. The refined feature set included the ionization energy of M1 (EI1), d-band centers (εd↑ and 

εd↓), spin density of M1 (ρ1), partial charge of M1 (q1), electronegativity of M1 (χ1), and atomic radius 

of M1 (ra1). Using these refined features, we formulated another SISSO-generated equation as 

follows: 

𝜂𝜂𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.304 × [cos( 𝜀𝜀𝑑𝑑↑ + 𝜀𝜀𝑑𝑑↓)] −  0.363 × �
𝑠𝑠𝑠𝑠𝑠𝑠(𝜀𝜀𝑑𝑑↑)
cos(𝐸𝐸𝐼𝐼1)�+ 0.000575 × �

𝜒𝜒16

sin(𝑟𝑟𝑎𝑎1)�
+ 1.696 

 
[5] 

Features Feature Mean Importance 

M1-Partial-charge (q1) 0.300 

M1- Ionization (EI1) 0.224 

M1- Electronegativity (χ1) 0.125 

M1-Spin-density (ρ1) 0.080 

Band-Up (εd↑) 0.062 

M1- Radius (ra1) 0.061 

Band-Down (εd↓) 0.053 

M1-Mass (ma1) 0.038 

Gap Down (Eg↓) 0.016 

M2-Electronegativity (χ2) 0.014 

M2-Radius (ra2) 0.012 

M2-Ionization (EI2) 0.011 

M2-Mass (ma2) 0.011 
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Gap Up (Eg↑) 0.011 

M2- Partial-charge (q2) 0.006 

M2-Spin-density (ρ2) 0.002 

Table 2. Evaluation of the mean importance for sixteen input features using the ETR Algorithm. Features with 

mean importance greater than 0.05 (bolded) were selected for the RSPM. 

The refined-feature-trained SISSO prediction model (RSPM) showed a correlation coefficient 

of r = 0.822 and an RMSE value of 0.209 (Figure 13a). Although its performance is slightly lower 

than the model trained with ASPM (refer to Section 4.1), the RSPM provides a comparable outcome 

while requiring fewer computed features in the prediction equations, specifically the HOMO-

LUMO gap and partial charge. For the testing set, the RSPM demonstrated a correlation coefficient 

(r) of 0.736 and an RMSE value of 0.273 for the testing data (Figure 13b), close to the prediction 

performance of the ASPM model in Section 4.1. 

    
Figure 13. Comparison between DFT-computed and SISSO-predicted overpotential using refined features (RSPM) 

for the (a) training and (b) testing datasets. 

 

4.3. Extra Tree Regressor Prediction Model (ETR) 

Subsequently, we utilized the ETR algorithm to predict overpotential based on the 16 features. 

A significant disparity was noted when comparing the performance of the ETR-based model on the 

training data (80%) and the testing data (20%). The model performed perfectly on the training data, 

showing an ideal correlation coefficient of r = 1.000 and an RMSE value of 0.000 V (Figure 14a). 

However, its performance declined when applied to the testing data, producing a correlation 

coefficient of r = 0.856 and an RMSE value of 0.195 V (Figure 14b). This divergence is reflective 

of overfitting, a classic challenge encountered with smaller datasets, where the model could 

excessively adapt to the training data at the expense of generalization. However, even with this 
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noted dip in performance, our ETR model outperformed the SISSO model on the testing dataset, 

reinforcing the ETR's competitive edge in overpotential prediction. Most importantly, we see a clear 

path for the future advancement of our ETR model. We can, therefore, expect an improvement in 

the model prediction power with an increase in the size of the training datasets. Figure 14c clearly 

depicts that as the training dataset size grows, there's a marked increase in prediction accuracy. This 

suggests that expanding the training data could be a fruitful direction for the continued refinement 

and evolution of our model. 

           
Figure 14. Comparison between DFT-computed and ETR-predicted overpotential using all the 16 features for the 

(a) training and (b) testing datasets. (c) Illustration of the incremental improvement in the predictive ability of the 

ETR model with increasing size of training datasets. 

 

4.4. Performance Summary 

Table 3 outlines the performance of the above-mentioned three ML models – the ASPM and 

RSPM SISSO models, and the ETR model. These models exhibit impressive performance, 

demonstrating the utility and effectiveness of ML in material design. Particularly, we applied these 

three models to predict promising M1-M2 combinations, using pristine Fe-N4 (η = 1.18V) as a 

benchmark. As detailed in Table 4 and Table 5, the ASPM, RSPM SISSO models, and the ETR 

model predicted 17, 26, and 24 promising materials, respectively. DFT validations of these 

predictions highlighted 11, 17, and 24 successful matches, translating to success rates of 65%, 65%, 

and a stellar 100%, respectively.  

In addition, we identified the top twenty-five catalysts via DFT calculations (Figure 4), each 

surpassing the benchmark of pristine Fe-N4. We aimed to assess how many of these high-performing 

materials could be accurately predicted by our ML models. As detailed in Table 5, the results were 

fairly encouraging: the ASPM successfully predicted 44% (11 out of 25), while the RSPM identified 

a commendable 68% (17 out of 25), demonstrating the robust predictive capabilities of these models. 

In comparison to these SISSO models, the ETR model achieved a success rate of 96% (24 out of 

25), although potential overfitting in the training dataset for the ETR model cannot be overlooked. 
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However, its promising performance for the testing set still strongly supports its capacity for the 

rapid identification of high-potential materials. 

These findings affirm that while ML models may not be flawless, they can significantly 

alleviate the burden of time-consuming DFT computations and expensive experimental procedures. 

The enhanced performance of the RSPM model in predicting top catalysts underscores the potential 

of refining such models to improve prediction accuracy, thus driving the field of materials science 

toward more efficient and precise discovery and development. 

Models Coefficient (𝒓𝒓) 𝒓𝒓𝟐𝟐 RMSE MAE 

ASPM (Training) 0.852 0.726 0.193 0.558 

ASPM (Testing) 0.747 0.558 0.271 0.994 

RSPM (Training) 0.822 0.676 0.209 0.751 

RSPM (Testing) 0.736 0.542 0.280 0.778 

ETR (Training) 1.000 1.000 0.000 0.000 

ETR (Testing) 0.856 0.733 0.195 0.724 

Table 3. ASPM (training and testing), RSPM (training and testing), and ETR (training and testing) model 

prediction statistics. Performance quantified by r, r2, RMSE, MAE. 

M1-M2 Overpotential ASPM Predicted RSPM Predicted ETR Predicted 

Fe-Pd 0.980 0.927   0.980 

Fe-Pt 0.983 0.758   0.983 

Fe-Ag 1.008     1.008 

Rh-Mn 1.010   1.091 1.116* 

Ir-Ni 1.018   1.168 1.018 

Ir-Pt 1.020 1.155 1.166 1.020 

Ir-Fe 1.028 1.139 1.165 1.028 

Rh-Pt 1.029   1.104 1.087* 

Rh-Ni 1.030   1.095 1.155* 

Ir-Mn 1.037 1.143 1.165 1.037 

Rh-Fe 1.038   1.092 1.038 

Ir-Pd 1.039 1.147 1.171 1.039 
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Rh-Pd 1.045   1.099 1.053* 

Ir-Ru 1.079 1.177 1.161 1.079 

Rh-Ag 1.099   1.133 1.192* 

Rh-Ru 1.100   1.096 1.100 

Ir-Ag 1.113 1.084   1.113 

Rh-Ir 1.126   1.061 1.126 

Rh-Rh 1.137   1.095 1.137 

Ag-Pd 1.145     1.392* 

Ir-Ir 1.146 1.172 1.166 1.146 

Ag-Cu 1.153     1.153 

Ir-Rh 1.157 1.179 1.164 1.157 

Mn-Rh 1.171     1.171 

Ag-Ag 1.175     1.175 

Rh-Au 1.238   1.114   

Ir-Au 1.248 1.158 1.179   

Rh-Cu 1.273   1.121   

Fe-Cu 1.276 1.123     

Co-Au 1.303   1.141   

Co-Rh 1.325   1.145   

Co-Co 1.336 1.066     

Ir-Cu 1.448 1.148 1.154   

Co-Ru 1.498   1.06   

Rh-Co 1.505   1.064   

Co-Cu 1.506 1.153     

Ir-Co 1.57 1.153 1.162   

Table 4. ASPM, RSPM, and ETR predictability of the top twenty-five DFT-computed catalysts. Red values 

indicate a false prediction of material. * Indicates the testing result from ETR. 
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Total # of good 

catalysts predicted 
 

(A) 

# of good catalysts 
confirmed by DFT 

(B) 

% of good catalysts 
confirmed by DFT  

(C) = (B)/(A) 

% of good predicted 
vs. 25 good catalysts 

by DFT 
 (F) = (B)/25 

ASPM 17 11 65% 44% 

RSPM 26 17 65% 68% 

ETR 24 24 100% 96% 

Table 5. Comparison of the performances of ASPM, RSPM, and ETR in predicting the top twenty-five DFT-

computed catalysts. 

 

5. Conclusion 

In this work, we applied a synergistic approach of DFT calculations and ML techniques to 

explore the ORR performance of 144 SACs. We discovered 25 materials that outperformed the 

pristine Fe-N4 benchmark, offering superior catalytic activity. Of particular interest, the Fe-Pd, Fe-

Pt, and Fe-Ag catalysts emerged as top performers, delivering impressive overpotentials of 0.980 

V, 0.983 V, and 1.008 V respectively, under alkaline conditions (pH = 13). This surpasses the 

performance of most, if not all, previously reported materials, and sets a promising precedent for 

the field. Especially noteworthy is the economic feasibility of Fe-Ag, given the abundant availability 

and cost-effectiveness of both iron (Fe) and silver (Ag). Additional catalysts, such as Ag-Cu, Ag-

Pd, and Ag-Ag, showed promising performance alongside economic efficiency. 

Our comprehensive analysis of adsorbate binding energies helped us pinpoint an optimal range 

for ΔGOOH* (~1.59-1.78 eV) and ΔGOH* (~0.15-0.37 eV). This range correlates with high catalytic 

performance, thereby providing valuable insight for future experimental optimization. Therefore, 

the potential to enhance overall catalyst performance through structural modifications that optimize 

active site binding energies is notable. To further delve into these insights, we conducted an orbital 

analysis on our best performing catalyst (Fe-Pd) and the least effective one (Mn-Pd). The analysis 

highlighted that the ideal binding strength of reaction intermediates arises from a balanced 

interaction between the bonding and anti-bonding orbitals in the frontier orbitals. 

We trained ML models using a suite of atomic and electronic properties pertaining to the 

single-atom metal sites as input features to predict the overpotential of the SACs. Impressively, 

these models exhibited significant predictive prowess, with one of the SISSO models and the ETR 

model successfully reproducing 68% and 96% of the top-performing SACs, respectively. These 
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results highlighted the potential of ML as a tool to reduce the need for costly DFT computations and 

to streamline experimental trial-and-error processes. 

Collectively, our research lays a firm foundation for the intelligent design and discovery of 

SACs. We have not only illuminated the possibilities for a more sustainable and eco-friendly future 

but also set a foundation for further exploration of ORR performance and the application of ML in 

material design. This opens up the possibility for the development of highly efficient, cost-effective 

catalysts that could revolutionize energy conversion and storage applications, extending far beyond 

catalysis. 
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7. Appendix 

7.1. Appendix 1. (a) ΔGOH* Volcano Chart and (b) ΔGO* Volcano Chart 

 

Figure A1. (a) ΔGOH* Volcano Plot for the 144 SACs. The optimal region of binding energies 

for ΔGOH* (~0.15-0.37 eV) is around the peak of the graph.  

 

 
 (b) ΔGO* Volcano Plot for the 144 SACs. The optimal region of binding energies  

for ΔGO* (~1.0-1.3 eV) is around the peak of the graph.  
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7.2. Appendix 2. (a) ΔGOH* Heatmap and (b) ΔGO* Heatmap 

 
Figure A2. (a) ΔGOH* binding energy heatmap for 144 SACs. Green values indicate optimal binding energies, red 

values indicate too strong binding energies and yellow values indicate too weak binding energies. 

 
(b). ΔGO* binding energy heatmap for 144 SACs. Green values indicate optimal binding energies, red values 

indicate too strong binding energies and yellow values indicate too weak binding energies. 
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7.3. Appendix 3. Evaluating Descriptor ψ  

As suggested by Yang, et. al. 53, the electronic descriptor ψ has shown promise in predicting 

adsorption energies, which are closely correlated with overpotential. The electronic descriptor ψ is 

defined as the following when it is describing the surface of pure transition metals (TMs): 

ψ =
𝑆𝑆𝑉𝑉2

𝑋𝑋𝛽𝛽
 

𝑋𝑋 and 𝑆𝑆𝑉𝑉 are the electronegativity of the TM and the valence electron number, respectively. 𝛽𝛽 is 

set to 1
2
 for Ag and Au, and 𝛽𝛽 = 1 for other Transition Metals as suggested by Yang, et. al. 53. 

Three ETR models were constructed to gauge the predictive capability of the ψ descriptor for 

predicting overpotential:  

1. Incorporating the ψ descriptor for both M1 and M2 metals as input features 

2. Incorporating only the ψ descriptor for the M1 metal as the input feature 

3. Incorporating only the ψ descriptor for the M2 metal as the input feature 

 

For training and testing purposes, we randomly allocated 80% of the 144 metals as training 

data, while the remaining 20% served as testing data. The obtained results are presented in Table 

A1, illustrating the outcomes of the ETR models. 

Models Coefficient (𝒓𝒓) 𝒓𝒓𝟐𝟐 RMSE 

ETR ψ (M1 and M2) Training 1.00 1.00 0.000 

ETR ψ (M1 and M2) Testing -0.238 0.057 0.486 

ETR ψ (M1) Training 0.927 0.860 0.142 

ETR ψ (M1) Testing 0.085 0.007 0.435 

ETR ψ (M2) Training 0.940 0.884 0.129 

ETR ψ (M2) Testing 0.231 0.054 0.458 

Table A1. ψ descriptor ETR training and testing results. Three scenarios are evaluated using ETR: 1) ψ (M1 and 

M2) is trained and tested using ETR. 2) ψ (M1 only) is trained and tested using ETR. 3) ψ (M2 only) is trained and 

tested using ETR. 

Upon evaluating the training and testing data, it appears that the ψ descriptor does not offer a 

satisfactory prediction of the overpotential. This could be attributed to overfitting. It is also possible 

that the descriptor is derived from the CO2 Reduction Reaction (CO2RR) and may not be effectively 
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extrapolated to ORR. 

To further test the predictability of ψ in the scope of our project, we incorporated ψ as a feature 

within the SISSO algorithm. Intriguingly, despite its potential relevance, the SISSO algorithm did 

not include ψ as one of the features in the resulting equation, indicating that other descriptors had a 

more pronounced influence on the overpotential than the electronic descriptor. 

Upon comparing the results obtained from the ETR models and the SISSO model, it becomes 

evident that the features selected by SISSO exert a significantly greater influence on the 

overpotential of the system than the electronic descriptor ψ.  

 

7.4. Appendix 4. Predicting Binding Energies 

Additionally, overpotential can be roughly estimated by the binding free energies of OOH*, 

O*, and OH* intermediates. To this end, we developed a third SISSO model employing all sixteen 

features to predict the binding energies of intermediates, subsequently utilizing these predictions to 

calculate the overpotential. The model exhibited strong predictability for the binding energies of 

intermediates, particularly with respect to ΔGOOH* and ΔGOH*. However, it should be noted that the 

calculated overpotential displayed lower predictability compared to both the ASPM and RSPM, 

most likely due to the accumulation of errors when predicting the binding free energies. A summary 

of the performance is presented in Table A2.  

Models Coefficient (𝒓𝒓) 𝒓𝒓𝟐𝟐 RMSE MAX AE 

Predicted ΔGO* 0.928 0.861 0.440 1.921 

Predicted ΔGOH* 0.921 0.848 0.284 1.450 

Predicted ΔGOOH* 0.885 0.306 0.872 0.782 

Predicted Overpotential η (eV) by 

ΔGOOH* + ΔGOH* + ΔGO* 
0.764 0.583 0.260 0.973 

Table A2. Binding Energies Prediction Model Performance. 
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7.5. Appendix 5: Free Energy Diagrams (M1-M2 Metals) 
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7.6. Appendix 5. DFT-computed data on reaction intermediate binding free energies and intrinsic/electronic features of catalysts. 

 

Table A3. DFT-computed data (M1 = Ag to Cu) 

M1-M2
Overpotential

η
ΔGOOH* ΔGOH* ΔGO* 

Ionization 
(M1)

Ionization 
(M2)

HOMO-
LUMO 
Gap Up

HOMO-
LUMO 

Gap Down

d-band 
Spin Up

d-band 
Spin Down

Spin 
Density 

(M1)

Spin 
Density 

(M2)

Partial 
Charge 
(M1)

Partial-
Charge 
(M2)

Electro-
negativity 

(M1)

Electro-
negativity 

(M2)

Atomic 
Radius 
(M1)

Atomic 
Radius 
(M2)

Atomic 
Mass 
(M1)

Atomic 
Mass 
(M2)

Ag-Ag 1.1749 1.7297 0.2292 1.6746 7.5800 7.5800 0.0060 0.1500 -4.7940 -4.7940 -0.6621 0.6614 0.5173 0.5411 1.9300 1.9300 165.0000 165.0000 107.8680 107.8680
Ag-Au 1.4445 1.7121 0.2015 1.9265 7.5800 7.8800 0.0250 0.0250 -2.8700 -2.8700 0.0000 0.0000 0.3323 0.6113 1.9300 2.5400 165.0000 174.0000 107.8680 196.9665
Ag-Co 1.5426 1.1576 -0.3126 1.0463 7.5800 7.7300 0.0880 0.0060 -4.6300 -4.9070 -0.6809 -0.0051 0.5507 0.1785 1.9300 1.8800 165.0000 152.0000 107.8680 58.9332
Ag-Cu 1.1528 1.7445 0.3085 1.6673 7.5800 7.9000 0.2000 0.0680 -4.5090 -4.8320 -0.6708 -0.6857 0.5222 0.5824 1.9300 1.9000 165.0000 145.0000 107.8680 63.5460
Ag-Fe 1.6780 1.6720 0.2039 2.1200 7.5800 8.9700 0.0060 0.0060 -4.9940 -4.9950 -0.0005 2.1582 0.5435 0.5610 1.9300 1.8300 165.0000 156.0000 107.8680 55.8470
Ag-Ir 1.2865 1.9003 0.5697 1.8779 7.5800 7.6400 0.0130 0.0130 -4.9370 -4.9380 0.0000 0.0000 0.5559 -0.0101 1.9300 2.2000 165.0000 180.0000 107.8680 192.2170

Ag-Mn 1.4165 1.6440 0.1328 1.8305 7.5800 8.3400 0.0060 0.0060 -4.9950 -4.9950 0.0006 3.4478 0.5438 0.7104 1.9300 1.5500 165.0000 161.0000 107.8680 54.9380
Ag-Ni 1.5848 1.6395 0.1661 1.9943 7.5800 7.4300 0.0060 0.0060 -5.0260 -5.0250 0.0006 0.0000 0.5472 0.3437 1.9300 1.9100 165.0000 149.0000 107.8680 58.7000
Ag-Pd 1.1451 1.6716 0.2302 1.5866 7.5800 8.9600 0.0060 0.0060 -4.9000 -4.9000 0.0001 0.0000 0.5347 0.3187 1.9300 2.2000 165.0000 169.0000 107.8680 106.4000
Ag-Pt 1.5843 1.8744 0.3563 2.2287 7.5800 7.4600 0.1560 0.2250 -4.7480 -4.4320 0.6469 -0.0004 0.5257 0.2690 1.9300 2.2800 165.0000 177.0000 107.8680 195.0900
Ag-Rh 1.3848 1.9985 0.6300 1.9615 7.5800 7.3600 0.0060 0.0060 -4.4700 -4.7710 -0.6310 0.0091 0.5357 0.0301 1.9300 2.2800 165.0000 173.0000 107.8680 102.9055
Ag-Ru 1.2828 1.8966 0.5314 1.8361 7.5800 9.2300 0.0060 0.0060 -4.7850 -4.4860 0.5212 1.6102 0.5365 0.3016 1.9300 2.2000 165.0000 178.0000 107.8680 101.0700
Au-Ag 1.9071 2.5208 1.2618 2.6831 7.8800 7.5800 0.1940 0.1940 -5.8320 -5.8320 0.0000 0.0000 0.5864 0.3555 2.5400 1.9300 174.0000 165.0000 196.9665 107.8680
Au-Au 1.2366 1.8503 0.8814 1.3988 7.8800 7.8800 0.0060 0.0060 -6.2450 -6.2450 0.0001 0.0000 0.5846 0.6147 2.5400 2.5400 174.0000 174.0000 196.9665 196.9665
Au-Co 1.6478 2.0838 0.8226 2.5016 7.8800 7.7300 0.3630 0.3630 -5.7620 -5.7620 0.0000 -0.0023 0.5921 0.1580 2.5400 1.8800 174.0000 152.0000 196.9665 58.9332
Au-Cu 2.0955 2.7092 1.0234 2.6883 7.8800 7.9000 0.0070 0.0070 -6.2430 -6.2390 0.0149 -0.7901 0.5846 0.5799 2.5400 1.9000 174.0000 145.0000 196.9665 63.5460
Au-Fe 1.6652 2.2402 1.0086 2.6754 7.8800 8.9700 0.0070 0.3320 -6.2680 -6.2550 0.0263 2.3685 0.5819 0.5627 2.5400 1.8300 174.0000 156.0000 196.9665 55.8470
Au-Ir 1.8516 2.4645 1.3938 3.0861 7.8800 7.6400 0.3560 0.3560 -5.7500 -5.7500 0.0000 0.0000 0.5932 -0.0196 2.5400 2.2000 174.0000 180.0000 196.9665 192.2170

Au-Mn 1.7051 2.2354 1.0019 2.7106 7.8800 8.3400 0.0070 0.2880 -6.2670 -6.2570 0.0256 3.5718 0.5832 0.7089 2.5400 1.5500 174.0000 161.0000 196.9665 54.9380
Au-Ni 1.6020 2.2157 1.0298 0.8050 7.8800 7.4300 0.0060 0.0060 -6.2990 -6.2990 0.0000 0.0000 0.5897 0.3472 2.5400 1.9100 174.0000 149.0000 196.9665 58.7000
Au-Pd 2.0734 2.2626 1.0362 3.1060 7.8800 8.9600 0.0070 0.0070 -6.1430 -6.1490 -0.0163 0.0002 0.5700 0.3198 2.5400 2.2000 174.0000 169.0000 196.9665 106.4000
Au-Pt 2.0979 2.2649 1.0445 3.1328 7.8800 7.4600 0.0060 0.0060 -6.1200 -6.1180 -0.0009 0.0000 0.5673 0.2712 2.5400 2.2800 174.0000 177.0000 196.9665 195.0900
Au-Rh 2.1320 2.4707 1.3510 3.3727 7.8800 7.3600 0.3940 0.3940 -5.7170 -5.7170 0.0000 0.0000 0.5927 0.0322 2.5400 2.2800 174.0000 173.0000 196.9665 102.9055
Au-Ru 1.8340 2.4478 1.3321 2.9524 7.8800 9.2300 0.3930 0.0060 -5.9170 -5.9170 -0.0047 1.1442 0.5885 0.1956 2.5400 2.2000 174.0000 178.0000 196.9665 101.0700
Co-Ag 1.2241 1.8378 0.2263 0.6694 7.7300 7.5800 0.0060 0.0060 -1.3060 -2.9420 -1.1762 -0.5502 0.4062 0.5525 1.8800 1.9300 152.0000 165.0000 58.9332 107.8680
Co-Au 1.3032 1.1805 -0.0732 0.1121 7.7300 7.8800 0.1320 0.1250 -0.5050 -0.5060 -0.0007 0.0000 0.1462 0.6131 1.8800 2.5400 152.0000 174.0000 58.9332 196.9665
Co-Co 1.3361 1.3184 -0.1061 0.8392 7.7300 7.7300 0.2250 0.2500 -1.0720 -3.9750 -2.8541 -1.0985 0.6999 0.5458 1.8800 1.8800 152.0000 152.0000 58.9332 58.9332
Co-Cu 1.5058 1.3697 -0.2758 0.2833 7.7300 7.9000 0.2250 0.2560 -4.6680 -0.4150 2.8275 -0.7277 0.6347 0.5855 1.8800 1.9000 152.0000 145.0000 58.9332 63.5460
Co-Fe 1.2721 1.8858 0.4848 0.7446 7.7300 8.9700 0.2620 0.2190 -2.7780 -1.2580 1.0300 2.2334 0.5350 0.5569 1.8800 1.8300 152.0000 156.0000 58.9332 55.8470
Co-Ir 1.3119 1.9256 0.2159 1.8692 7.7300 7.6400 0.0060 0.0060 -2.7820 -1.2230 1.3486 0.2600 0.5412 -0.0008 1.8800 2.2000 152.0000 180.0000 58.9332 192.2170

Co-Mn 1.2512 1.8649 0.4439 0.7614 7.7300 8.3400 0.2560 0.2560 -2.7130 -1.0680 0.9209 3.5183 0.4083 0.7078 1.8800 1.5500 152.0000 161.0000 58.9332 54.9380
Co-Ni 1.3105 1.9242 0.4798 0.8141 7.7300 7.4300 0.2620 0.2560 -2.7630 -1.2490 1.1167 -0.0001 0.5390 0.3395 1.8800 1.9100 152.0000 149.0000 58.9332 58.7000
Co-Pd 1.7613 2.3751 0.4597 1.5771 7.7300 8.9600 0.2620 0.2500 -2.7080 -1.0740 1.0729 0.0002 0.4084 0.3187 1.8800 2.2000 152.0000 169.0000 58.9332 106.4000
Co-Pt 1.3097 1.9234 0.4992 0.7934 7.7300 7.4600 0.2810 0.2620 -2.7640 -1.2460 1.1168 -0.0001 0.5377 0.2696 1.8800 2.2800 152.0000 177.0000 58.9332 195.0900
Co-Rh 1.3245 1.3033 -0.0945 0.2342 7.7300 7.3600 0.0500 0.0500 -0.6810 -0.6910 -0.0053 -0.0010 0.1935 0.0382 1.8800 2.2800 152.0000 173.0000 58.9332 102.9055
Co-Ru 1.4978 2.1115 0.1897 0.8208 7.7300 9.2300 0.0060 0.0060 -1.0960 -2.7100 -1.0955 1.4771 0.4117 0.2939 1.8800 2.2000 152.0000 178.0000 58.9332 101.0700
Cu-Ag 1.7401 2.3538 1.1384 2.6144 7.9000 7.5800 0.0060 0.0060 -4.1200 -5.1640 -0.7263 0.6398 0.5689 0.5500 1.9000 1.9300 145.0000 165.0000 63.5460 107.8680
Cu-Au 1.5542 2.1679 0.7029 2.1199 7.9000 7.8800 0.0060 0.0060 -4.0760 -4.9950 -0.6366 0.0046 0.5324 0.6120 1.9000 2.5400 145.0000 174.0000 63.5460 196.9665
Cu-Co 1.4866 1.5247 0.9535 1.7813 7.9000 7.7300 0.2320 0.1940 -3.9720 -5.0290 -0.7377 2.8549 0.5738 0.7017 1.9000 1.8800 145.0000 152.0000 63.5460 58.9332
Cu-Cu 1.7432 2.3569 0.9668 2.5684 7.9000 7.9000 0.2380 0.2250 -4.5400 -4.5290 0.7429 -0.7341 0.5754 0.5829 1.9000 1.9000 145.0000 145.0000 63.5460 63.5460
Cu-Fe 1.6862 2.2999 0.9408 2.5620 7.9000 8.9700 0.2440 0.2250 -3.9700 -5.0340 -0.7689 2.1800 0.5752 0.5584 1.9000 1.8300 145.0000 156.0000 63.5460 55.8470
Cu-Ir 1.7037 2.3174 0.9561 2.7149 7.9000 7.6400 0.0060 0.0060 -5.0020 -3.9490 0.7976 0.2997 0.5850 0.0021 1.9000 2.2000 145.0000 180.0000 63.5460 192.2170

Cu-Mn 1.7477 2.3614 0.9408 2.5637 7.9000 8.3400 0.2380 0.2690 -3.9490 -5.0190 -0.8143 3.4150 0.5776 0.7099 1.9000 1.5500 145.0000 161.0000 63.5460 54.9380
Cu-Ni 1.7073 2.3210 0.9656 2.6610 7.9000 7.4300 0.2570 0.2440 -5.0370 -3.9660 0.7190 0.0002 0.5759 0.3405 1.9000 1.9100 145.0000 149.0000 63.5460 58.7000
Cu-Pd 1.7368 2.3505 0.9790 2.5823 7.9000 8.9600 0.2440 0.2560 -3.9790 -5.0390 -0.7196 0.0001 0.5789 0.3197 1.9000 2.2000 145.0000 169.0000 63.5460 106.4000
Cu-Pt 2.0071 2.6208 0.9746 2.5907 7.9000 7.4600 0.2630 0.2750 -3.9550 -5.0210 -0.7193 0.0003 0.5822 0.2689 1.9000 2.2800 145.0000 177.0000 63.5460 195.0900
Cu-Rh 1.5040 2.0316 0.6184 2.3056 7.9000 7.3600 0.0250 0.0250 -3.2980 -3.2980 0.0001 0.0000 0.4558 0.0464 1.9000 2.2800 145.0000 173.0000 63.5460 102.9055
Cu-Ru 1.7464 2.3601 0.7471 2.7377 7.9000 9.2300 0.0060 0.0060 -4.9970 -3.9410 0.6006 1.6648 0.5814 0.3076 1.9000 2.2000 145.0000 178.0000 63.5460 101.0700
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Table A4. DFT-computed data (M1 = Fe to Ni) 

M1-M2
Overpotential

η
ΔGOOH* ΔGOH* ΔGO* 

Ionization 
(M1)

Ionization 
(M2)

HOMO-
LUMO 
Gap Up

HOMO-
LUMO 

Gap Down

d-band 
Spin Up

d-band 
Spin Down

Spin 
Density 

(M1)

Spin 
Density 

(M2)

Partial 
Charge 
(M1)

Partial-
Charge 
(M2)

Electro-
negativity 

(M1)

Electro-
negativity 

(M2)

Atomic 
Radius 
(M1)

Atomic 
Radius 
(M2)

Atomic 
Mass 
(M1)

Atomic 
Mass 
(M2)

Fe-Ag 1.0081 1.4962 0.3176 0.5395 8.9700 7.5800 0.2250 0.0060 -2.9690 0.0250 2.1766 -0.6710 0.5452 0.5494 1.8300 1.9300 156.0000 165.0000 55.8470 107.8680
Fe-Au 1.5196 0.9200 0.1965 1.2096 8.9700 7.8800 0.0060 0.0060 -3.3080 -0.3380 2.1789 0.0013 0.5498 0.6122 1.8300 2.5400 156.0000 174.0000 55.8470 196.9665
Fe-Co 1.5007 1.7236 -0.2707 0.5577 8.9700 7.7300 0.2570 0.2060 -2.7620 0.2000 2.2161 1.0263 0.5444 0.5065 1.8300 1.8800 156.0000 152.0000 55.8470 58.9332
Fe-Cu 1.2756 1.2194 -0.0456 0.1672 8.9700 7.9000 0.2320 0.1930 -4.7620 0.8290 3.9251 -0.7330 0.7652 0.5813 1.8300 1.9000 156.0000 145.0000 55.8470 63.5460
Fe-Fe 1.2594 1.8731 0.3186 0.6565 8.9700 8.9700 0.2560 0.1870 -2.8320 0.1320 2.1406 2.1507 0.5451 0.5564 1.8300 1.8300 156.0000 156.0000 55.8470 55.8470
Fe-Ir 1.3530 1.5815 -0.1230 0.6419 8.9700 7.6400 0.0060 0.0060 -2.7810 0.2250 2.4158 -0.0831 0.5546 -0.0153 1.8300 2.2000 156.0000 180.0000 55.8470 192.2170

Fe-Mn 1.9855 0.7695 0.5907 -0.1648 8.9700 8.3400 0.2310 0.2250 -2.7530 0.2100 2.3213 -1.2439 0.5455 0.6299 1.8300 1.5500 156.0000 161.0000 55.8470 54.9380
Fe-Ni 1.2345 1.8482 0.3317 0.5296 8.9700 7.4300 0.2560 0.2250 -2.7490 0.2320 2.1496 0.0001 0.5447 0.3391 1.8300 1.9100 156.0000 149.0000 55.8470 58.7000
Fe-Pd 0.9803 1.5940 0.3477 1.2681 8.9700 8.9600 0.2630 0.2130 -2.7510 0.2290 2.1499 0.0001 0.5462 0.3179 1.8300 2.2000 156.0000 169.0000 55.8470 106.4000
Fe-Pt 0.9835 1.5972 0.3480 0.9699 8.9700 7.4600 0.2750 0.2310 -2.7530 0.2220 2.1494 0.0001 0.5466 0.2686 1.8300 2.2800 156.0000 177.0000 55.8470 195.0900
Fe-Rh 1.3313 1.6118 -0.1013 1.3727 8.9700 7.3600 0.0060 0.0060 -2.8230 0.1850 2.2035 0.0023 0.5539 0.0218 1.8300 2.2800 156.0000 173.0000 55.8470 102.9055
Fe-Ru 1.3095 1.7665 -0.0795 0.6163 8.9700 9.2300 0.0060 0.0060 -2.7910 0.2090 2.1939 1.3650 0.5537 0.2839 1.8300 2.2000 156.0000 178.0000 55.8470 101.0700
Ir-Ag 1.1125 1.7262 0.3711 0.8894 7.6400 7.5800 0.2000 0.2000 -1.0960 -1.0960 0.0000 0.0000 -0.0225 0.5679 2.2000 1.9300 180.0000 165.0000 192.2170 107.8680
Ir-Au 1.2480 1.8617 0.4301 0.9997 7.6400 7.8800 0.1120 0.1120 -1.1460 -1.1460 0.0000 0.0000 -0.0400 0.6129 2.2000 2.5400 180.0000 174.0000 192.2170 196.9665
Ir-Co 1.5697 1.0973 -0.3397 0.2772 7.6400 7.7300 0.0320 0.0320 -1.2340 -1.2340 -0.0009 0.0011 -0.0004 0.1674 2.2000 1.8800 180.0000 152.0000 192.2170 58.9332
Ir-Cu 1.4475 2.0612 0.2324 0.8057 7.6400 7.9000 0.0070 0.0070 -1.1800 -1.2660 -0.2869 -0.7140 -0.0100 0.5926 2.2000 1.9000 180.0000 145.0000 192.2170 63.5460
Ir-Fe 1.0278 1.6416 0.2162 0.7962 7.6400 8.9700 0.0070 0.0070 -1.2120 -1.2140 -0.0176 2.2376 -0.0158 0.5665 2.2000 1.8300 180.0000 156.0000 192.2170 55.8470
Ir-Ir 1.1456 1.7593 0.3086 0.8255 7.6400 7.6400 0.0060 0.0060 -1.2110 -1.2110 -0.0001 -0.0001 0.0056 -0.0082 2.2000 2.2000 180.0000 180.0000 192.2170 192.2170

Ir-Mn 1.0374 1.6398 0.1926 0.7871 7.6400 8.3400 0.0060 0.0060 -1.2160 -1.2140 -0.0088 3.3892 -0.0119 0.7139 2.2000 1.5500 180.0000 161.0000 192.2170 54.9380
Ir-Ni 1.0182 1.6265 0.2118 0.7913 7.6400 7.4300 0.0060 0.0060 -1.2000 -1.2000 0.0012 0.0000 -0.0130 0.3513 2.2000 1.9100 180.0000 149.0000 192.2170 58.7000
Ir-Pd 1.0392 1.6529 0.2710 0.8123 7.6400 8.9600 0.0060 0.0060 -1.1850 -1.1850 -0.0009 0.0000 -0.0122 0.3229 2.2000 2.2000 180.0000 169.0000 192.2170 106.4000
Ir-Pt 1.0204 1.6341 0.2496 0.7973 7.6400 7.4600 0.0060 0.0060 -1.2080 -1.2080 0.0009 0.0000 -0.0073 0.2760 2.2000 2.2800 180.0000 177.0000 192.2170 195.0900
Ir-Rh 1.1571 1.7709 0.3222 0.8343 7.6400 7.3600 0.0630 0.0630 -1.2180 -1.2200 0.0000 0.0000 0.0053 0.0375 2.2000 2.2800 180.0000 173.0000 192.2170 102.9055
Ir-Ru 1.0788 1.5947 0.1512 0.7366 7.6400 9.2300 0.0060 0.0060 -1.3120 -1.2450 0.2249 -0.1561 0.0087 0.2465 2.2000 2.2000 180.0000 178.0000 192.2170 101.0700

Mn-Ag 1.2609 1.6311 -0.0309 0.2454 8.3400 7.5800 0.0880 0.2320 -3.9620 2.4870 5.1675 0.4464 0.7847 0.5436 1.5500 1.9300 161.0000 165.0000 54.9380 107.8680
Mn-Au 2.4169 0.4080 -1.1869 -0.7203 8.3400 7.8800 0.3120 0.0060 -0.0530 -1.5470 -1.1975 -0.0044 0.5535 0.6132 1.5500 2.5400 161.0000 174.0000 54.9380 196.9665
Mn-Co 2.1329 0.7906 -0.9029 0.2042 8.3400 7.7300 0.1940 0.2310 -1.8830 2.0010 3.1717 -1.1633 0.5886 0.4111 1.5500 1.8800 161.0000 152.0000 54.9380 58.9332
Mn-Cu 1.3288 1.4944 -0.0988 0.5591 8.3400 7.9000 0.2000 0.2380 -3.8360 2.5970 4.9104 -0.7281 0.7817 0.5797 1.5500 1.9000 161.0000 145.0000 54.9380 63.5460
Mn-Fe 1.4260 2.0397 -0.0539 0.3701 8.3400 8.9700 0.2690 0.0060 -3.2060 1.1750 3.4869 2.0167 0.6751 0.5564 1.5500 1.8300 161.0000 156.0000 54.9380 55.8470
Mn-Ir 1.6727 1.7671 -0.4427 0.6650 8.3400 7.6400 0.4000 0.0500 -4.3470 0.7160 3.9887 0.0484 0.8285 -0.0221 1.5500 2.2000 161.0000 180.0000 54.9380 192.2170

Mn-Mn 2.0961 0.2337 -0.7236 1.0998 8.3400 8.3400 0.2370 0.2560 -1.4600 0.0220 -1.3315 3.5683 0.5609 0.7098 1.5500 1.5500 161.0000 161.0000 54.9380 54.9380
Mn-Ni 1.9669 0.9666 -0.7369 0.3550 8.3400 7.4300 0.2750 0.0190 -3.2200 1.1630 3.3706 -0.0003 0.6784 0.3402 1.5500 1.9100 161.0000 149.0000 54.9380 58.7000
Mn-Pd 2.8953 -0.6637 -1.6653 -1.0032 8.3400 8.9600 0.0060 0.0060 -0.3900 -0.3820 0.0000 -0.0001 0.5257 0.3205 1.5500 2.2000 161.0000 169.0000 54.9380 106.4000
Mn-Pt 2.3375 0.4879 -1.1075 -0.6451 8.3400 7.4600 0.2560 0.2560 0.5280 -0.9560 -0.9809 -0.0001 0.5414 0.2689 1.5500 2.2800 161.0000 177.0000 54.9380 195.0900
Mn-Rh 1.1709 1.7846 0.1898 0.6659 8.3400 7.3600 0.3940 0.1130 -4.2950 0.7540 3.9928 0.0258 0.8251 0.0273 1.5500 2.2800 161.0000 173.0000 54.9380 102.9055
Mn-Ru 1.7153 1.2309 -0.4853 0.5753 8.3400 9.2300 0.3500 0.0070 -3.7610 1.0330 3.8087 1.2547 0.7633 0.2794 1.5500 2.2000 161.0000 178.0000 54.9380 101.0700
Ni-Ag 1.5547 2.1684 0.7624 1.9779 7.4300 7.5800 0.0060 0.0060 -2.8400 -2.8400 0.0000 0.0000 0.3363 0.5787 1.9100 1.9300 149.0000 165.0000 58.7000 107.8680
Ni-Au 1.7003 2.3140 0.5820 2.1709 7.4300 7.8800 0.0060 0.0060 -3.1330 -3.1330 0.0000 0.0000 0.3435 0.6145 1.9100 2.5400 149.0000 174.0000 58.7000 196.9665
Ni-Co 1.6640 2.2777 0.0885 1.3393 7.4300 7.7300 0.2000 0.2500 -2.5740 -2.5730 -0.0009 -2.8303 0.3342 0.6992 1.9100 1.8800 149.0000 152.0000 58.7000 58.9332
Ni-Cu 1.7043 2.3180 0.8980 2.1433 7.4300 7.9000 0.2500 0.2560 -2.5600 -2.5620 0.0001 0.7105 0.3343 0.5848 1.9100 1.9000 149.0000 145.0000 58.7000 63.5460
Ni-Fe 1.7069 2.3207 0.8911 2.1003 7.4300 8.9700 0.2620 0.2320 -2.5630 -2.5630 0.0001 2.1541 0.3354 0.5546 1.9100 1.8300 149.0000 156.0000 58.7000 55.8470
Ni-Ir 1.7318 2.3455 1.0809 2.1333 7.4300 7.6400 0.0060 0.0060 -2.5500 -2.5500 0.0000 -0.0021 0.3447 -0.0124 1.9100 2.2000 149.0000 180.0000 58.7000 192.2170

Ni-Mn 1.7063 2.3200 2.2736 2.4438 7.4300 8.3400 0.2690 0.2750 -2.5450 -2.5400 0.0016 3.4020 0.3363 0.7098 1.9100 1.5500 149.0000 161.0000 58.7000 54.9380
Ni-Ni 1.7534 2.3671 1.0722 2.4727 7.4300 7.4300 0.2630 0.2630 -2.6150 -2.6150 0.0000 0.0000 0.3353 0.3416 1.9100 1.9100 149.0000 149.0000 58.7000 58.7000
Ni-Pd 1.6932 2.3069 0.8721 2.1028 7.4300 8.9600 0.2690 0.2690 -2.5530 -2.5530 0.0000 0.0000 0.3381 0.3185 1.9100 2.2000 149.0000 169.0000 58.7000 106.4000
Ni-Pt 1.6771 2.2908 0.8565 2.4207 7.4300 7.4600 0.2880 0.2880 -2.5270 -2.5270 0.0000 0.0000 0.3399 0.2691 1.9100 2.2800 149.0000 177.0000 58.7000 195.0900
Ni-Rh 1.8450 2.4587 0.8772 2.4857 7.4300 7.3600 0.0060 0.0060 -2.5940 -2.5940 0.0000 0.0000 0.3418 0.0247 1.9100 2.2800 149.0000 173.0000 58.7000 102.9055
Ni-Ru 1.7352 2.3489 0.8731 2.1358 7.4300 9.2300 0.0060 0.0060 -2.5560 -2.5540 0.0040 1.4541 0.3402 0.2993 1.9100 2.2000 149.0000 178.0000 58.7000 101.0700
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Table A5. DFT-computed data (M1 = Pd to Ru) 

M1-M2
Overpotential

η
ΔGOOH* ΔGOH* ΔGO* 

Ionization 
(M1)

Ionization 
(M2)

HOMO-
LUMO 
Gap Up

HOMO-
LUMO 

Gap Down

d-band 
Spin Up

d-band 
Spin Down

Spin 
Density 

(M1)

Spin 
Density 

(M2)

Partial 
Charge 
(M1)

Partial-
Charge 
(M2)

Electro-
negativity 

(M1)

Electro-
negativity 

(M2)

Atomic 
Radius 
(M1)

Atomic 
Radius 
(M2)

Atomic 
Mass 
(M1)

Atomic 
Mass 
(M2)

Pd-Ag 1.9660 2.5797 1.5497 3.0391 8.9600 7.5800 0.0060 0.0060 -3.0400 -3.0430 0.0001 0.6351 0.3011 0.5469 2.2000 1.9300 169.0000 165.0000 106.4000 107.8680
Pd-Au 2.1368 2.0268 1.3253 2.9337 8.9600 7.8800 0.0070 0.0070 -3.3630 -3.3630 0.0000 0.0000 0.3067 0.6154 2.2000 2.5400 169.0000 174.0000 106.4000 196.9665
Pd-Co 1.5823 1.9884 0.8370 2.3407 8.9600 7.7300 0.0070 0.0070 -2.8650 -2.8650 0.0001 -0.0001 0.3047 0.1598 2.2000 1.8800 169.0000 152.0000 106.4000 58.9332
Pd-Cu 1.9420 2.5557 1.4408 2.8996 8.9600 7.9000 0.2250 0.2250 -2.8500 -2.8500 0.0001 -0.7135 0.3003 0.5827 2.2000 1.9000 169.0000 145.0000 106.4000 63.5460
Pd-Fe 1.9367 2.5504 1.4298 2.9899 8.9600 8.9700 0.2370 0.2060 -2.8390 -2.8310 0.0005 2.1560 0.2990 0.5593 2.2000 1.8300 169.0000 156.0000 106.4000 55.8470
Pd-Ir 2.0876 2.7013 1.4469 2.9814 8.9600 7.6400 0.0070 0.0070 -2.8150 -2.8140 0.0001 -0.0002 0.3061 -0.0155 2.2000 2.2000 169.0000 180.0000 106.4000 192.2170

Pd-Mn 1.9746 2.5883 1.4432 2.9662 8.9600 8.3400 0.2370 0.2560 -2.8270 -2.8250 0.0017 3.4055 0.3029 0.7121 2.2000 1.5500 169.0000 161.0000 106.4000 54.9380
Pd-Ni 1.9475 2.5612 1.4240 2.9707 8.9600 7.4300 0.2430 0.2430 -2.8290 -2.8290 0.0000 0.0000 0.3026 0.3448 2.2000 1.9100 169.0000 149.0000 106.4000 58.7000
Pd-Pd 1.9874 2.6011 1.4481 2.9848 8.9600 8.9600 0.2380 0.2380 -2.9050 -2.9050 0.0000 0.0000 0.3020 0.3181 2.2000 2.2000 169.0000 169.0000 106.4000 106.4000
Pd-Pt 1.9594 2.5731 1.4235 2.9188 8.9600 7.4600 0.2560 0.2560 -2.7960 -2.7960 0.0000 0.0000 0.3032 0.2705 2.2000 2.2800 169.0000 177.0000 106.4000 195.0900
Pd-Rh 2.1130 2.7267 1.4889 2.9105 8.9600 7.3600 0.0060 0.0060 -2.8490 -2.8490 0.0000 0.0000 0.3053 0.0250 2.2000 2.2800 169.0000 173.0000 106.4000 102.9055
Pd-Ru 2.0012 2.6149 1.4745 3.0012 8.9600 9.2300 0.0070 0.0070 -2.8410 -2.8400 0.0050 1.4436 0.3043 0.2955 2.2000 2.2000 169.0000 178.0000 106.4000 101.0700
Pt-Ag 2.2546 2.8683 1.6066 2.7591 7.4600 7.5800 0.0070 0.0070 -2.8690 -2.8680 0.0008 -0.6350 0.2412 0.5451 2.2800 1.9300 177.0000 165.0000 195.0900 107.8680
Pt-Au 1.9345 2.0236 1.3595 2.7281 7.4600 7.8800 0.0060 0.0060 -3.2130 -3.2130 0.0000 0.0000 0.2477 0.6155 2.2800 2.5400 177.0000 174.0000 195.0900 196.9665
Pt-Co 1.9611 2.5748 1.4894 2.7202 7.4600 7.7300 0.2060 0.2380 -2.6830 -2.6830 -0.0020 -1.0732 0.2450 0.4159 2.2800 1.8800 177.0000 152.0000 195.0900 58.9332
Pt-Cu 1.9964 2.6101 1.4572 2.7482 7.4600 7.9000 0.2130 0.2120 -2.6870 -2.6860 0.0005 -0.7140 0.2439 0.5837 2.2800 1.9000 177.0000 145.0000 195.0900 63.5460
Pt-Fe 1.9906 2.6043 1.4548 2.7472 7.4600 8.9700 0.2370 0.2070 -2.6920 -2.6890 0.0008 2.1553 0.2420 0.5600 2.2800 1.8300 177.0000 156.0000 195.0900 55.8470
Pt-Ir 2.1477 2.7614 1.4298 2.7704 7.4600 7.6400 0.0060 0.0060 -2.6620 -2.6630 0.0000 -0.0003 0.2507 -0.0167 2.2800 2.2000 177.0000 180.0000 195.0900 192.2170

Pt-Mn 1.9812 2.5949 1.4459 2.7481 7.4600 8.3400 0.2440 0.2620 -2.6690 -2.6640 0.0029 3.4060 0.2447 0.7109 2.2800 1.5500 177.0000 161.0000 195.0900 54.9380
Pt-Ni 1.9898 2.6036 1.4625 2.7462 7.4600 7.4300 0.2440 0.2440 -2.6620 -2.6620 0.0000 0.0000 0.2445 0.3454 2.2800 1.9100 177.0000 149.0000 195.0900 58.7000
Pt-Pd 2.0058 2.6195 1.4707 2.7639 7.4600 8.9600 0.2250 0.2250 -2.6600 -2.6600 0.0000 0.0000 0.2435 0.3199 2.2800 2.2000 177.0000 169.0000 195.0900 106.4000
Pt-Pt 2.0393 2.6530 1.4657 2.7756 7.4600 7.4600 0.2500 0.2500 -2.7510 -2.7510 0.0000 0.0000 0.2462 0.2714 2.2800 2.2800 177.0000 177.0000 195.0900 195.0900
Pt-Rh 2.1567 2.7704 1.4547 2.7842 7.4600 7.3600 0.0060 0.0060 -2.6790 -2.6800 0.0000 0.0000 0.2512 0.0262 2.2800 2.2800 177.0000 173.0000 195.0900 102.9055
Pt-Ru 1.9385 2.5522 1.2604 2.5609 7.4600 9.2300 0.0070 0.0070 -2.7620 -2.7580 0.0079 -0.8052 0.2498 0.2124 2.2800 2.2000 177.0000 178.0000 195.0900 101.0700
Rh-Ag 1.0988 1.7126 0.3102 1.4349 7.3600 7.5800 0.1690 0.1690 -0.8490 -0.8490 0.0000 0.0000 0.0306 0.5739 2.2800 1.9300 173.0000 165.0000 102.9055 107.8680
Rh-Au 1.2378 1.8516 0.4741 1.3332 7.3600 7.8800 0.1190 0.1190 -0.8900 -0.8900 0.0000 0.0000 0.0147 0.6133 2.2800 2.5400 173.0000 174.0000 102.9055 196.9665
Rh-Co 1.5059 1.0838 -0.2759 0.5885 7.3600 7.7300 0.0620 0.0620 -1.0010 -1.0010 0.0001 0.0000 0.0463 0.1722 2.2800 1.8800 173.0000 152.0000 102.9055 58.9332
Rh-Cu 1.2729 1.3389 -0.0429 0.8463 7.3600 7.9000 0.1250 0.1250 -0.8740 -0.8740 -0.0001 0.0001 0.0401 0.4705 2.2800 1.9000 173.0000 145.0000 102.9055 63.5460
Rh-Fe 1.0384 1.6521 0.2589 1.3480 7.3600 8.9700 0.0060 0.0060 -0.9400 -0.9380 0.0038 2.1557 0.0219 0.5665 2.2800 1.8300 173.0000 156.0000 102.9055 55.8470
Rh-Ir 1.1263 1.7400 0.3219 1.3472 7.3600 7.6400 0.0130 0.0130 -1.0100 -1.0100 0.0000 0.0000 0.0506 -0.0072 2.2800 2.2000 173.0000 180.0000 102.9055 192.2170

Rh-Mn 1.0101 1.6238 0.2443 1.1385 7.3600 8.3400 0.0070 0.0070 -0.9540 -0.9340 0.0158 3.3983 0.0238 0.7118 2.2800 1.5500 173.0000 161.0000 102.9055 54.9380
Rh-Ni 1.0297 1.6435 0.2561 1.3464 7.3600 7.4300 0.0060 0.0060 -0.9310 -0.9310 0.0000 0.0000 0.0254 0.3500 2.2800 1.9100 173.0000 149.0000 102.9055 58.7000
Rh-Pd 1.0445 1.6582 0.2766 1.1663 7.3600 8.9600 0.0060 0.0060 -0.9220 -0.9220 0.0000 0.0000 0.0266 0.3225 2.2800 2.2000 173.0000 169.0000 102.9055 106.4000
Rh-Pt 1.0294 1.6431 0.2101 1.1532 7.3600 7.4600 0.0060 0.0060 -0.9120 -0.9120 0.0000 0.0000 0.0280 0.2734 2.2800 2.2800 173.0000 177.0000 102.9055 195.0900
Rh-Rh 1.1372 1.7510 0.3275 1.2351 7.3600 7.3600 0.0810 0.0810 -0.9320 -0.9320 0.0000 0.0000 0.0527 0.0409 2.2800 2.2800 173.0000 173.0000 102.9055 102.9055
Rh-Ru 1.1001 1.7138 0.2972 1.2231 7.3600 9.2300 0.1000 0.1930 -0.9480 -0.9200 0.0816 -1.3149 0.0519 0.2886 2.2800 2.2000 173.0000 178.0000 102.9055 101.0700
Ru-Ag 1.8140 0.7580 -0.5840 -0.6992 9.2300 7.5800 0.1500 0.0070 -1.1750 -0.4010 1.4848 -0.3893 0.2823 0.5661 2.2000 1.9300 178.0000 165.0000 101.0700 107.8680
Ru-Au 2.0649 0.5440 -0.8349 -0.8302 9.2300 7.8800 0.0060 0.0060 -0.5140 -0.5150 -0.0001 0.0000 0.1158 0.6158 2.2000 2.5400 178.0000 174.0000 101.0700 196.9665
Ru-Co 1.8778 0.5287 -0.6478 -0.7927 9.2300 7.7300 0.0060 0.0060 -0.4080 -1.1760 -1.4991 -2.7819 0.2610 0.7107 2.2000 1.8800 178.0000 152.0000 101.0700 58.9332
Ru-Cu 1.8838 0.6885 -0.6538 -0.7958 9.2300 7.9000 0.0060 0.0060 -1.1690 -0.3960 1.6433 0.5870 0.2665 0.5896 2.2000 1.9000 178.0000 145.0000 101.0700 63.5460
Ru-Fe 2.0059 0.5498 -0.7759 -0.9161 9.2300 8.9700 0.0060 0.0060 -1.1770 -0.4110 1.4126 2.0938 0.2637 0.4162 2.2000 1.8300 178.0000 156.0000 101.0700 55.8470
Ru-Ir 2.0083 0.6139 -0.7783 -0.9141 9.2300 7.6400 0.0060 0.0060 -0.7860 -0.6510 0.3817 -0.1868 0.2696 0.0037 2.2000 2.2000 178.0000 180.0000 101.0700 192.2170

Ru-Mn 1.9026 0.6583 -0.6726 -0.6544 9.2300 8.3400 0.0060 0.0060 -1.2520 -0.4300 1.4038 3.5398 0.3095 0.7039 2.2000 1.5500 178.0000 161.0000 101.0700 54.9380
Ru-Ni 1.9011 0.6697 -0.6711 -0.8089 9.2300 7.4300 0.0060 0.0060 -1.2010 -0.4070 1.5400 0.0003 0.2830 0.3475 2.2000 1.9100 178.0000 149.0000 101.0700 58.7000
Ru-Pd 1.8880 0.6849 -0.6580 -0.7873 9.2300 8.9600 0.0060 0.0060 -1.2170 -0.4230 1.5221 0.0008 0.2832 0.3214 2.2000 2.2000 178.0000 169.0000 101.0700 106.4000
Ru-Pt 2.1151 0.4677 -0.8851 -1.0129 9.2300 7.4600 0.0070 0.0070 -0.5140 -0.5150 0.0001 0.0000 0.1153 0.2783 2.2000 2.2800 178.0000 177.0000 101.0700 195.0900
Ru-Rh 2.0161 0.6314 -0.7861 -0.9077 9.2300 7.3600 0.0060 0.0060 -0.5600 -0.5580 0.0014 -0.0004 0.1189 0.0540 2.2000 2.2800 178.0000 173.0000 101.0700 102.9055
Ru-Ru 1.8250 0.8154 -0.5950 -0.7126 9.2300 9.2300 0.0070 0.0070 -0.8350 -0.8190 1.4260 -1.4044 0.3140 0.2938 2.2000 2.2000 178.0000 178.0000 101.0700 101.0700
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