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Abstract

In this paper, a parametric simulation analysis method for truncated-conical

shells was presented, it was developed using the Python language combined

with the finite element method. Our discussion primarily delves into the defor-

mation characteristics of these shells, as influenced by their materials, geome-

try, and boundary conditions. The deformation theory of the truncated-conical

shell was established, elucidating the internal mechanisms behind its bistable

state and negative stiffness deformation traits. Through an integrated script

for batch modeling and data processing, the deformation characteristics of var-

ious truncated-conical shells were discerned. Leveraging the dimensional anal-

ysis method and extensive simulation results, the quantitative expressions for

both the dimensionless bistable critical thickness and negative stiffness critical

thickness of the truncated-conical shell were derived. Moreover, quantitative

descriptions of the associated characteristic forces were provided. The analyti-

cal findings were validated with experimental results obtained from 3D-printed

truncated-conical shells.
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1 Introduction

In the absence of external loads, most structures encountered in daily life exhibit

only a single stable state. However, certain structures can be stably maintained in two

or more equilibrium states, making them bistable or multistable. These multistable

structures can transition between multiple stable states under appropriate stimuli or

loads. For instance, the leaves of Venus flytraps possess two stable states: open and

closed. They capture insects by toggling between these states[2]. Everyday items

like hairpins, tape measures, and straws also exhibit multiple stable states, greatly

facilitating human activities. Characterized by the ability to preserve multiple equi-

librium states and swiftly transition between them while releasing energy, multistable

structures hold significant potential in applications such as actuators, robots, energy

harvesters, and sensors[1].

Figure 1(c) depicts how the energy of a bistable structure rises, subsequently di-

minishes, and then rises again during the loading process. The gradient of the energy-

displacement curve reflects the force magnitude. Consequently, as the structure is

loaded, the force first intensifies, then declines to a negative value before rising again.

This means the gradient of the force-displacement curve assumes a negative value dur-

ing the bistable structure’s loading, with its relative minimum value being less than

zero. Conversely, Figure 1(a) illustrates the force-displacement curve of most monos-

table structures, where the force progressively increases with displacement, indicating

positive stiffness. If the force in a monostable structure first rises, then reduces, and

rises again with displacement (as in Figure 1(b)), the structure manifests negative

stiffness. Structures with negative stiffness are typically harnessed in designing en-

ergy absorption and vibration isolation devices. Common straws, for instance, can

assume multiple geometric states, classifying them as multistable structures[5]. Upon

close inspection, the deformable section of a straw consists of a series of truncated-

conical shells. Each of these shells can exhibit two stable states, inverting either

inward or outward. This lends straws their multistable nature. Previous research

on truncated-conical shells has primarily focused on their deformation response un-

der singular boundary constraints and within a limited size spectrum[5, 4, 7]. This

paper embarks on a comprehensive exploration of truncated-conical shells under di-

verse boundary conditions across a broader size range, emphasizing their bistable and
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Figure 1: Different States Of Structures

negative stiffness responses.

The subsequent sections are structured as follows: Section two introduces the de-

formation analysis process of the truncated-conical shell, detailing its bistability. Sec-

tion three proposes a parametric modeling analysis calculation method rooted in the

Python language, elaborating on how materials, geometry, and boundary constraints

influence the deformation of the truncated-conical shell. Section four formulates the

deformation theory of truncated-conical shells, dissecting the internal mechanisms

underpinning structural bistability. In section five, leveraging data from batch cal-

culations, we establish quantitative relationships for the bistable critical thickness,

negative stiffness critical thickness, and characteristic force under varying constraints,

employing dimensional analysis. Finally, section six presents experiments using 3D-

printed structures.

2 Analysis Method

To elucidate structural deformations, both experiments and simulations based on

the finite element method (FEM) are commonly employed. While experimental meth-

ods offer valuable insights, finite element simulations often yield richer data and are

more convenient to manage. As such, this study leverages the finite element simula-

tion to delve into the structure of truncated-conical shells. Experimental verification

of the findings is provided in section 6.
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2.1 Physical Model

The truncated-conical shell structure exhibits rotational symmetry, making it a

kind of rotary structure, as depicted in Figure 2.

Figure 2: Geometric Schematic Diagram of Truncated-Conical Shell

This structure is characterized by four geometric parameters: the larger circle

radius R, the smaller circle radius r, the altitude difference H, and the shell thickness

h.

In the subsequent subsection, the FEM will be employed to highlight the presence

of two distinct, reversible stable states inherent to this structure.

2.2 Finite Element Modeling

For the structural deformation analysis, the Abaqus software, which utilizes FEM,

is chosen. Initially, shell elements are used to construct a truncated-conical shell

(as visualized in Figure 2 with dimensions (R = 10mm, r = 8mm,H = 1mm,h =

0.2mm). Subsequently, the structure is rotated 180◦ about the x−axis, ensuring that

the loading direction aligns with the positive Y -axis direction.

Figure 3: Reversed Structure
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Following this, material properties are introduced with an elastic modulus E =

1MPa and a Poisson’s ratio ν = 0.3.

Two reference points are then formulated, which establish a coupling relationship

with the larger and smaller circles, respectively. This coupling is restricted to the

Y -direction displacement, as illustrated in Figure 4.

Figure 4: Coupling Relationship

The analysis encompasses two steps. The primary step involves inverting the struc-

ture, during which displacement boundary conditions are applied to both circles via

the reference points. Their Y -direction displacements are set to 0 and 2H, respec-

tively. In the subsequent step, the external load is relinquished, allowing observation

of the structural transformation.

The structure is then meshed for computational processing with a mesh density of

0.2mm. The resultant meshed structure is portrayed in Figure 5.

Figure 5: The Meshed Structure

To conclude the process, a job is instantiated, and the computation results are

subsequently collated.
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2.3 Analysis Results

Following the aforementioned calculations, the deformational shapes of the truncated-

conical shell were captured, as illustrated in Figure 6:

Figure 6: The Loading Process of The Truncated-Conical Shell

It is found that as the loading progressed, the structure flipped inside out, and the

structure remained flipped after unloading. This shows that the structure can stay

flipped stably, which shows that the structure has bistable characteristics.

2.4 Data Extraction and Analysis

Based on the computational findings, the relationship curves between force F ,

deformation energy U , and loading displacement w were plotted, as seen in Figure 7:

As the loading displacement increases in the first stage, both the energy and force

Figure 7: The Force-displacement curve and Deformation Energy-displacement curve
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values also increase. In the second stage, the value of the force increases to a relative

maximum value and gradually starts to decrease to zero. As the force value drops

to zero, the deformation energy of the structure reaches its peak. Then, in the third

stage, the value of the force is negative, and the magnitude of the force starts off by

increasing and then decreases to zero. The deformation energy of the structure can be

gradually reduced to a relative minimum value. Lastly, in the fourth stage, the value

of the force is positive and the deformation energy continues to increase.

2.5 Effects Of Mesh Density

Mesh density plays a pivotal role in influencing FEM computational accuracy.

Thus, it’s imperative to ensure the mesh granularity is optimal. As depicted in Figure

8, various mesh sizes - 0.2, 0.15, 0.10, and 0.05 - were applied to the structure, followed

by subsequent calculations.

Figure 8: The Structure with Different Mesh Sizes

Figure 9 reveals that variations in mesh density impart negligible deviations in the

results. To strike a balance between accuracy and computational efficiency, a mesh

density of 0.2mm is chosen.

3 Influence Of Different Materials, Geometry, and

Boundary Conditions

The factors that may affect the deformation characteristics are geometric parame-

ters, material parameters, and boundary conditions. This section first creates a script
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Figure 9: Force-Displacement Curves with Different Mesh Sizes

file based on Python language to realize parametric modeling so that it’s possible to

explore the impact of the parameters. The advantage of using scripts is that it will

make our modeling more convenient and realize batch automatic calculation.

3.1 Parametric Modeling Script

In order to realize the parametric modeling in the above process, a script suitable

for Abaqus software is written based on Python language[6]. After the parameters are

given, the script is run through the Abaqus software to realize the automatic modeling,

calculation, and data extraction of the above analysis. Based on the loop statement,

batch calculation of various parameters can also be realized.

3.2 Influence of Material Parameters on Structural Deforma-

tion

Two different material parameters are mainly considered: elastic modulus E and

Poisson’s ratio ν. Based on the script file, the deformation responses of multiple struc-

tures with different elastic modulus values and Poisson’s ratio values are calculated

respectively.

Based on the settings in section 2, the script in the previous section is used

to calculate the deformation response of the structure with the elastic modulus of

1MPa, 2MPa, 3MPa, 4MPa, and 5MPa. Figure 10 illustrates the structural defor-

mation curves of force and energy with respect to displacement for different elastic

modulus values.
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Figure 10: Force-Displacement Curves with Different Elastic Moduli

It can be clearly seen from Figure 10 and Figure 11 that the shapes of the force

and energy curves do not change with the change in elastic modulus. With a higher

modulus of elasticity, more force is required during loading, and at the same time the

structure stores more energy.

Figure 11: Deformation Energy-Displacement Curves with Different Elastic Modulus

After combining the data analysis, the curves of F/E and U/E with w are shown

in Figure 12. It is found that when the elastic modulus of the structure changes k

times, the external force and deformation energy required in the deformation process

becomes k times the original. In layman’s terms, U and F become larger as many

times as E changes. During the drawing, F/E is used. This is equivalent to removing

the multiples of the influencing factors, so the curves in Figure 12 are coincident. The

conclusion is that no matter how E changes, the ratio of F to E remains the same.
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Figure 12: (a)Relationship Curves Between F/E and w; (b)Relationship Curves Be-
tween U/E and w

The size and elastic modulus of the structure remain unchanged, and the de-

formation response of the structure is shown in Figure 13 when Poisson’s ratio are

0.2, 0.25, 0.3, 0.35, and 0.4.

Figure 13: Force-Displacement Curves with Different Poisson’s ratios

The curves in Figure 13 almost overlap. Therefore, it is found that no matter what

the value of Poisson’s ratio is, it will not affect the deformation force of the structure.

3.3 Influence of Geometric Parameters on Structural Prop-

erties

The shape of a truncated-conical shell is determined by R (great circle radius),

r (small circle radius), H (altitude difference), and h (shell thickness). This section

discusses the deformation response of truncated-conical shells with different geometric
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parameters. The deformation characteristics of the geometrically similar truncated-

conical shells are examined first. It is found that they have geometrically similar

characteristics, that is, the four geometric parameters are proportional. On the basis

of the size of the geometric model in section 2, let the overall enlargement be 2 and

3 times. The 4 parameters are also doubled and tripled. The calculation results are

shown in Figure 14.

Figure 14: Deformation Characteristics with Different Magnification Times

As shown in Figure 14, the altitude difference H of these three similar structures

is different, so the displacement during loading is also different. Therefore, a dimen-

sionless loading displacement w̄ = w/H is defined in the figure, the purpose is to unify

the loading displacement of structures with different geometric sizes(see Figure 15).

Figure 15: (a)Relationship Curves Between F and w̄; (b)Relationship Curves Between
U and w̄

Through the analysis of specific data, it is found that when the overall size of the

geometric structure is enlarged by k times, the force and energy in the loading process
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are respectively enlarged by k2 times and k3 times(see Figure 16). It can be concluded

that different truncated-conical shells with similar geometry have similar deformation

characteristics. This means that the deformation analysis for a truncated-conical shell

of one size is also applicable to all other structures with similar geometry.

Figure 16: (a)Relationship Curves Between F/k2 and w̄; (b)Relationship Curves Be-
tween U/k3 and w̄

Figure 17: Force-Displacement Curves with Different Height Differences

Firstly, the influence of height h on structural deformation characteristics is ana-

lyzed. Keeping R, r, and h unchanged, the altitude difference H has the value from

0.2mm to 1.4mm, and the interval of each height is 0.2mm.

As shown in Figure 17, when H = 0.2mm, the force increases with the increase

of the loading displacement until the structure is completely overturned. This shows

that the structure at this time has positive stiffness and no bistable characteristics.

The structure has negative stiffness but no bistability as H = 0.4mm. When H is

greater than or equal to 0.5mm, the structure is bistable, and the larger h, the greater

the force required for steady-state switching.
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As shown in Figure 18, keep R, H, and h unchanged. The force-displacement

curves have the same shape, both have bistability properties. With the increase of r,

the bistable characteristics become more obvious, which means that a larger force is

needed to make it flip to the second stable state. With the increase of r, the force of

the loading process increases, and the increase rate becomes faster.

Figure 18: Force-Displacement Curves with Different Small Circle Radii

Figure 19: Force-Displacement Curves with Different Thicknesses

Then the influence of shell thickness h on the deformation characteristics of the

structure is analyzed. As shown in Figure 19, when h = 0.1mm, 0.2mm, 0.3mm, the

structure is bistable, but the structure with h = 0.4mm or h = 0.5mm is monostable.

As h increases, the structure changes from bistability to having negative stiffness to

having positive stiffness.

In summary, it can be found that if the geometrically similar truncated-conical

shell structures are similar, the mechanical properties are also similar. As the ratio of
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height to the radius of the great circle increases under the chosen geometric size, the

structure will change gradually from positive stiffness to negative stiffness, eventually

reaching a bistable state. All radius of small circle has bistability, which becomes

more pronounced as the ratio of small circle radius to great circle increases. As the

ratio of shell thickness to great circle increases, the structure changes from bistability

to negative stiffness and then to positive stiffness again. The truncated-conical shell

with a large altitude difference, large radius of a small circle, and small thickness is

bistable. The truncated-conical shell is bistable when it has a large altitude difference,

a large small circle radius, and a thin shell.

3.4 Effect of Boundary Conditions

In this section, the influence of the small circle and great circle displacement bound-

ary condition constraints on the truncated-conical shell is focused. As shown in Figure

Figure 20: Different Boundary Conditions

20(a), the structure is in free boundary condition at point A, that is, it can move and

rotate freely. As depicted in Figure 20(b), the structure is under simply supported

boundary conditions at point A, and its left and right movement is restricted, but it

can rotate freely. As shown in Figure 20(c), the structure is under fixed boundary

conditions at point A, which means it can neither move nor fan be turned. Nine

boundary conditions are possible for truncated-conical shells. Based on the geometric

dimensions in section 2, the different boundary conditions are applied to the small

circle and the great circle, and the calculation is submitted. The calculation result is

shown in Figure 21.

The force-displacement curves of truncated-conical shells are quite different for

different constraints, as illustrated in Figure 21. Therefore, when the small circle and
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Figure 21: Force-Displacement Curves with Different Boundary Conditions

the great circle of the truncated-conical shells are under different boundary conditions,

the mechanical properties of the structure are also different.

4 Bistable Mechanism Analysis

4.1 Deformation Theory with Double Free Boundary Condi-

tions

As shown on the left side of Figure 22, the truncated-conical shell with R =

10mm, r = 9mm,H = 1mm,h = 0.2mm.

During the loading process, the cross-sectional shape of the truncated-conical shell

is shown on the right side of Figure 22. It is found that the radius and perimeter of the

small circle boundary decrease first and then increase during the loading process. On

the other hand, the radius and perimeter of the great circle boundary display an initial

increase followed by a decrease. This means that during loading, a hoop compressive

deformation is found near the small circle boundary, while a hoop tensile deformation
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Figure 22: Shape Change of Truncated-Conical Shell

occurs near the large circle boundary. And during the loading process, the section

of the truncated-conical shell is basically kept straight and the length is basically

unchanged, that is, there is almost no bending deformation and tension-compression

deformation in the radial direction. And the points on the inner surface experience

an increase in perimeter, while the points on the outer surface experience a decrease

in perimeter, resulting in circumferential bending deformation.

Figure 23: Schematic Diagram of Deformation

Figure 23 is a schematic diagram of the deformation of the centerline of the section

of the truncated-conical shell before and after structural deformation. It is assumed

that the section of the truncated-conical shell is always a straight line and the length

is constant during the deformation process. The initial length L of the centerline is:

L =
√

(R− r)2 +H2 (1)
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The inclination angle of the center line of the undeformed section, the circumferential

curvature, and the coordinates of different positions are:

sin θ =
H

L
(2)

Kφ =
sin θ

X
(3)

X = R− s ∗ cos θ (4)

Y = s ∗ sin θ (5)

When the displacement is w, the radius increase of the great circle boundary of the

structure is defined as d. Then the inclination angle of the center line of the deformed

structure section, the circumferential curvature, and the coordinates of different posi-

tions can be expressed as[5]:

sin θ′ =
H − w

L
(6)

K ′

φ =
sin θ′

x
(7)

x = R + d− s ∗ cos θ′ (8)

y = s ∗ sin θ′ (9)

The strain and curvature changes in the circumferential direction during the struc-

tural deformation process are[3]:

εφ =
x−X

X
=

d0 + s ∗ (cos θ0 − cos θ)

R− s ∗ cos θ0
(10)

∆Kφ =
sin θ

R + d0 − s ∗ cos θ
−

sin θ0
R− s ∗ cos θ0

(11)

Then the in-plane tension-compression strain energy and out-of-plane bending

strain energy per unit area of the structure is:

uin =
1

2
Ehε2φ (12)

uout =
1

2

Eh3

12(1− v2)
∆K2

φ (13)
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The total in-plane tensile and compressive strain energy and out-of-plane bending

strain energy of the structure obtained by integration are:

Uin =

∫

2π

0

∫ L

0

uin(R− s ∗ cos θ)dsdφ (14)

Uout =

∫

2π

0

∫ L

0

uout(R− s ∗ cos θ)dsdφ (15)

The total deformation energy of the structure is U = Uin + Uout, according to the

principle of minimum potential energy (dU/dd = 0), the increase in radius d of the

great circle boundary under different displacements can be obtained. Thus, the total

deformation energy, in-plane deformation energy, and out-of-plane deformation energy

of the structure under different displacements can be obtained.

Figure 24: Theoretical Results

It can be seen from Figure 24 that the theoretical results of truncated conical shells

with different thicknesses(R = 10mm, r = 8mm,h = 1mm) are consistent with the

finite element results.

4.2 Bistable Deformation Mechanism

As shown in Figure 25, the total energy U, the in-plane tensile and compressive

deformation energy Uin, and the out-of-plane bending deformation energy Uout of the

truncated-conical shell with R = 10mm, r = 8mm,H = 1mm, and h = 0.2mm vary

with the loading displacement. The figure illustrates a gradual increase in the in-plane

deformation energy Uin, the out-of-plane deformation energy Uout, and the total energy
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Figure 25: In-Plane and Out-of-Plane Deformation Energy

U as the thickness increases. For this structure, the in-plane deformation energy is

much larger than the out-of-plane deformation energy, so the total energy and the

in-plane deformation energy have the same deformation trend (increase first and then

decrease). Therefore, the in-plane deformation energy dominates the total energy, and

the structure has bistability.

Figure 26: (a) Energy Change With Different h; (b) Uout/U with Different h

Figure 26(a) shows the energy change curves during the loading process of truncated-

conical shells with different thicknesses (R = 10mm, r = 8mm,H = 1mm). As the

thickness increases, Uin, Uout, and U increase gradually. Based on the previous the-

ory, Uin is proportional to h, and Uout is proportional to h3, so Uout increases faster

with h. Figure 26(b) shows the ratio of out-of-plane deformation energy to total en-

ergy Uout/U for truncated-conical shells with different thicknesses. As the thickness

increases, Uout/U increases, so the energy curve changes from a trend of first increas-

ing and then decreasing to a gradually increasing trend, and the structure gradually
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changes from a bistable state is monostable.

Figure 27: Uout/U with Different r and H

Figure 27(a) shows that the deformation process of truncated-conical shells with

different radii is dominated by in-plane deformation energy, so the structures all have

bistable states. Figure 27(b) shows that with the increase of height difference H, the

proportion of out-of-plane deformation energy gradually increases, and the structure

gradually changes from monostable to bistable.

4.3 Limitations of Deformation Theory

Figure 28: Comparison of Theoretical Results with FEA

As shown in Figure 28(a), when r = 3mm,h = 0.1mm(R = 10mm,H = 1mm),

the error between theoretical and finite element results is obvious. As the thickness

increases, the error decreases gradually. From Figure 28(b), it can be seen that for

the truncated-conical shell with R = 10mm,H = 1mm, and h = 0.1mm, The above
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theory has a large error when r is small, and the error reduces as r increases. Therefore,

the above theory cannot predict the deformation response of truncated-conical shell

structures of all shapes under double-free boundary conditions.

Figure 29 is the morphology of the truncated-conical shell of R = 10mm, r =

3mm,H = 1mm,h = 0.1mm when w = h. It can be seen that the section of the

truncated-conical shell structure cannot keep a straight line during the deformation

process. Therefore, the above theory cannot accurately predict the deformation re-

sponse of the truncated-conical shell when both r and h are small.

Figure 29: Morphology of truncated-conical shell

Figure 30: Deformation Process Under Double-Free Boundary Condition

In addition, the boundaries and radii of the large and small circles of the truncated-

conical shell cannot be changed in the case of double simple support. Figure 30

shows the shape of the truncated-conical shell structure (R = 10mm, r = 8mm,H =

1mm,h = 0.2mm) with w = 6H/5, and changes in the cross-section of the structure.

It can be seen that due to the limitation of simply supported boundary, the cross-
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section of the deformed structure can not be kept straight.

Figure 31: Deformation Process Under Double-Supported Boundary Condition

Figure 31 shows the deformation process of the cross-section of the truncated-

conical shell under the double-supported condition. It can be found that due to the

limitation of double-fixed boundary conditions, the radius of the structure boundary

cannot be changed and cannot be rotated, so the structure section cannot keep a

straight line.

It is very difficult to consider the radial bending of structures in theory, so the

above theory can only be used to predict the deformation of most truncated-conical

shells with the double-free boundary condition.

5 Quantitative Description of Structural Deforma-

tion of Truncated-Conical Shells

5.1 Dimensional Analysis

The research of section 3 shows that the deformation characteristics of the structure

under certain boundary conditions are related to the geometric dimensions (R, r,H, h),
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material parameters (E), and characteristic forces (Fchar). Their dimensions are:

[R] = L

[r] = L

[H] = L

[h] = L

[Fchar] = MLT−2

[E] = ML−1T−2

(16)

For the above 6 physical quantities, there are 2 basic quantities: L andMT 2. It can

be determined by the π theorem that the deformation characteristics of this structure

can be described by four dimensionless parameters[8]. 4 dimensionless parameters are

defined as follows:

F̄char =
Fchar

ER2

r̄ = r/R

H̄ = H/R

h̄ = h/R

(17)

They have a functional relationship:

π(F̄char, r̄, H̄, h̄) = 0 ⇐⇒ F̄char = Fchar/ER2 = g(r̄, H̄, h̄) (18)

It is found that the deformation characteristic force of the structure is determined

by dimensionless height, thickness, and radius. Dimensionless geometric parameters

do not change with modulus, so the dimensionless characteristic force remains un-

changed. When the structure is scaled as a whole, the dimensionless radius, height,

and thickness do not change, so the dimensionless characteristic force does not change

either.
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5.2 Double Free Boundary Conditions

5.2.1 Bistable Critical Thickness with Double Free Boundary Conditions

Based on the analysis of section 3, it has been found that when the dimension-

less radius and dimensionless height difference of the structure are determined, as

the thickness of the structure increases, the structure will change from bistable char-

acteristics to negative stiffness (monostable) characteristics, and further to positive

stiffness characteristics. Therefore there exists a bistable critical thickness and a neg-

ative stiffness critical thickness. The structure is bistable when its thickness is below

the bistable critical value. Negative stiffness occurs in the structure when its thickness

is less than the critical value for negative stiffness. Therefore, when the thickness of

the structure is the bistable critical thickness, the minimum value of force Fmin in

the loading process is 0. That is, the dimensionless radius r̄, the dimensionless height

difference H̄, and the dimensionless bistable critical thickness h̄b
c satisfy:

F̄min = g(r̄, H̄, h̄b
c) = 0 (19)

The above functional relationship can be rewritten as:

h̄b
c = f(r̄, H̄) (20)

In order to obtain the concrete mathematical form of the above functional relation-

ship, the script is rewritten by the following float chart (see Figure 32). The script can

calculate the corresponding dimensionless bistable critical thickness value according

to the determined dimensionless radius and dimensionless height difference.

Considering that when the thickness is less than the critical thickness, the structure

has a bistable state and Fmin < 0. When the thickness is greater than the critical

thickness, the structure is non-bistable, so Fmin is greater than 0. The above float

chart adopts the 2-point method and the thickness when Fmin is approximately equal

to 0 is obtained through 10 iterations, that is, the bistable critical thickness.

Combined with the above-modified script, seven dimensionless radii (0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9) and seven dimensionless height differences (0.08, 0.10, 0.12, 0.14, 0.16,

0.18, 0.20), a total of 49 cases deconstructed dimensionless bistable critical thickness.
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Figure 32: Float-Chart

The calculation in each case is iterated 10 times, and the dimensionless bistable critical

thicknesses in different cases are calculated, as shown in Figure 33.

Figure 33: The Dimensionless Bistable Stiffness Critical Thickness

As shown in Figure 33, when r̄ = 0.3, H̄ = 0.08, the structures have bistability

when their dimensionless thickness is less than 0.022. Colors in the graph from blue to

red indicate a gradual increase in the dimensionless critical thickness. it is noticeable

that as the dimensionless radius and dimensionless height difference increase, there is

a gradual increase in the dimensionless critical thickness as well.

In order to obtain the critical thickness of the structure at a more general size, the

specific functional relationship between them is obtained. Here, MATLAB software is
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used to perform function fitting on the above 49 data. Considering the applicability

and accuracy of the fitting function, the following five-parameter function is used here:

h̄b
c = pb

1
+ pb

2
r̄ + pb

3
H̄ + pb

4
r̄2 + pb

5
r̄H̄ (21)

The fitting results by MATLAB software are as follows: pb
1

= 0.1299, pb
2

=

−0.05843, pb
3
= 0.2394, pb

4
= 0.04048, pb

5
= 0.2621. The fitting diagram is shown

in Figure 34, and the R-square of the above fitting results is 0.9925, indicating that

the above function can predict the bistable critical thickness well.

Figure 34: The Fitting Diagram Of the Bistable Critical Thickness

5.2.2 Negative Stiffness Critical Thickness with Double Free Boundary

Conditions

To further analyze the negative stiffness critical thickness of the structure under

different dimensionless radii and height differences, a method similar to the above is

adopted. When the thickness is less than the critical thickness of negative stiffness, the

structure has negative stiffness, and its force-displacement curve has relative maximum

and relative minimum values. If the thickness is equal to or exceeds the critical

thickness of negative stiffness, the structure exhibits positive stiffness, resulting in

an increasing force-displacement curve without any extreme points. Therefore, the

critical thickness of negative stiffness is the minimum thickness where there is no

extreme point in the force-displacement curve, the judgment condition of the float

chart ”F̄min > 0” changed to ”F̄min does not exist”.
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After resubmitting the modified script, and batch calculating 7 kinds of dimen-

sionless radii (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and 7 kinds of dimensionless height

differences (0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20), a total of 49 cases deconstructed

dimensionless negative stiffness critical thickness. The calculation in each case is it-

erated 10 times, and the dimensionless negative stiffness critical thickness in different

cases is calculated. As shown in the table below.

Figure 35: The Dimensionless Negative Stiffness Critical Thickness

As shown in Figure 35, When r̄ = 0.3, H̄ = 0.08, the structures with dimensionless

thickness less than 0.051 have negative stiffness. Colors in the graph from blue to

red indicate a gradual increase in the dimensionless critical thickness. Thus, as the

dimensionless radius and dimensionless height difference increase, the dimensionless

critical thickness also gradually increases.

The parameters obtained by fitting the function form (h̄n
c = pn

1
+ pn

2
r̄ + pn

3
H̄ +

pn
4
r̄2 + pn

5
r̄H̄) of five parameters similar to the previous ones are : pn

1
= 0.01399,

pn
2
= −0.04473, pn

3
= 0.521, pn

4
= 0.02313, pn

5
= 0.3501(R-square = 0.9972). Af-

Figure 36: The Fitting Diagram Of The Negative Stiffness Critical Thickness
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ter the above calculations, the quantitative expressions of the dimensionless bistable

state and the critical thickness of negative stiffness are obtained. These expressions

can quickly determine whether the truncated-conical shell has bistability or negative

stiffness based on the geometric dimensions.

5.2.3 Eigenloads with Double Free Boundary Conditions

Figure 37: Force-Displacement Curve with Positive And Negative Stiffness

From Figure 37(a), when the structure has negative stiffness, the force-displacement

curve can be approximated by the three-segment line connecting the three character-

istic points A, B, and C. Among them, point A is the maximum value point, point B

is the minimum value point, and point C corresponds to the loading displacement of

2 times the height difference. Define the ordinates of points A, B, and C as F̄A, F̄B,

and F̄C , respectively. When the structure has positive stiffness, there is no extreme

point in the curve, the curve can be approximated by the line connecting point C and

the origin as shown in Figure 37(b).

Based on the above script, 7 dimensionless radii (0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and

7 dimensionless height differences (0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20) are calculated

using the loop language, and 9 dimensionless thicknesses (0.01, 0.02, 0.03, 0.04, 0.05,

0.06, 0.07, 0.08, 0.09). A total of 441 kinds of deformation processes of the structure,

and a total of 386 kinds of parameter combinations under the structure with negative

stiffness. In this case, the values of F̄A and F̄B are extracted from these 386 bistable

structural force-displacement curves and the value of F̄C are extracted from all the

calculated data.

After analysis of the data, the relationship between F̄A and r̄, H̄, h̄ is difficult to be
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accurately described by simple functions. In order to fit the value of F̄A, the following

function form is selected:

F̄A = C1 + C2r̄ + C3H̄ + C4h̄+ C5r̄
2 + C6H̄

2 + C7h̄
2 + C8r̄H̄ + C9H̄h̄+ C10r̄h̄ (22)

The 10 parameters obtained by fitting MATLAB software are shown in Table

5.1(R-square = 0.9547).

C1 C2 C3 C4 C5

0.000577 -0.001110 -0.003525 -0.006856 0.000586
C6 C7 C8 C9 C10

0.006339 0.018025 0.002622 0.031584 0.005159

Table 5.1: Parameters Fitting Of F̄A

Similarly, choose the following function form to fit the value of FB:

F̄B = C1+C2h̄
2+C3r̄H̄+C4H̄h̄+C5h̄

3+C6r̄h̄
2+C7H̄h̄2+C8H̄r̄+c9h̄H̄

2+C10r̄H̄h̄ (23)

The 10 parameters obtained by fitting are as follows(R-square = 0.9413): To

C1 C2 C3 C4 C5

-0.000046 -0.095653 0.001642 0.047722 0.040988
C6 C7 C8 C9 C10

0.122978 0.517114 -0.001181 -0.225772 -0.064393

Table 5.2: Parameters Fitting Of F̄B

extract the above 441 cases, FC selects the following function form:

F̄C = C1h̄+C2h̄
2+C3H̄h̄+C4r̄h̄+C5H̄

3+C6h̄
3+C7r̄h̄

2+C8H̄h̄2+c9h̄r̄
2+C10h̄H̄

2 (24)

The 10 parameters obtained by fitting are as follows(R-square = 0.9930):

C1 C2 C3 C4 C5

0.005788 -0.101029 -0.002177 -0.015498 0.001817
C6 C7 C8 C9 C10

0.447841 0.096580 0.384841 0.010616 -0.040841

Table 5.3: Parameters Fitting Of F̄C
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5.3 Double Simply Supported Boundary Conditions

In this section, the deformation of truncated-conical shells with double simply sup-

ported boundary conditions is studied. The pre-calculation results show that when the

dimensionless radius and dimensionless height difference are large, the predetermined

calculation cannot be completed, that is, the structure in this case cannot complete

the predetermined deformation.

After calculation, 378 structures with different dimensionless parameters are bistable,

including 6 dimensionless radii (0.3, 0.4, 0.5, 0.6, 0.7, 0.8), 7 dimensionless height dif-

ferences (0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20), and 9 dimensionless thicknesses (0.01,

0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09). Compared with the double-free boundary

condition, the structure has a larger bistable critical thickness under the double simply

supported boundary condition. In order to better describe the deformation character-

istics of different structures with double simple supported boundary conditions, the

function fitting is carried out on the relationship between F̄A, F̄B, and F̄C and the

geometric dimensions.

Through the observation of 378 sets of calculation results, it is found that the rela-

tionship between characteristic forces and geometric dimensions is more complicated.

Considering the accuracy of the fitting function, the following 16 parameter function

relationships are used to fit the value of F̄A:

F̄A =C1r̄ + C1H̄ + C1h̄+ C4r̄
2 + C5H̄

2 + C6h̄
2 + C7r̄H̄ + C8r̄h̄+ C9r̄

3+

C10h̄
3 + C11r̄H̄

2 + C12r̄h̄
2 + C13H̄h̄2 + C14h̄r̄

2 + C15h̄H̄
2 + C16r̄H̄h̄

(25)

Using the MATLAB software 16 parameters(R-square = 0.9460) are obtained:

C1 C2 C3 C4 C5 C6 C7 C8

0.079070 -0.327142 0.564979 -0.169870 1.289386 -2.807863 0.438511 -2.172260
C9 C10 C11 C12 C13 C14 C15 C16

0.087087 -3.568607 -1.774718 4.889002 11.141784 1.527155 -7.533183 3.125601

Table 5.4: Parameters Fitting Of F̄A

Similarly, when fitting the value of F̄B, the following function form is selected:

F̄B =C1 + C2r̄ + C3H̄ + C4h̄+ C5r̄
2 + C6H̄

2 + C7h̄
2 + C8H̄h̄+ C9r̄h̄+

C10h̄
3 + C11r̄H̄

2 + C12r̄h̄
2 + C13H̄h̄2 + C14h̄r̄

2 + C15h̄H̄
2 + C16r̄H̄h̄

(26)
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The 16 parameters obtained by fitting are as follows(R-square = 0.9361):

C1 C2 C3 C4 C5 C6 C7 C8

0.013519 -0.048759 0.023854 -0.788320 0.036403 -0.313294 3.599012 1.452916
C9 C10 C11 C12 C13 C14 C15 C16

2.477434 1.991095 0.370642 -5.329294 -12.564593 -1.669571 4.190060 -3.752300

Table 5.5: Parameters Fitting Of F̄B

The functional form of 5 parameters is used to fit the value of FC :

F̄C = C1 + C2h̄+ C3H̄
2 + C4h̄

2 + C5H̄h̄ (27)

The five parameters obtained by the fitting are as follows(R-square = 0.9576):

C1 C2 C3 C4 C5

0.000057 -0.004522 -0.001428 0.059799 0.013192

Table 5.6: Parameters Fitting Of F̄C

5.4 Double Fixed Boundary Conditions

Similar to the previous section, this section focuses on truncated-conical shells

under double-supported boundary conditions. The pre-calculation results show that

when the dimensionless radius and thickness are small and large at the same time, the

truncated-conical shell cannot complete the predetermined calculation process, that

is, the structure at this time is difficult to undergo the predetermined deformation.

The structure’s deformation process under 280 cases is studied, with 5 dimensionless

radii (0.3, 0.4, 0.5, 0.6, 0.7), 7 dimensionless height differences (0.08, 0.10, 0.12, 0.14,

0.16, 0.18, 0.20), and 8 dimensionless thicknesses (0.02, 0.03, 0.04, 0.05, 0.06, 0.07,

0.08, 0.09). Excluding 11 cases of calculation failure, there are 66, 229, and 40 kinds

of truncated-conical shells with bistability, negative stiffness, and positive stiffness,

respectively.

Observing the above 269 calculation results, it is found that when the dimensionless

radius and dimensionless height difference of the structure are determined, as the

dimensionless thickness increases, the structure will gradually change from bistable to

negative stiffness and then to Positive stiffness.
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5.4.1 Bistable Critical Thickness with Double Fixed Boundary Conditions

Similar to the previous method, five dimensionless radii (0.4, 0.5, 0.6, 0.7, 0.8)

and seven dimensionless height differences (0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20) are

calculated in batches through the loop statement, a total of 35 cases deconstructed

dimensionless bistable critical thickness. The calculation in each case is iterated 10

times, and the dimensionless bistable critical thickness in different cases is calcu-

lated(see Figure 38).

Figure 38: The Dimensionless Bistable Critical Thickness

Colors in the graph from blue to red indicate a gradual increase in the dimensionless

bistability critical thickness. It is observed from the figure that as the dimensionless

height difference gradually increases, the dimensionless bistable critical thickness also

gradually increases. However, with the increase of the dimensionless radius, the di-

mensionless bistable critical thickness presents a trend of first increasing and then

decreasing.

5.4.2 Negative Wtiffness Critical Thickness with Double Fixed Boundary

Conditions

Similarly, five dimensionless radii (0.3, 0.4, 0.5, 0.6, 0.7) and seven dimensionless

height differences (0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20) are calculated in batches

through the loop statement, totaling 35 Deconstructed dimensionless negative stiffness

critical thickness for the medium case. The dimensionless negative stiffness critical

thickness calculated under different conditions is shown in Figure 39.

From Figure 39, it can be seen that as the dimensionless radius and dimensionless

height difference increase, the dimensionless critical thickness also gradually increases.
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Figure 39: The Dimensionless Negative Stiffness Critical Thickness

5.4.3 Eigenloads with Double Fixed Boundary Conditions

Similar to the previous one, the expression of characteristic force is fitted based on

the above 269 groups of calculation results.

The following function form is selected to fit the value of F̄A:

F̄A = C1h̄+ C2H̄h̄+ C3r̄h̄+ C4h̄
3 + C5r̄h̄

2 + C6H̄h̄2 + C7h̄r̄
2 + C8r̄H̄h̄ (28)

The 8 parameters obtained by fitting are as follows(R-square = 0.9689): The function

C1 C2 C3 C4

0.247299 -0.859633 -1.070955 -10.292245
C5 C6 C7 C8

2.515078 4.385819 0.865290 2.053095

Table 5.7: Parameters Fitting Of F̄A

form for fitting the F̄B value is as follows:

F̄B = C1h̄+C2h̄
2+C3H̄h̄+C4r̄h̄+C5h̄

3+C6r̄h̄
2+C7H̄h̄2+C8h̄r̄

2+C9h̄H̄
2+C10r̄H̄h̄

(29)

The 10 parameters obtained by fitting are as follows(R-square = 0.9566): In order to

C1 C2 C3 C4 C5

0.152132 -2.720025 0.329899 -0.546575 8.783564
C6 C7 C8 C9 C10

4.972035 0.800058 0.446737 -0.567250 -0.575058

Table 5.8: Parameters Fitting Of F̄B

fit the value of F̄C , the following function form is selected:

F̄C = C1h̄
2 + C2r̄h̄+ C3h̄

3 + C4r̄h̄
2 + C5h̄r̄

2 + C6r̄H̄h̄; (30)
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The 6 parameters obtained by fitting are as follows(R-square = 0.9594):

C1 C2 C3 C4 C5 C6

2.133632 -0.931650 -17.979518 3.386917 1.055409 1.781479

Table 5.9: Parameters Fitting Of F̄C

6 Experimental Verification on Bistable Charac-

teristics of Truncated-Conical Shells

In this section, experiments are carried out with a truncated-conical shell printed

in 3D to verify the above analysis results. The experimental determination of the

force-displacement curve of the truncated-conical shell during the overturning loading

process needs to rely on precise and complex measuring instruments, which is difficult

to achieve. Therefore, in this section, the experimental verification of whether the

bistable state exists in the truncated-conical shell under different geometric sizes is

carried out.

6.1 Double Free Boundary Conditions

In section 3.2, the influence of thickness on the deformation of truncated conical

shells under free boundary conditions is discussed. When R = 10mm, r = 8mm,

and H = 1mm, the structures with a thickness of 0.3mm or less are bistable, and

the structures with a thickness of 0.4mm or more are monostable. Experiments can

easily verify the structure’s bistability. Considering the accuracy of 3D printing TPU

material, it is difficult to accurately produce the truncated-conical shell with the above

thickness. Four truncated-conical shell structures are produced by magnifying the

above-mentioned geometric dimensions by three times. They have R = 30mm, r =

24mm,H = 3mm, and thicknesses of 0.6, 0.9, 1.2, 1.5mm respectively.

Therefore, the above-mentioned geometric dimensions are magnified by three times

to produce four truncated-conical shell structures with R = 30mm, r = 24mm, H =

3mm, and thicknesses of 0.6, 0.9, 1.2mm, and 1.5mm respectively. Based on the above

analysis, only the structures with thicknesses of 0.6mm and 0.9mm have bistability.
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In order to better demonstrate the deformation of the deconstruction, four lines

are drawn on the inner surfaces of the four truncated-conical shell marks. Turn the

inside and outside of these four structures by hand, and then place them on the table.

If a structure can be stabilized in this inside-out flip, it possesses bistability.

Figure 40: 3D Printed Truncated-Conical Shells with Different Thicknesses

As shown in Figure 40, the experimental results show that only the structures with

thicknesses of 0.6mm and 0.9mm have the second stable state inside-out. However,

the structures with thicknesses of 1.2mm and 1.5mm recover quickly after releasing

the external force, so they do not have bistability.

The bistable critical thickness of the truncated-conical shell under double free

boundary conditions is further verified experimentally. Six structures are printed(R =

30mm, r = 12, 18, 24mm, H = 4.2, 5.4mm). Considering the precision of the 3D

printed structures, the thickness of each structure is slightly smaller than the bistable

critical thickness.

The experimental results confirm the bistability of all six truncated-conical shells.

Figure 41 shows the two stable states before and after the inside and outside of these

eight structures are flipped.
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Figure 41: Stable States of truncated-conical shells with Double Free Boundary Con-
ditions (R = 30mm)

6.2 Double Simply Supported Boundary Conditions

To realize the deformation condition under the condition of the double simply

supported structure, the method of dual material 3D printing is used to produce the

truncated-conical shell with a constrained structure.

As shown in Figure 42, the truncated-conical shell is printed with soft TPU mate-

rial (white), and the inner and outer restraint structures are printed with rigid PLA

material (yellow). There is only a very small part of the connection between the two

structures, that is, the constrained structure only restricts the displacement of the

inner and outer circular boundaries of the truncated-conical shell but does not restrict

the rotation.

The results of section 5.3 show that the bistable critical thickness of the structure

is very large under the double simply supported boundary condition. Four truncated-

conical shells are used(R = 30mm, r = 12, 18mm,H = 3, 4.2mm,h = 1mm). The

experimental results show that all four structures have bistability, which is consistent

with the simulation results. The bistability phenomenon of these four structures is
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Figure 42: Schematic Diagram of Simply Supported Boundary Conditions

shown in Figure 43.

Figure 43: Stable States of Truncated-Conical Shells with Double Simply Supported
Boundary Conditions(R = 30mm)

6.3 Double Fixed Boundary Conditions

Here, a dual-material 3D printing method is also used to produce a truncated-

conical shell with a double-fixed support constraint structure.

The difference from the previous ones is that the inner and outer constrained

structures printed by PLA material are completely connected with the truncated-

conical shell printed by TPU material, that is, the constrained structure not only limits

the displacement of the inner and outer circular boundaries of the truncated-conical

shell, but also limits its rotation(see Figure 44). Based on the results in section 5.4, a

total of 4 truncated-conical shells with R = 30mm, r = 12, 18mm, H = 3, 4.2mm are

made. Their thicknesses are slightly less than the bistable critical thicknesses.

The experimental results show that all four structures have bistability, which is

consistent with the simulation results(see Figure 45).
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Figure 44: Schematic Diagram of Double Fixed Boundary Conditions

Figure 45: Stable States of Truncated-Conical Shells with Double Fixed Boundary
Conditions(R = 30mm)

7 Conclusion

This study presents an in-depth investigation into the deformation dynamics of

truncated-conical shells, specifically focusing on the underlying mechanisms resulting

in a bistable state and exhibiting negative stiffness. A comprehensive quantitative

model, detailing the deformation characteristics of such shells, has been formulated.

Firstly, a parametric simulation method of the truncated-conical shell is established

based on Python script and FEM. Utilizing this robust methodology, we elucidated

the intricate interplay of materials, geometric constraints, and boundary conditions on

the deformational behavior of the truncated-conical shell. A foundational deformation

theory was thus crafted, emphasizing the salient features of bistable and negative

stiffness deformation. It is noteworthy that this theoretical construct primarily caters

to truncated-conical shells characterized by dual-free boundary conditions.

In order to obtain a quantitative description of structural deformation characteris-

tics, a script for batch modeling, calculation, and data processing integration was first

established, and The deformations of truncated-conical shells with different bound-
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ary conditions and geometric sizes were computed. Then, based on many simulation

results, the quantitative expressions of dimensionless bistability and negative stiff-

ness critical thickness of truncated-conical shells are established based on dimensional

analysis. Further, the quantitative description of the deformation characteristic force

of the truncated-conical shell is established. The analysis conclusions were verified

experimentally by 3D printing various truncated-conical shells.

The research results in this paper provide a reference for the design of bistable or

negative stiffness structures. The expressions obtained in Section 5 can help engineers

quickly judge whether the truncated-conical shell of a specific size has bistable and

negative stiffness characteristics, as well as the characteristic forces. In addition, the

analysis method in this paper can also be used to analyze the bistability or negative

stiffness characteristics of other structures.
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