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Theoretical work on quantum computation has enabled the creation of quantum error-

correcting codes that can provide quantum computers with the ability to combat the inherent

noise present in quantum mechanical systems. These error-correcting codes can be presented us-

ing ZX calculus, a graphical approach used to display quantum systems and processes. We aim to

derive a canonical form for quantum Cli↵ord codes by using the formalism of ZX calculus. First,

we derive canonical forms for selected surface and Toric codes using manual manipulation of ZX

diagrams and specialized diagrammatic software called Quantomatic. For these codes, the permu-

tation of outputs nodes will be considered to give di↵erent codes. Next, we relax the restraints on

output nodes so that permuting the output nodes results in an equivalent code, and we analyze

and tabulate the equivalence classes of Cli↵ord encoders by writing code in Java and outputting

parameters, such as equivalence class sizes and the presence (or lack) of bipartite forms. This

work builds on previous works in converting stabilizer tableaus into a form in ZX calculus that

is intuitive and explainable, and this paper provides critical work in deriving improved canonical

forms for Cli↵ord codes.
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I. INTRODUCTION

The work done in the past half century on

quantum computing have brought large-scale

quantum computers closer to reality. Today,

quantum computers employing a low number

(up to a few hundred) of qubits, in the form

of photons and nuclear spins [1], have been

created that are mainly used for experiments

[2, 3]. These quantum computers di↵er from

classical computers and classical supercom-

puters by employing the use of qubits rather

than bits. The properties of quantum mechan-

ics inherent in qubits, including superposition

and entanglement, allow quantum computers

to simulate quantum systems, which can make

certain calculations much more e�cient than

classical computers.

However, as with classical information pro-

cessing systems, quantum information process-

ing systems also face noise that can disrupt

information transmission between a sender

and receiver. One of the principle challenges

in quantum computing is to account for this

noise, due to the fragility of quantum bits. To

this end, quantum error-correcting codes are

used to transmit quantum information success-

fully in the presence of noise [4]. While clas-

sical computers can copy bits, quantum me-

chanics does not allow the cloning of unknown

qubits, and the measurement of a qubit elim-

inates the information available in the qubit.

As such, the construction of suitable quantum

error-correcting codes presents new challenges

when compared to the construction of classical

error-correcting codes. For decades, a quan-

tum error-correcting code against general er-

rors seemed impossible, until the Shor code [5]

was first published in 1995 and Steane code [6]

in 1996. Other examples of quantum error-

correcting codes are the five qubit code [7] and

the Toric code [8].

A number of approaches have been created to

represent the components of quantum error-

correcting codes. The stabilizer formalism

is a method that expresses quantum error-

correcting codes in terms of stabilizers, oper-

ators that, when acted on a stabilizer state,

preserve the state [9]. This approach borrows

ideas from group theory to represent the whole

class of stabilizers with a finite number of gen-

erators. To make the idea of quantum error-

correcting codes visual, recent advances have

made progress on the topic of representing sta-

bilizer states as graph states [10, 11].

Following the work on graph states, work has

been done on representing Cli↵ord codes using

ZX calculus, a diagrammatic approach devel-

oped in these papers [12–14]. The properties

of ZX calculus that allow it to replace the sta-

bilizer tableau formalism (a tabulated form of

the generators of the stabilizers) are its uni-

versality (it can express every quantum oper-

ation), soundness (tableaus can derive equiva-
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FIG. 1: Shown is a Venn diagram classifying quantum Cli↵ord circuits as graphs, with the universal set of

graphs surrounding the diagram. Khesin-Lu-Shor (KLS) forms are determined based on equivalence

through permuting inputs and local complementation. The Hu-Khesin (HK) form is in the category of

only local complementation because it does not have inputs to permute.

lence of ZX calculus diagrams), and complete-

ness (ZX calculus diagrams can derive equiva-

lence of tableaus) [12, 14]. This graphical lan-

guage has had various applications in quantum

information [15–18] and quantum computation

problems [19, 20].

Expressing quantum Cli↵ord circuits as graphs

and finding canonical forms for equivalent

graphs has had recent advances in the past

few years. The Hu-Khesin (HK) form from

[11] provides a canonical form for quantum

Cli↵ord states. In the context of quantum en-

coders, this is equivalent to having no inputs

and only outputs. Then, the Khesin-Lu-Shor

(KLS) form from [21] built on the HK form,

providing a canonical form for Cli↵ord en-

coders. The KLS paper gives a detailed pro-

cess of transforming stabilizer tableaus into ZX

calculus, then performing operations that pre-

serve equivalence to find a canonical form. The

first part (section III) of the present work ex-

pands on the work from KLS and focuses more

topologically on the general shape the vertices

and edges that the ZX diagram forms, and we

specifically analyze selected surface and Toric

codes to see how we can simplify the diagram

into an intuitive canonical form. The second

part similarly focuses on the general properties

of the ZX graph, taking into account the bi-

partite portion of the graph between the input

and output nodes while also allowing the per-

mutation of output nodes to stay in the same

equivalence class.



4

See Figure 1 for a summary of the work done

in quantum Cli↵ord encoders’ graphical rep-

resentations. The set of all quantum Cli↵ord

circuits as graphs is split into sectors depend-

ing on whether we consider the operation as

giving equivalent Cli↵ord codes. For exam-

ple, the sector labeled KLS is positioned at the

intersection of “permute inputs” and “local

complementation.” Therefore, the KLS canon-

ical form relied on the encoders staying in the

same equivalence class upon these two opera-

tions while the encoders changed equivalence

classes when the output nodes are permuted

or extra states (nodes unconnected to input

nodes) are removed from the output nodes.

The second part of this paper considers the

sector labeled Y, as output nodes will be al-

lowed to permute.

In this paper, Section II contains key defini-

tions and background on ZX calculus and Clif-

ford encoders. Section III contains our work on

Calderbank-Shor-Steane (CSS) codes, specifi-

cally surface and Toric codes, in making an in-

tuitive canonical form for select encoders. This

builds on recent work from Kissinger [22, 23]

that introduced the normal form of of CSS

codes, which are “explainable” in that it is e�-

cient to determine the stabilizers from the ZX

normal form. For an (n�2k)-to-n encoder with

k X-checks and k Z-checks, the resulting nor-

mal form will consist of (n�2k)+n+k = 2n�k

nodes, which are the input nodes, output

nodes, and internal nodes representing the

X-checks (for the ZX normal form) or the Z-

checks (for the XZ normal form). Section III

focuses on presenting a canonical form of the

codes that eliminates these internal nodes

while keeping the diagram for the encoder as

intuitive and elegant as possible.

Section IV provides another definition of

equivalence, permitting outputs to be per-

muted as a valid operation among equivalent

graphs. The reason this definition of equiv-

alence is also considered is that changing

the order of the outputs does not change the

“amount” of entanglement that the encoder

puts the input qubits through. Section V ex-

pands on this definition by omitting parts of

the set of quantum encoders that will not be

necessary for the remainder of the paper. Since

the complexity and overall structure of an en-

coder does not change with the addition of lo-

cal quantum gates, for example, section IV ex-

plains how we omit them. Sections VI and VII

provide the work we have done towards identi-

fying equivalence classes and finding canonical

forms. Section VI explains a method of repre-

senting encoders as integers so as to sort them

into equivalence classes using a Java program.

Then, it goes on to revealing more information

about these equivalence classes, including sizes

and the presence or lack of bipartite forms.

Section VII expands on the equivalence classes

containing bipartite forms.
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II. BACKGROUND

In this section, we define key terms and back-

ground on error-correcting codes and the ZX

calculus.

First, we define the following matrices.

Definition A. The Pauli matrices are

I ⌘

0

@1 0

0 1

1

A X ⌘

0

@0 1

1 0

1

A

Y ⌘

0

@0 �i

i 0

1

A Z ⌘

0

@1 0

0 �1

1

A .

The Pauli matrices numerically represent

quantum gates that can act on qubits and al-

ter their state. Then, the Pauli operators on

n qubits are n-fold tensor products of Pauli

matrices, multiplied to a factor of the form i
k

where k 2 {0, 1, 2, 3} and i =
p
�1.

Pauli operators are able to act on states in

multi-qubit systems. For example, in a three

qubit system, the tensor product Z ⌦ Z ⌦ I

will make Z act on the first qubit, Z act on

the second qubit, and I act on the third qubit.

This can be denoted as Z1Z2, with the sub-

scripts showing which qubit the operators are

acting on. We can similarly denote other ten-

sor products of operators.

With the operators from Definition A, we can

construct quantum error-correcting codes that

correct arbitrary errors for multiple qubits.

Other quantum gates that are useful are the
Hadamard, CNOT, phase, and ⇡/8 gates:

H =
1p
2

�
1 1
1 �1

�
, CNOT =

✓
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

◆
,

S = ( 1 0
0 i ) , T =

�
1 0
0 e⇡i/4

�
.

These operations have the property of univer-

sality, that is, their ability to approximate any

operator to arbitrary accuracy [4].

Cli↵ord codes can be represented as a group

of generators of stabilizers that, when multi-

plied together, form the whole class of stabi-

lizers. These stabilizers are Pauli operators on

n qubits and listing out the generators deter-

mines the whole encoder. In this paper, the

encoders take n � k inputs, which are logical

qubits, and give n outputs, which are physical

qubits. The generators are chosen to be inde-

pendent, so each degree of freedom going from

inputs to outputs requires an additional gen-

erator for the stabilizers, implying there are k

generators for this (n� k)-to-n code.

ZX calculus makes the representation of Clif-

ford codes graphical, and we use the conven-

tions as described in [14, 21]. For an (n � k)-

to-n encoder, the n � k input nodes are con-

nected with edges to the n output nodes, and

the output nodes share edges amongst each

other. Any connections among input nodes can

be removed since these connections are just

controlled-Z operations, and unitary operations

on the inputs do not change the stabilizers.
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Furthermore, each input node is connected to

an input edge while each output node is con-

nected to an output edge. Local operations on

any input edges can be removed since these are

also unitary operations. Any wires that con-

tain exactly one Hadamard gate are denoted

by a light blue edge while those that contain

no gates are denoted by a black edge. An ex-

ample of a Cli↵ord code expressed in ZX calcu-

lus is shown in Figure 2.

FIG. 2: Example of an encoder. The incoming

edges from the left side are input edges and the

outgoing edges on the right side are output edges.

Note the local operations applied on the output

qubits.

The canonical forms described in section III

are based on the KLS canonical form [21],

which consists of four rules that can be e�-

ciently checked on a given ZX graph. From a

given ZX graph, it is e�cient to transform to

the KLS canonical form using a series of oper-

ations.

One of the operations commonly used to trans-

form equivalent ZX diagrams between each

other is defined below.

Definition B. Consider a simple graph

G = (V,E), where V is the set of vertices and

E is the set of (un-directed) edges between

vertices. Take a vertex v 2 V . The neighbor-

hood of v, N(v), is the set of all vertices in V

adjacent to v, not including v. By perform-

ing a local complementation about vertex v,

all edges connecting two vertices in N(v) are

toggled. That is, if the edge existed before the

local complementation, it is removed; if it did

not exist before, it is added.

III. SURFACE AND TORIC CODES

To find the canonical forms of CSS codes

based on the ZX normal forms, we first con-

sider Toric codes, introduced in [24], and sur-

face codes, as explained in [23]. The canonical

forms presented here have 0 internal nodes,

so that each node corresponds to an input or

output edge.

We begin with a definition of Toric codes.

Definition C. A Toric code is a quantum

error-correcting code that can be represented

on a three-dimensional torus T . For a m ⇥ n

Toric code, T is wrapped by m � 1 circles par-

allel to the plane of the major circle and n � 1

circles perpendicular to the plane of the ma-

jor circle. The stabilizers of the code are de-

fined by first labeling each disjoint edge with

a qubit. Then, every disjoint four-sided face

formed by the wrapped circles gives a Z-check

(stabilizer with only Z’s and I’s) consisting of
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Z’s on the four edges’ qubits, and every vertex

formed by the intersection of the wrapped cir-

cles gives an X-check (stabilizer with only X’s

and I’s) consisting of X’s on the four edges’

qubits adjacent to the vertex.

For concreteness, we explain the stabilizers for

the case of the 3-by-3 Toric code.

Shown in Figure 3 is a representation of the

3-by-3 Toric code (note that this is not a ZX

diagram). The edges labeled 3, 6, 9, 16, 17,

and 18 would wrap around the torus if the di-

agram were put in three dimensions. In this

representation, each edge (numbered 1 through

18) represents a physical qubit, with the Z-

check stabilizers represented by the four edges

surrounding a face and the X-check stabilizers

represented by the four edges surrounding a

vertex. There are 9 disjoint four-sided faces on

the torus; two examples include the faces rep-

resenting Z1Z4Z10Z11 and Z3Z9Z16Z18. Sim-

ilarly, there are 9 vertices from which to get

X-checks; two examples include the vertices

representing X1X3X10X16 and X8X9X15X18.

From this diagram, we can read o↵ the sta-

bilizers of the 3-by-3 Toric code. To convert

this into the ZX diagram form, we place a Z

node on each edge of Figure 3 to represent the

physical qubits so that these Z nodes become

the output nodes. We also place two Z nodes

at the bottom of the diagram to be the input

nodes. This results in 20 nodes, and we add no

more nodes from here.

FIG. 3: The 3-by-3 Toric code.

FIG. 4: The nodes in the 3-by-3 Toric code. The

two input nodes are labelled I1 and I2, and the

output nodes are labelled with integers 1 through

18. Note that these labels are not the phases of

the nodes.

Instead of placing nodes 3, 6, and 9 directly

on the edges shown in Figure 3, we place them

to the right of nodes 2, 5, and 8, respectively.

Similarly for nodes 16, 17, and 18.

As shown in the appendix, we determine

the structure of the 3-by-3 Toric code’s ZX

diagram by deducing the placements of

Hadamards on output edges and using stabi-
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lizers to force the connections between output

nodes.

By similar methods, we can also present the

ZX calculus form of the 2-by-2 Toric code.

The diagram is shown in Figure 5. This has an

arrow-like structure among the output-output

edges, as seen by nodes 1, 3, 5, and 6, as well

as nodes 2, 4, 5, and 6.

The final 3-by-3 Toric code is shown in Fig-

ure 6. Note that, by wrapping this pattern

around a torus, it would be horizontally pe-

riodic. The edges among vertices 1, 4, 10, and

11 form an upward-arrow-like figure. Similarly,

nodes 2, 5, 11, and 12 form this figure and, on

a torus, nodes 3, 6, 10, and 12 for this figure

as well. By the simplicity of this diagram, it

is relatively easy to read o↵ the stabilizers by

noting how the ⇡-copy rule causes certain sta-

bilizers to exist. Not much more work has to

be done to convert this to the KLS form of the

encoder. The grid-like structure of the codes in

Figure 5 and Figure 6 are easy for anyone to

see clear patterns, making this form canonical.

For larger Toric codes and the surface codes,

we use the ZX calculus software Quantomatic

[25] to run through a simplification procedure

(simproc) on the known ZX normal form [23]

of a code. In this simproc, the main focus is

on performing the bialgebra rule on internal

nodes, so that, after running the simproc, all

internal nodes will be removed from the dia-

FIG. 5: The 2-by-2 Toric code in ZX calculus. The

output nodes with the diagonal patterns are

Hadamarded outputs while the solid nodes are not

Hadamarded. Dashed edges represent edges that

wrap around the torus. For example, the vertical

dashed edge coming from node 5 meets node 7 and

the dashed edge from node 2 meets node 5. The

dotted edges are input-output edges.

FIG. 6: The 3-by-3 Toric code in ZX calculus. The

output nodes with the diagonal patterns are

Hadamarded outputs while the solid nodes are not

Hadamarded. Dashed edges represent edges that

wrap around the torus. For example, the vertical

dashed edge coming from node 10 meets node 16

and the dashed edge from node 3 meets node 10.

The dotted edges are input-output edges.

gram, leaving only input and output nodes. To

write this simproc, we first make diagrammati-

cally defined rules that would apply the bialge-

bra rule on an internal node. See the appendix
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for an example of one of these rules.

Having defined these rules, the simproc can

be written relatively simply as the following

algorithm.

1. Use basic simplifications, by merg-

ing reds, merging greens, applying the

red-copy rule, applying the green-copy

rule, applying the Hopf rule, removing

scalars, removing loops, or combining

two Hadamards into the identity [14].

2. Change all reds into greens (with the ap-

propriate Hadamard gates).

3. Apply one iteration of the bialgebra rule

(any variation).

4. Apply step 1 again.

5. Loop through steps 3 and 4 until the dia-

gram stops changing.

To illustrate the e↵ectiveness of this simproc,

we apply it on Eq. (12) from [23], as shown in

Figure 7.

In diagram (b) of Figure 7, the graph’s struc-

ture looks simpler than diagram (a), and it is

easy to read o↵ stabilizers from the graph us-

ing the same method of examining whether

the output edges have Hadamards or not. By

doing so, we can determine the stabilizers by

examining each corner of the large rectangle in

the figure.

Also, in diagram (a) of Figure 8, we have a

more simplified version of (b) of Figure 7.

And, in diagram (b) of Figure 8, we rearranged

the boundary nodes into a grid-like structure,

with each boundary node corresponding to the

same one from the original ZX normal form.

With all the internal nodes removed from the

diagram, this new representation of the surface

code can be quickly turned into KLS canonical

form. Also, it is clearer how each output node

is entangled with other output nodes in this

diagram.

IV. ANOTHER DEFINITION OF

EQUIVALENCE

Previous works have examined the equivalence

classes of graphs under local complementation.

In Cli↵ord codes, the presence of designated

input and output vertices makes the definition

of equivalence more exotic.

We now list five di↵erent operations which

keep encoder graphs equivalent.

Definition D. The ZX diagrams for two

Cli↵ord codes C1 and C2 are equivalent if and

only if the diagram for one of the codes can be

reached by the other after a sequence of opera-

tions consisting of the following operations:

1. Local complementing about any vertex of

the graph.

2. Permuting the output vertices.

3. Permuting the input vertices.

4. Performing linear operations on the adja-

cency matrix of input to output edges
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(a) The 3-by-3 surface code in ZX normal form.

(b) The 3-by-3 surface code in a more canonical ZX form.

FIG. 7: The simproc, as described in the paper, is applied to the 3-by-3 surface code in ZX normal form

in (a) to get to (b), after some rearranging of vertices and edges. The black boundary nodes in both parts

represent inputs or outputs. The input node for diagram (b) is at the middle bottom.
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(a) The 3-by-3 surface code in another form found by removing nodes using

simplification rules.

(b) The 3-by-3 surface code in a grid-like form similar to (a) from Figure 7.

FIG. 8: More rearrangements of the 3-by-3 surface code. (a) is a slight variation on diagram (b) from

Figure 7 while (b) has the output nodes arranged in a grid-like structure, with the boundary nodes

corresponding to the same boundary nodes as the original ZX normal form diagram from Figure 7.
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Transforming the
adjacency matrix:

0

BBBBBBBB@

0 0 1 0 1 0 1
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 1
1 0 0 0 0 0 0
0 0 0 0 0 0 0
1 0 0 1 0 0 0

1

CCCCCCCCA

FIG. 9: In the adjacency matrix, the first row corresponds to the first input, the second row corresponds

to the second input, and so on. After the inputs, the following row corresponds to the first output, and

the other outputs follow.

5. Removing an input-input edge.

All of the operations in Definition D are re-

versible, so, if code C1 can be made equivalent

to C2, the reverse is also true.

Operation 1, local complementation as in Defi-

nition B, is included to account for equivalence

of encoder graphs based on their entanglement

[26].

Two encoder diagrams should also be equiv-

alent if the information they produce can be

ordered di↵erently to become the same. In

this way, operations 2 and 3 reflect this, since

connections among the vertices of the graph

remain the same and these operations only

change the order in which the information is

inputted or outputted.

Operation 4, which consists of adding rows

of the adjacency matrix between input and

output vertices in modulo 2, preserves equiva-

lence, by [21]. Lastly, operation 5 takes away a

unitary operation from the input vertices, and

doing so keeps the equivalence.

Note that this definition of equivalence does

not allow two encoders to be in the same

equivalence class if they only di↵er by an ex-

tra output (that is not connected to anything

else). That is, if the two encoders di↵er by a

quantum state, this definition of equivalence

marks them as di↵erent. Therefore, this im-

plies we focus on section Y of Figure 1, instead

of section X.

As an example of these extra outputs/states,

Figure 9. The output vertex labeled 4 is not

connected to any input or output. It does not

provide any more entanglement than if it was

not present. For this reason, section X of Fig-

ure 1 is more useful for practical purposes.

V. SIMPLIFICATIONS

There are some simplifications that can be

made using the above operations so we con-

sider only encoder graphs that could possibly

be non-equivalent.
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Operations 3 and 4 of Definition D allow the

input-to-output portion of the encoder dia-

gram to be expressed in row-reduced echelon

form (RREF). All encoder diagrams considered

from here on are expressed in RREF form, as

in the RREF rule from [21]. Therefore, the in-

put vertices have corresponding output vertices

that represent the pivots of the RREF. These

particular output vertices are called pivot ver-

tices.

Continuing from the RREF form of the en-

coder graph from the above paragraph, opera-

tion 2 from Definition D can be used to move

the pivot vertices to be at the front of the line

of the sequence of output vertices. In this way,

the first output vertex can be made into the

pivot vertex corresponding to the first input

vertex, the second output vertex can be made

into the pivot vertex corresponding to the sec-

ond input vertex, and so on. Thus, these n� k

pivot vertices are fixed among the top of the

output vertices. For brevity, the other k non-

pivot output vertices are called free outputs.

In Definition D, no operation was included

that a↵ected local Cli↵ord gates at the ver-

tices. Therefore, this definition of equivalence

neglects the presence of phase changing gates

at vertices of the encoder’s graph. This is be-

cause local Cli↵ord gates change the qubits

using a unitary operation but does not con-

tribute to changes in entanglement of the

qubits in any way. Therefore, for our purposes,

we remove all local Cli↵ord gates present at

the vertices of the ZX diagram for the encoder.

Furthermore, to simplify the diagrams we

draw, the incoming and outgoing edges (i.e.

free edges from [21]) will be omitted. They

are implied, since the diagrams for (n � k)-

to-n encoders will be drawn with n � k input

vertices on the left side and n output vertices

on the right side. Furthermore, for the inter-

nal edges that are included in the diagram, all

edges have Hadamard gates as detailed in the

Edge Rule from [21], but these gates will be

omitted in our diagrams.

A further simplification, carried over from [21],

is that graphs with pivot-pivot edges are omit-

ted, since they can always be transformed into

a graph without pivot-pivot edges using a se-

quence of local complementations.

As an example of the simplifications on the di-

agrams, as well as how the adjacency matrices

transform into encoders, see Figure 9.

VI. TABULATIONS FROM CODE

To find patterns in the equivalence classes, we

wrote code to take encoder graphs and assign

them into disjoint sets.

In the written code, each encoder graph is

turned into an integer based on the variable

edges present in the graph. The variable edges

of such a graph are the input-free edges, pivot-

free edges, and free-free edges. These vari-
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n = 2 n = 3 n = 4 n = 5 n = 6

1 3 11 40 185

(a) Number of equivalence classes for 2-to-n codes.

Rep: 0 1 3

Size: 1 6 9

(b) 2-to-3 codes equivalence classes and sizes.

Rep: 0 1 2 3 181 6 10 11 12 13 14

Size: 1 1 12 42 36 6 18 99 18 234 45

(c) 2-to-4 codes equivalence classes and sizes.

Rep: 0 1 3 8 72 9 73 11 75 12 76 13 77

Size: 1 3 4 18 27 126 297 60 144 18 27 396 972

Rep: 80 81 4753 82 530 594 83 4755 597 86 534 598 4758

Size: 54 702 108 378 108 540 2268 1080 2484 5184 168 5832 4896

Rep: 24 88 26 90 92 93 742 743 232 236 112 113 56 120

Size: 18 135 90 486 459 1188 1620 1152 108 414 54 1080 6 63

(d) 2-to-5 codes equivalence classes and sizes.

FIG. 11: (a) shows the number of equivalence classes for 2-to-n encoder graphs. (b-d) show the

lexicographically smallest element (Rep) in each equivalence class, as well as the size of each of these

classes, for the 2-to-3, 2-to-4, and 2-to-5 encoders.

able edges are those that can be changed, so

it does not include input-pivot edges, input-

input edges, or pivot-pivot edges. To assign a

graph’s adjacency matrix to an integer, each

of the entries corresponding to a variable edge

is assigned a distinct value of the form 2i for

a nonnegative integer i. Note that this adja-

cency matrix includes all vertices, so it is an

(2n � k) ⇥ (2n � k) matrix. If the edge corre-

sponding to 2i is present, 2i is added into the

integer. Otherwise, it is not added in.

For example, in the 2-to-5 codes, the 7 ⇥ 7

adjacency matrix would look like the following:

0

BBBBBBBBBBBBBBB@

0 0 1 0 a14 a13 a12

0 0 0 1 a11 a10 a9

1 0 0 0 a8 a7 a6

0 1 0 0 a5 a4 a3

a14 a11 a8 a5 0 a2 a1

a13 a10 a7 a4 a2 0 a0

a12 a9 a6 a3 a1 a0 0

1

CCCCCCCCCCCCCCCA

The top-left 4⇥ 4 submatrix reflects the input-

pivot edges, as well as the lack of input-input

edges and pivot-pivot edges.

The entry labeled ai is then weighted with the
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value 2i. So, if the only additional edges (be-

sides the input-pivot edges) of the graph con-

sisted of the edge between the second input

and fifth output, the matrix would have a9 = 1

and all other ai = 0. Then, the integer repre-

sentation is

14X

i=0

2iai = 512.

And, in the example from Figure 9, the integer

representation would be 214 +212 +23 = 20488.

We decide to put a0 closest to the bottom

right, the expand upward from there. The

analogous 6 ⇥ 6 adjacency matrix for 2-to-4

codes would look like:

0

BBBBBBBBBBBB@

0 0 1 0 a8 a7

0 0 0 1 a6 a5

1 0 0 0 a4 a3

0 1 0 0 a2 a1

a8 a6 a4 a2 0 a0

a7 a5 a3 a1 a0 0

1

CCCCCCCCCCCCA

The disjoint set algorithm is useful for sepa-

rating the whole set of possible encoder graphs

into equivalence classes. In our code, we made

the representative of each equivalence class, or

disjoint set, the smallest integer representation

among the encoder graphs. Note that this is

not necessarily the canonical form of the equiv-

alence class.

The code takes an integer representation, say

n, of an encoder graph, performs one operation

from Definition D on the encoder graph, then

merges the disjoint sets of n and the integer

representing the resulting encoder graph. Any

possible operation is applied and merged with

n’s disjoint set.

When a local complementation is performed on

a free output, it is possible that an input-pivot

edge is removed. Furthermore, some input-

input edges could be added. To fix this, we

first employ operation 5 from Definition D to

set all input-input edges to 0. Then, opera-

tions 3 and 4 are used to turn the submatrix

representing the input-to-output adjacency

matrix into RREF form. Operation 2 is used

to put the pivots back into their fixed posi-

tions, so they once again correspond to their

input vertices.

By looping the code to run through all inte-

gers in the set of representatives of the possi-

ble encoder graphs, all the encoder graphs are

grouped into an equivalence class.

On the next page, the results of the code are

shown. As shown in Figure 11(a), the num-

ber of equivalence classes increases quickly as

the number of output vertices increases. Fur-

thermore, in Figure 11(b-d), the equivalence

classes show a variety of sizes, with many of

the sizes in (c-d) divisible by 9.

Due to the nature of the weights of the edges

in the adjacency matrix, it is also possible to

find out which equivalence classes have a bi-
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partite form. For example, in the 2-to-5 codes,

since a bipartite form would need a0, a1, . . . , a8

to all equal 0, we look for the integer represen-

tations that are 0 mod 512.

By running a conditional statement in this

way, we find the equivalence classes that have

bipartite forms and write down the bipartite

forms (as integer representations) for these

classes.

For the 2-to-3 codes, we tabulate the following

classes and the bipartite forms in these classes.

Rep. Bipartite forms

0 0

1 4, 8

3 12

Similarly, for the 2-to-4 codes, we have the fol-

lowing table:

Rep. Bipartite forms

0 0

2 32, 64, 128, 256

6 96, 384

10 160, 320

12 192, 288

14 224, 352, 416, 448, 480

And, for the 2-to-5 codes, we have the table

shown in Figure 12. Note that, for 2-to-n en-

coders, the total number of bipartite encoders

is 22n�4.

The reason we separated out the equivalence

classes that have bipartite forms from those

that do not is that bipartite forms are deemed

more canonical. For the equivalence classes

that have bipartite forms, a canonical form

will be picked out from among these bipartite

forms. The advantage of choosing a bipartite

form is its simplicity. We can avoid including

edges among output vertices in this way.

VII. EQUIVALENCE CLASSES WITH

BIPARTITE FORM(S)

Consider an equivalence class containing a

bipartite graph, in which the only edges are

input-output edges. In these specific classes,

one of the bipartite graphs is chosen as the

canonical form due to its simplicity. The task

now is to determine which one of these bipar-

tite forms to pick.

First, consider a small case of 2-to-4 codes.

The adjacency matrix of a bipartite form, tak-

ing into account the RREF and pivot simplifi-

cations from section IV, would look like:

0

@1 0 1 1

0 1 0 1

1

A

By changing the red entries between 0s and 1s,

there are 16 possible bipartite forms among all

2-to-4 codes.
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Rep. Bipartite forms

0 0

8 512, 1024, 2048, 4096, 8192, 16384

72 4608, 9216, 18432

80 5120, 6144, 8704, 10240, 16896, 17408

24 1536, 2560, 3072, 12288, 20480, 24576

88 5632, 6656, 9728, 11264, 12800, 13312, 13824, 18944, 19456, 20992, 22528, 23040, 25600, 26624, 27648

232 14848, 15360, 15872, 22016, 23552, 24064, 26112, 27136, 28160, 30208, 31232, 31744

112 7168, 10752, 14336, 17920, 21504, 25088

56 3584, 28672

120 7680, 11776, 19968, 29184, 29696, 30720, 32256

FIG. 12: Table of the representatives of all equivalence classes among 2-to-5 encoders that have bipartite

forms, as well as a listing of the integer representation of these bipartite forms.

In some encoder diagrams, the graph can be

split into separate parts; that is, some vertices

are not entangled in any way with some other

vertices.

Definition E. Suppose a graph G = (V,E)

can be separated into two groups of vertices V1

and V2 so that, for any vertex a 2 V1 and any

vertex b 2 V2, there exists no path from a to b

using edges in G. Then, graph G is a disjoint

graph.

In the form of an adjacency matrix for 2-to-n,

the graph is not disjoint if and only if there ex-

ists a column in which both entries are 1 and

there exists no column in which both entries

are 0. This is clear, since this means the two

parts of the graph (one containing all input-

output edges from the first input, the other

containing all input-output edges from the

second input) are entangled at some vertex,

and there is no output vertex not connected to

anything.

Claim F. Among all non-disjoint 2-to-4 bipar-

tite graphs, there is only 1 distinct graph, up

to equivalence through operations 2 through 4

from Definition D.

Proof. There are only 5 possible input-to-

output adjacency matrices in this case:

0

@1 0 1 1

0 1 1 0

1

A ,

0

@1 0 1 1

0 1 0 1

1

A ,

0

@1 0 1 0

0 1 1 1

1

A ,

0

@1 0 0 1

0 1 1 1

1

A ,

0

@1 0 1 1

0 1 1 1

1

A .
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Consider the first matrix above. Switching the

third and fourth output vertices (correspond-

ing to the third and fourth columns of the ma-

trix) results in

0

@1 0 1 1

0 1 0 1

1

A ,

which is the second matrix. From here, use

operation 4 to replace the first row with the

sum of the first and second rows modulo 2:

0

@1 1 1 0

0 1 0 1

1

A .

Permuting the outputs achieves the third and

fourth matrices. Lastly, starting from the

above matrix, use operation 4 to replace the

second row with the sum of the current first

and second rows modulo 2 to find

0

@1 1 1 0

1 0 1 1

1

A .

This can be permuted to give the fifth matrix.

Analogous sequences of operations can bring

any of the other matrices to another, so all

5 of the graphs are equivalent, showing the

claim.

Using Claim F, the canonical form for the

equivalence class that contains these 5 adja-

cency matrices can be chosen to be

0

@1 0 1 1

0 1 1 0

1

A .

First, this graph shares the property of having

the least number of edges. Next, to distinguish

between the four matrices with the least num-

ber of edges, we take the one that has more

edges reserved for the first input and first free

output, which would be the one shown above.

By writing one of these input-to-output adja-

cency matrices into the full 6 ⇥ 6 matrix, we

can deduce the integer representation (as de-

scribed in Section V) of the chosen matrix to

be 28 + 27 + 26 = 448. From the table of bipar-

tite forms for 2-to-4 codes (in Section V), this

means these matrices are in the same equiva-

lence class as 14. Also, the fifth matrix from

the proof of Claim F has representation 480.

See Figure 13 for the graphs of the elements

14, 448, and 480.

Now, we present a general method of simplify-

ing a bipartite 2⇥ n input-to-output adjacency

matrix.

Claim G. Consider a 2-to-n encoder graph

equivalent to some bipartite form. It is also

equivalent to a bipartite form where the two

inputs are both connected to at most
⌅
n
2 � 1

⇧

of the same free outputs.

Proof. In this proof, we only consider encoders

that are equivalent to a bipartite form.
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FIG. 13: In the 2-to-4 equivalence class with lexicographically smallest element of 14, 448 and 480 are

possible bipartite forms with all edges being input-output edges. 448 is chosen as canonical due to it

having fewer edges. Note that 14 is also bipartite if it is partitioned into one group with outputs 1 and 2

and one group with the inputs and the remaining outputs.

For the sake of contradiction, suppose all bi-

partite forms of this equivalence class have at

least
⌅
n
2

⇧
shared free outputs. In an input-to-

output adjacency matrix, this would look like

0

@1 0 1 1 1 1 0

0 1 1 1 1 0 1

1

A .

The first two columns are fixed to be input-

pivot edges, as usual. If there are at least
⌅
n
2

⇧

shared free outputs, the other n � 2 columns

must have a majority of columns containing

two 1’s. In this example, 3 out of 5 columns

contain two 1’s.

However, using operation 4 from Definition D,

the top row can be replaced with the sum of

the top and bottom row modulo 2.

Note that this means all the free outputs that

were shared by both inputs have their edges

with the first input disconnected, so at least
⌅
n
2

⇧
columns do not have two 1’s.

Furthermore, after the operation, the first col-

umn cannot possibly have two 1’s, so one ad-

ditional column does not have two 1’s. The

example matrix above turns into

0

@1 1 0 0 0 1 1

0 1 1 1 1 0 1

1

A .

We can rearrange output vertices to bring back

the pivots. The following is thus equivalent

0

@1 0 1 1 1 0 0

0 1 1 1 0 1 1

1

A .

Thus, the maximum number of columns with



20

two 1’s is now n� 1�
⌅
n
2

⇧
. However,

n� 1�
j
n

2

k
<

j
n

2

k
,

so we reach a contradiction, since there are

now less than
⌅
n
2

⇧
shared free outputs in an

equivalent bipartite form.

Therefore, the claim holds.

Claim G demonstrates that we can choose a

bipartite form that has a relatively small num-

ber of shared free outputs. In fact, if the top

row is the horizontal vector a and the bottom

row is the horizontal vector b, by linear op-

erations, there are only 3 possibilities of un-

ordered combinations of two vectors in the

rows. It could be (a,b), (a+b,b), (a+b,a).

Then, we can choose which of these bipartite

forms has the least number of shared free out-

puts and thus minimize this number.

Now, we classify operations 2, 3, and 4 from

Definition D as easy operations, while opera-

tions 1 and 5 are hard operations.

In an attempt to show the uniqueness of the

bipartite forms in an equivalence class, we con-

jecture the following:

Conjecture H. In an equivalence class with

bipartite forms, all such bipartite forms can

be transformed from one to another using only

easy operations.

One straightforward approach starts by assum-

ing for the sake of contradiction that two bi-

partite graphs, G1 and G2, are equivalent even

though they cannot be transformed from one

to another using only easy operations. Then,

we can write down partial traces between

all pairs of vertices of one bipartite graph.

This quantifies the entanglement of the whole

graph. If the partial traces between all pairs of

vertices of the other bipartite graph are di↵er-

ent, then the entanglement is evidently di↵er-

ent and we would reach a contradiction.

VIII. OTHER EQUIVALENCE CLASSES

There are also equivalence classes with no bi-

partite graphs, and it is less intuitive to de-

termine which graphs to call canonical forms.

Call such equivalence classes lacking. From

Definition E, disjoint encoder graphs cannot

be transformed into a non-disjoint encoder

graph using operations from Definition D.

Therefore, if there exists a disjoint encoder

graph in an equivalence class, all graphs in the

equivalence class are disjoint.

In the 2-to-4 codes, the lacking equivalence

classes, using the tables from Section V, have

representatives 1, 3, 181, 11, and 13.

The diagrams for these classes reveal that 181,

11, and 13 are non-disjoint, which are shown in

Figure 14.

Using the code from Section V, we were able

to determine that the equivalence class of 181

does not contain any elements with 0 output-
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FIG. 14: The lexicographically smallest representatives of the 2-to-4 non-disjoint and lacking equivalence

classes.

output edges or 1 output-output edge. Instead,

the smallest number of output-output edges

is 2, and an example of such a graph is 300,

shown below.

The symmetry of 300’s graph suggests the

graph for 181 is also symmetrical. Indeed,

the inputs in 181’s graph share symmetrical

connections, and their pivots share symmetri-

cal connections. Both pivots, outputs 1 and 2,

have an edge with output 3. Both inputs 1 and

2 share an edge with output 4, and they also

both have an input-pivot edge.

Since 300 makes the symmetrical connections

more apparent, and it has less output-output

edges, it is deemed more canonical.

Similarly, from Figure 14, we see that 11 and

13 also have such symmetries, and their out-

puts can be rearranged to make it more appar-

ent.

IX. CONCLUSION

This paper presented our work on detailing

the canonical forms and structures of select

Toric and surface codes and tabulated results

from Java code that determined the represen-

tatives sizes of equivalence classes for ZX di-

agrams within sector X of Figure 1. Among

these equivalence classes, we also analyzed
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those that contained bipartite forms among

the 2-to-4 codes.

The work done on Toric and surface codes ties

in with the larger goal of finding explainable

canonical forms given the stabilizers of an

error-correcting code. The advantage of the

Toric and surface codes presented in this pa-

per are their structural simplicity. As seen by

the 3-by-3 surface code, the number of inter-

nal nodes in the ZX normal form is reduced

to 0 using the simproc we provided. Future

works can extend these simplifications (i.e. of

removing internal nodes) to other CSS codes

and find patterns among the structures of the

codes to see if newer definitions of canonicity

could yield e�cient transformations from the

stabilizer formalism to the ZX calculus, as well

as from the ZX calculus to the stabilizer for-

malism.

Furthermore, by extending the scope of the

research to consider permuting outputs as giv-

ing equivalent codes, the tabulated results in

this paper will provide future works a basis

to determining patterns among equivalence

class sizes and representatives, as well as a

method for determining such sizes and rep-

resentatives. Extending the definition of equiv-

alence to allow for permutation of outputs is

physically significant as these permutations

do not a↵ect the amount of entanglement the

input qubits go through, and thus the order-

ing of output qubits could be considered as a

non-fundamental aspect of a quantum error-

correcting code.
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Appendix

In the main text, we provided the 2-by-2 and

3-by-3 Toric codes in ZX calculus. Here, we

provide a more detailed description of the

methodology used to determine the structure

of the 3-by-3 Toric code.

After placing down the output nodes as in Fig-

ure 4, we expect some of the output edges to

contain Hadamard gates. Suppose the output

edge onto vertex 1 has a Hadamard. This im-

plies that applying the stabilizer Z1Z4Z10Z11

would result in sliding a Z gate from the end

of the output edge, through the Hadamard

(which converts the Z gate to an X gate),

then through vertex 1 itself. By the ⇡-copy

rule [14], the X gate, which is an X node with

phase ⇡, copies itself onto the edges (excluding

the output edge) connected to vertex 1. Dia-

grammatically, applying Z1 onto the vertex 1

is shown in Figure 15.

Similarly, while continuing the assumption

that output node 1 has a Hadamard, if we in-

stead applied the stabilizer X1X3X10X16, we

slide an X gate from the end of the output

edge, through the Hadamard (which converts

the X gate to a Z gate), then onto vertex 1.

By the spider rule [14], the Z gate, which is a

phase ⇡ green node, merges with vertex 1, a

phase 0 green node. This results in vertex 1

gaining a phase of ⇡.

By the preceding paragraphs, the behavior of

the Z and X gates on a Hadamarded output

node is understood. The analogous behavior

occurs on a non-Hadamarded output node by

switching all the colors used in the processes

above.

To determine all of the edges in the 3-by-3

Toric code in Figure 3 and Figure 4, we con-

sider these processes of applying the stabiliz-

ers onto the output nodes. Note that all of

the internal edges among nodes in the dia-

gram must be Hadamarded edges so that the

spider rule cannot be applied to merge mul-

https://arxiv.org/abs/2301.02356
https://arxiv.org/abs/2301.02356
https://quantomatic.github.io/
https://quantomatic.github.io/
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(a) A Z gate, denoted by the green ⇡ is slid onto the output edge

containing a Hadamard gate, denoted by the yellow square.

(b) Passing through the Hadamard gate, the Z gate turns into an X gate,

or red ⇡.

(c) By the ⇡-copy rule, the X gate passes through vertex 1 and

copies itself onto each of the other edges connected to vertex 1.

FIG. 15: The process by which a Z gate passes through a node (vertex 1) with phase 0. The Z gate is

pushed through the output edge connected to output node 1. Note that an analogous diagram holds

depending on the number of non-output edges connected to node 1.

tiple nodes into one. To simplify our work,

we set the Hadamarded output nodes to be

1, 2, 3, 7, 8, 9, and 16, 17, 18. Then, by stabi-

lizer Z1Z4Z10Z11, the nodes 4, 10, and 11 gain

phase ⇡ from their Z gates while node 1 will

cause a ⇡-copy rule to move X gates onto the

internal edges connected node 1. Since all in-

ternal edges are Hadamarded, moving the X

gates through the Hadamards will result in

Z gates. If these Z gates went to any nodes

other than nodes 4, 10, and 11, the stabilizer

would not have kept the configuration the

same. Therefore, the Z gates must arrive at

only nodes 4, 10, and 11. This works because

the ⇡s from these Z gates cancel with the ⇡s

already at the nodes. Thus, the only internal

edges to node 1 are from nodes 4, 10, and 11.

Using similar reasoning, we can deduce the

rest of the internal edges among the output

nodes. Furthermore, to determine the logical
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FIG. 16: Version of the bialgebra rule on an internal node v0 (the bottom-most node in the left side

diagram) in the case with 3 boundary nodes attached to v2 (as shown in the left side diagram).

operators (to connect the input nodes to), we

look for sets of nodes that, when any stabilizer

is applied, keep the input node at phase 0.

In the simplification of the 3-by-3 surface code,

we used a simproc based on multiple varia-

tions of the bialgebra rule. One of these rules

is shown in Figure 16. The variations on the

rule shown in Figure 16 have di↵erent numbers

of boundary nodes attached to the vertex v2 in

the left diagram. Note that the purple boxes

are !-boxes, which denote any nonnegative in-

teger number of copies of the objects inside the

!-box. For our purposes, we will only be apply-

ing the bialgebra rule from left to right. The

motivation behind this is that the resultant

form will be able to make simplifications when

v2 (the green node connected to three black

boundary vertices) from the left diagram is

split into multiple nodes in the right diagram.
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