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Abstract

Over 70 million people worldwide suffer from stuttering, a speech impairment characterized by involuntary

disruptions during normal speech. This creates communication barriers and limits access to voice-enabled technologies,

which often fail to recognize disfluent speech or mistake stutters for meaningful words. This study develops two deep

learning solutions for correcting stuttered speech conversion, that is, generating a fluent speech signal from a stuttered

speech signal. First, this study develops an ASR-based pipeline consisting of a fine-tuned Whisper-Small ASR model

to produce accurate transcripts and a text-to-speech generator. More importantly, this study presents the first end-

to-end multitask models for stutter correction: StutterZero and StutterFormer. StutterZero uses an encoder-decoder

architecture with conventional convolution and LSTM layers, while StutterFormer is a purely Transformer-based

model. Both process Log-Mel spectrograms to directly generate fluent speech from stuttered audio. The SEP-28K

and LibriStutter datasets, containing natural and artificially generated stuttered audio trains, evaluate both models’

performance. StutterZero demonstrated statistically significant enhancements in five-fold cross-validation, including

a 24% decrease in Word Error Rate (WER), a 4% reduction in Character Error Rate (CER), and a 31% increase

in semantic similarity (BERTScore) compared to the leading Whisper-Medium model.. StutterFormer achieves better

results, with a 28% reduction in WER, 9% reduction in CER, and a 34% improvement in BERTScore. Both models

show strong potential for real-time stutter correction in digital communications and human-machine interactions. In

addition to technical contributions, this work releases two extended, publicly available datasets of paired stuttered

and fluent speech, supporting future research in stuttered speech processing.
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I. INTRODUCTION

A. Problem Statement

Stuttering is a prevalent speech disorder, impacting more than 70 million individuals globally [2]. It manifests

through interruptions in speech flow, including unintentional repetitions, prolongations, and pauses. Table I presents

the five main phonological classifications of stuttering and examples of their symptoms [7] [37]. Such interruptions

can significantly hinder effective communication, frequently causing social anxiety, depression, and a diminished

quality of life [4]. In children, stuttering may lead to bullying and social isolation, exacerbating the emotional and

psychological difficulties they encounter [3].

Classification Phonological Pattern

Sound Repetition (SoundRep) “a-a-and”

Word Repetition (WordRep) “and and”

Interjection “I think that – uhmm”

Block “I think... <pause>...that”

Prolongation “sooooo”

TABLE I: Classification types and phonological patterns: A summary of the five stuttering categories

considered in this study, with examples of each type. These categories are based on phonetic patterns

commonly used in speech therapy and pathology.

Fluent speech plays a critical role in daily communication, both in interpersonal situations and when engaging

with intelligent voice-based technologies. Through a quality-of-life survey, people who stutter (PWS) showed a

statistically significant decrease in emotional health and social function metrics [32]. Stuttering can also cause

feelings of shame, fear, anxiety, and guilt [35]. These challenges are exacerbated by the growing dependence on

intelligent voice assistants — such as Google Home, Amazon Echo, and Apple Siri — which are designed to

process fluent speech. As a result, people who stutter frequently encounter recognition errors, limited functionality,

and exclusion when interacting with voice-controlled technologies.

For more severe forms of stuttering, automatic speech recognition (ASR) models — models that transcribe speech

— may insert unintended words or even truncate the speech due to a block. Lea et al. [17] evaluated the speech of

individuals with PWS using the Apple Speech framework, a production-level automatic speech recognition (ASR)

system designed for fluent speakers. They reported a Word Error Rate (WER) of 19.8%, indicating that nearly

19.8% of words in the ASR-generated transcript did not match the reference ground truth. They also reported a

truncation rate of 23.8%, where 23.8% of utterances from these PWS were prematurely cut off. Addressing this

challenge, this study develops deep learning models that convert stuttered speech into fluent audio — going beyond

transcription to reconstruct corrected acoustic signals. By generating fluent speech that preserves semantic content

and improves intelligibility, these models aim to enhance communication for PWS and increase accessibility in

human-machine interactions.
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B. Background and Related Work

Previous work in the field of stutter correction can be separated into three categories: (1) Digital signal processing

(DSP) and rule-based classifiers, (2) ASR and text-to-speech (TTS) pipelines, and (3) deep learning (DL) approaches.

1) Conventional Digital Signal Processing Approaches: DSP approaches utilize audio feature extraction methods

to obtain condensed numerical features from a complex audio signal. Then, a ruleset or set of predetermined filters

is applied to the features to determine which timeframes contain a stutter. Finally, these timeframes are cut out of

the audio, removing the stutter. Some frequently utilized feature sets include: Mel-Frequency Cepstral Coefficients

(MFCCs), Linear Predictive Coding (LPC), and Linear Predictive Cepstral Coefficients (LPCCs). For instance,

MFCC features are generated by first applying the Fast Fourier Transform (FFT) to convert an audio sample from

the amplitude to frequency, generating the power spectrum. After that, the Mel filter bank is used to map the power

spectrum to Mel frequencies, employing a set of nonlinear triangular filters. This aligns the intensity of frequencies

to match the nonlinearity of human auditory perception. Ultimately, a Discrete Cosine Transform (DCT) is used

to generate the cepstral coefficients through decorrelation of features. This pipeline is applied to every window of

audio, usually 20-50 ms long [11] [9].

K N et al. introduce a rule-based approach for stutter detection and removal by computing a “correlation factor”

between adjacent audio windows using either MFCC or LPC features. A high correlation value — empirically

determined to be 0.92 — was used to identify repeated or prolonged segments, prompting deletion of redundant

frames. The unusually high correlation factor was used to detect repeated audio patterns, such as recurring phonemes

or extended silences. However, the approach was evaluated exclusively on repetition and prolongation types, without

accounting for other common disfluencies such as blocks or interjections. Additionally, the experimental scope of

the study was confined to only 60 repetition and 70 prolongation events, obtained from a limited selection of audio

files. As a result, its generalizability across diverse speakers, accents, or spontaneous conversational settings remains

uncertain [9]. Table II summarizes the performance, demonstrating high within-sample accuracy.

Stuttering Type Feature Used Total Removed Retained Accuracy

Repetition
MFCC 60 54 6 90.0%

LPC 60 52 8 86.7%

Prolongation
MFCC 70 67 3 95.7%

LPC 70 65 5 92.9%

TABLE II: Performance of DSP-based stutter removal methods using MFCC and LPC features across two stuttering

types[9].

In some cases, low-level features such as MFCC, LPC, and LPCC are extracted from the audio and used as input

to neural networks or machine learning models, which then classify whether a stutter has occurred at each point in

time.

For example, StutterNet, introduced by Sheikh et al, a multi-class Time Delay Neural Network (TDNN). Because

TDNNs use windows of time-delayed inputs, they are especially well-suited to temporal dependencies such as MFCC
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speech features. While StutterNet was only able to detect stutters, it is plausible that similar systems can be used

to flag sections of stuttered audio for removal [6]. Table III summarizes representative DSP-based systems, their

methodological choices, and reported performance.

Author(s) Dataset Feature Extrac-

tion Method(s)

Method of De-

tecting Stutters

Type(s) of Stut-

ter

Best Accuracy

Mishra et al.,

2021

UCLASS MFCC, Root

Mean Square

Error

Deep neural net-

work

Repetition, Pro-

longation, Block

86.67%

Dash et al., 2018 Private human

speech samples

Amplitude Deep neural net-

work

Prolongation 86%

Shonibare et al.,

2022

Private human

speech samples

log-Mel Spectro-

grams

Convolutional

neural network

Repetition,

Block,

Prolongation

Reduction of

71.24% in WER

TABLE III: Summary of studies on stutter detection, including datasets, feature extraction methods, detection

approaches, stutter types analyzed, and best reported accuracies.

2) ASR & TTS-based Approaches: The second approach to stutter correction involves fine-tuning or training an

ASR model on stuttered speech such that the ASR model can generate transcripts of that speech. The ASR model

can either explicitly transcribe the stutter into text or ignore the stuttered portions, producing a fluent transcript.

That transcript can be filtered with rule-based systems and finally passed through a TTS model to produce fluent

audio sequences. Figure 1 shows the general pipeline to achieve ASR & TTS-based stutter correction. This approach

helps to omit artifacts caused by splicing audio in the DSP-based approaches, since TTS models are generating

new audio sequences. However, DSP methods can preserve speaker prosody more naturally, as they simply edit

the original speech. For a TTS model to mimic the tone and prosody of the original speaker, it would need more

utterances to fine-tune on.

Fig. 1: General pipeline of a ASR-TTS approach

Mujtaba & Mahapatra describe fine-tuning Whisper-small, a state-of-the-art ASR model pretrained on fluent

speech corpora. To allow for efficient training, low-rank adaptation (LoRA) was used as a form of parameter-

efficient fine-tuning. Whisper-small was fine-tuned on ground truth transcripts provided by the FluencyBank and

private HeardAI datasets. They reported that Whisper-Small achieved a WER of 33.88% without any training or
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fine-tuning. After fine-tuning Whisper-Small using the aforementioned LoRA methods, it achieved a WER of 9.39%

[16].

Due to the adaptability of fine-tuned ASR models, there has been research into fine-tuning pre-trained ASR

models for other speech impairments such as dysarthria. Wang et al. fine-tuned wav2vec2.0 and HuBERT ASR

models on dysarthria datasets. They achieved the best WER of 16.53% by fine-tuning a pre-trained wav2vec2.0 ASR

model on a dysarthria corpus augmented by a generative adversarial network. Even without any data augmentation,

they obtained a WER of 22.25% on a fine-tuned wav2vec2.0 model and a WER of 21.10% on a fine-tuned HuBERT

model [33].

3) Deep Learning & End-to-end Approaches: Deep learning approaches for speech recognition and speech

conversion have been the subject of extensive investigation. Speech conversion focuses on modifying or transforming

a speech signal — such as changing the speaker’s voice or style — while preserving the original linguistic content.

In contrast, speech recognition involves accurately transcribing spoken language into text [38] [39] [42]. Deep

learning approaches for speech processing typically involve training neural networks or other computational models,

eliminating the need for manual feature engineering. Recent advancements in deep learning have popularized end-

to-end models — systems that learn to perform the entire correction process directly from input data, without

requiring handcrafted features or intermediate steps.

While there is considerable work on end-to-end speech conversion of fluent speech and other speech impairments

such as dysarthria, there is little research in deep learning or end-to-end stutter correction. This paper will first

review deep learning and end-to-end methods of fluent speech recognition, conversion, and the correction of dysarthic

speech.

The popularity of end-to-end models stems from their ability to consolidate the entire inference pipeline into a

single model optimized with one objective function that directly reflects the training goal. In contrast, a traditional

DSP-based pipeline might first extract MFCC features from audio and then train a neural network to classify whether

each frame contains a stutter. The neural network in this case is trained for frame-level accuracy in detecting stutters,

which does not align to remove stutters at a sequence level [40] [46]. The lack of manual feature engineering for

end-to-end models also allows for greater generalizability and adaptability to similar problems [43]. Finally, end-

to-end models such as encoder-decoder and RNN-Transducer models are suitable for sequence-to-sequence tasks

such as speech conversion as they do not require alignment of acoustic sequences to ground truth transcripts and

are very flexible with input/output sequence lengths [42].

For example, Toshniwal et al. [29] developed an attention-based encoder-decoder model inspired by recurrent

neural networks. A speech encoder is built on a deep bidirectional long short-term memory (BiLSTM) network,

which produces a sequence of abstract hidden representations. These hidden representations are passed into the

character decoder, which is a single-layer LSTM that predicts the most likely letter uttered. [29].

Wang [44] introduces an end-to-end encoder-decoder for dysarthic speech correction. Three multitask encoders

were used — a content encoder to learn underlying semantic meaning, a prosody encoder to learn and correct

audio features salient to dysarthia, and a speaker encoder to capture prosody and recreate the tone and voice of the

original speaker. A decoder aggregates hidden representations from all three layers and generates acoustic features
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from which audio can be reconstructed using a vocoder [44].

II. RESEARCH OBJECTIVES

This study presents three pipelines for stutter correction. First, this research introduces and validates an ASR-based

pipeline by fine-tuning Whisper-Small and applying a TTS model to generate fluent speech sequences.

This research also introduces two end-to-end models for stutter correction. Both are multitask, encoder-decoder

models that do not rely on any specific feature extraction processes. StutterZero uses more conventional layers,

such as Long Short-Term Memory (LSTM) and convolutional blocks, while StutterFormer relies purely on the

Transformer architecture. Both end-to-end models are trained with the same dataset across a five-fold cross-

validation.

III. METHODOLOGY

A. Data

This research utilizes two datasets: Stuttering Events in Podcasts (SEP-28K) and LibriStutter. The SEP-28K

dataset contains 23 hours of naturally occurring stuttering events, divided into 28,000 clips, each lasting 3 seconds

[17]. All audio recordings were taken from public podcasts with people who stutter at a standard sampling rate

of 16 kHz. About 20 hours of artificially produced stuttered audio are included in the LibriStutter dataset. This

corpus was created by splicing, cutting, duplicating, and performing other manipulations on the fluent LibriSpeech

corpus to mimic the prosodic characteristics of stuttering [7]. Because the LibriStutter dataset was created from

fluent speech, it also contains fluent transcriptions of the stuttered speech. Unfortunately, the SEP-28K dataset does

not have fluent transcriptions due to the time and energy required to manually label every speech clip.

The University College London Archive of Stuttered Speech (UCLASS) and the Fluencybank dataset are the two

other more well-known stuttering datasets [34] [62]. However, both datasets have some limitations. The UCLASS

dataset does not provide fluent ”ground truth” transcripts for the stuttered speech, so there are no reference transcripts

to fine-tune Whisper-Small on. The FluencyBank dataset is restricted to a limited set of recordings available only

through password-protected channels, making it unsuitable for large-scale training.

B. ASR-based approach

In order to have fluent speech data to train StutterZero as an end-to-end model, this research also developed

an auxiliary pipeline to first generate fluent speech data, thereby “completing” both datasets. To reliably generate

fluent audio sequences, this research first developed the ASR-TTS pipeline as shown in Figure 2:

1) Stuttered audio and fluent transcripts from LibriStutter are used to fine-tune a Whisper-Small ASR model that

was originally trained on fluent speech only.

2) The fine-tuned Whisper-Small model was applied to the SEP-28K dataset, generating fluent transcripts for all

SEP-28K audio clips.

3) A pretrained MeloTTS text-to-speech model was applied to all fluent transcripts from both datasets, generating

reliable and clear flu ent audio sample counterparts.
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LibriStutter

• Stuttered audio

• Fluent transcripts

SEP-28K

• Stuttered audio

• No transcripts

Input Datasets

Fine-tune

Whisper-Small

Using LibriStutter

Generate fluent

transcripts for

LibriStutter

Generate fluent

transcripts

for SEP-28K

Transcription Phase

Apply MeloTTS

text-to-

speech model

Audio Generation Final Dataset

• Fluent audio

• Fluent transcripts

From SEP-28K

& LibriStutter

Fig. 2: Overview of this research’s ASR-based pipeline. The LibriStutter dataset, containing stuttered audio and fluent transcripts,

is used to fine-tune a Whisper model. This model is then used to generate fluent transcripts for both LibriStutter and SEP-28K

(which lacks transcripts). The MeloTTS model is applied to the fluent transcripts to generate fluent audio, resulting in a final

dataset with aligned fluent audio and transcripts derived from both source datasets.

A

C. Whisper-Small Architecture

This study fine-tunes Whisper-Small, a lightweight derivative from the Whisper family of ASR models. Audio

data from both aforementioned datasets are in the amplitude domain, though Whisper-Small accepts a spectrogram

in the frequency domain as input [22].

Whisper-Small’s WhisperFeatureExtractor uses a Short-Time Fourier Transform (STFT), computing the Fast

Fourier Transform (FFT) on overlapping segments — or “windows” — of the audio as it slides across the entire

signal. Then, the spectrogram is converted into a log-Mel spectrogram by mapping the frequencies from the “vanilla”

spectrogram onto the Mel scale. This is done because human hearing does not perceive pitch in a linear manner

— humans are more attuned to changes in lower pitches than in higher pitches. The linear frequency spectrogram

is passed through a Mel filter bank, which applies a series of triangular filters to aggregate spectral energy within

perceptually relevant frequency bands. Once a spectrogram is transformed into a log-Mel spectrogram, equal intervals

on the Mel scale reflect equal perceived differences in pitch. The practical effect is that Mel spectrograms highlight

the frequencies of human speech while minimizing the intensity of background noise, allowing the model to

concentrate solely on the speech signals [8]. Figure 3 displays visualized spectrograms of the conversion process

to obtain a Log-Mel Spectrogram.

Whisper-Small computes Log-Mel Spectrograms with 25 millisecond-long windows that move forward by 10

milliseconds every timestep.

Whisper-Small is a Transformer encoder-decoder model featuring 12 layers in both the encoder and decoder,

a hidden width of 768 units, and 12 attention heads, amounting to around 244 million parameters in total. The

encoder layers consist of a self-attention mechanism and a fully connected hidden layers. The encoder generatesa

context vector, which is passed via cross attention to each of the 12 decoder attention blocks. Each decoder layer
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Fig. 3: Visualization of conversion to a Log-Mel Spectrogram. The raw audio waveform (left) presents the change in amplitude

over time (amplitude domain). After the Short-Time Fourier Transform, the amplitude domain is converted to the frequency

domain as a spectrogram (middle). After applying the Mel filterbank, the Log-Mel spectrogram is obtained (right)

contains a self-attention, cross-attention, and fully connected network [22]. At every timestep, the autoregressive

decoder is fed the aggregated output tokens from all previous timesteps so it can predict the most likely following

token.

Whisper’s built-in byte-pair encoding (BPE) tokenizer converts the numeric predictions of Whisper — called

tokens — back into readable text.

D. Whisper-Small Fine-tuning

To fine-tune Whisper-Small, this study aggregated all stuttered audio samples and normalized the sampling rate

to 16 kHz. For LibriStutter audio clips, we split lengthy audio samples to the 30-second mark.

Fine-tuning begins with Whisper-Small’s pretrained weights to take advantage of the accurate general transcription

properties that Whisper is already trained for. The evaluation metric is Word Error Rate (WER), which is formally

defined in Equation (1) [47].

WER =
substitutions + deletions + insertions

number of words in the reference
(1)

S is the number of substitutions (words in the reference that are replaced with incorrect words in the hypothesis),

D is the number of deletions (words in the ground truth that are missing from the predicted speech), and I is the

number of insertions (extra words in the predicted speech that are not in the ground truth).

Fine-tuning was done with 80% of all audio-transcript pairs used for training, 10% used for testing, and 10%

used for validation. All training for this study was done on an NVIDIA RTX 3080 with 10 gigabytes of Video

RAM. Training runs for a maximum of 10,000 steps with a small learning rate of 1e-5 and uses a batch size of

8 per device, with gradient accumulation over 2 steps to simulate a larger batch size. Gradient checkpointing and

mixed precision are enabled to save memory and speed up training. Evaluation occurs every 1,000 steps, and the

lowest WER model weights are saved.
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E. StutterZero Model Architecture

End-to-end models have seen significant usage in other speech-based tasks such as translation and transcription.

These models are characterized by directly converting an input signal to an output signal without any intermediate

feature engineering or representation.

This study introduces an autoregressive, end-to-end, multitask model named StutterZero. The encoder converts

the input sequence to a higher-level representation called a context vector. The context vector is a numerical

representation of features that the trained encoder determines to be relevant. While usual encoder-decoder models

use one encoder and one decoder, this study proposes a multitask decoder where two decoders, given the same

context vector, are forced to predict different data types. The spectrogram decoder autoregressively predicts the

fluent spectrogram signal, while the transcript decoder autoregressively predicts the grapheme being uttered.

The spectrogram decoder generates the spectrogram one frame at a time, using the context vector along with only

the previously predicted frames as contextual input to append each new predicted frame to the output spectrogram.

Similarly, the transcript decoder uses previously predicted tokens to predict the following grapheme tokens. Figure

4 displays an overview of the model architecture.

1) StutterZero Encoder: This encoder is composed of two convolutional blocks, each featuring a strided 2-

dimensional convolution layer with a 3x3 kernel size, a 2x2 stride, and batch normalization. To capture the

spatiotemporal characteristics of the input sequence, a convolution-augmented bidirectional long short-term memory

network (ConvBiLTSM) was used. Log-Mel Spectrograms encode both spatial information about the frequency of a

signal and temporal information about when a specific signal was uttered. The ConvBiLTSM replaces the traditional

matrix multiplication operation of a set of weights on the entire input or hidden state with a convolution, encouraging

learning local spatial patterns in two-dimensional data. For example, Equation (2) convolves the input gate kernel

Wxi with the input tensor Xt with the ∗ operator instead of multiplying the matrices (WxiXt). Equations (2) to (7)

define functions for input gate It, forget gate Ft, candidate cell state C̃t, cell state Ct, output gate Ot and hidden

state Ht respectively. Wany defines the weights to applied to any specific datapoint. Ht−1 defines the hidden state

of the previous timestep, and bany defines trainable biases [25].

It = σ(Wxi ∗Xt +Whi ∗Ht−1 + bi) (2)

Ft = σ(Wxf ∗Xt +Whf ∗Ht−1 + bf ) (3)

C̃t = tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc) (4)

Ct = Ft ⊙ Ct−1 + It ⊙ C̃t (5)

Ot = σ(Wxo ∗Xt +Who ∗Ht−1 + bo) (6)

Ht = Ot ⊙ tanhCt (7)
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Fig. 4: Full network architecture of StutterZero: End-to-end model consists of an encoder and multitask decoders which fluents

the output spectrogram and transcript.

The encoder generates a 512-dimensional context vector, which is used as input for both decoders.

2) StutterZero Spectrogram Decoder: The spectrogram decoder uses the previously predicted spectrogram and

the current context vector as inputs. Two fully connected layers form a pre-net that compresses and transforms the

previous spectrogram frames into a lower-dimension representation. A well-trained pre-net will simplify the input

and extract the most salient features. If the raw spectrogram frames were used, the decoder may ”shortcut” the

learning process by copying the previous frame or minimally modifying it [27] [23].

Instead of classical content-based attention, StutterZero used Location-based attention. Classical content-based

attention computes an attention score et between query Q and key K as shown in Equation (8). et is a measure

of how well Q and Kt match or are contextually relevant to each other. Attention weights wt form a probability

distribution that dictates how much the model should pay attention to the encoder state at t when predicting outputs.

Finally, a weighted context vector c is used for output prediction [28].
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et = vT tanh(WqQ+WkKt) (8)

wt = softmax(et) (9)

c =

tmax∑
t=1

wtVt (10)

Because speech data is only read in one direction (monotonically), classical content-based attention may ”jump

around” erratically without respecting the flow of time. Location-based attention also computes a set of features ft

using concatenated previously calculated attention weights via a 1-dimensional convolution as shown in Equation

11

ft = Conv1D([

tmax∑
t

wt]) (11)

The location-based features are included in the attention score et as shown in Equation 12. This way, the decoder

is informed by past attention behavior and adjusts its focus accordingly to maintain a monotonic flow of data.

et = vT tanh(WqQ+WkKt +Wfft) (12)

Once the spectrogram decoder predicts a fluent spectrogram signal, the Griffin-Lim Algorithm is used to recon-

struct the phase data and generate an audio signal in the amplitude domain.

3) StutterZero Transcript Decoder: Previous work in text-to-speech and fluent speech conversion models has

demonstrated the efficacy of multitask decoder architectures. Multitask training sums the loss for both the spectro-

gram and transcript decoders, creating a joint loss function that forces the training process to optimize the loss on

both decoders [22] [29].

In this case of the transcript decoder, adding an objective function at the grapheme level may force StutterZero to

learn more intricate orthographical features of a word to correctly distinguish between allophones and homophones.

The transcript decoder also uses a teacher-forced embedding of the previous text as its input. Instead of using

its previous prediction as input for generating the next token, the true ground-truth token from the training data is

fed as input to the next step. This stabilizes and speeds up training because the model always conditions on the

correct previous tokens. Additionally, it avoids extreme divergence and error in the early stages of training, where

wrong predictions may accumulate.

4) StutterZero Training: The spectrogram decoder uses mean-squared error (MSE) loss is defined in Equation

13 where Strue is the ground truth spectrogram, Spred is the predicted fluent spectrogram, and f are the discretized

frequency bins at time t [49] [48].

LMSE =
1

F × T

F∑
f=1

T∑
t=1

(Strue(f, t)− Spred(f, t))
2 (13)



14

Because grapheme prediction is a categorical, Cross-Entropy loss is used for the transcript decoder. This is defined

in Equation 14 where y is the ground truth grapheme, and x is the input Log-Mel Spectrogram. logP (yt|y<t,x)

is the probabiity of predicting the correct token yt given all previous tokens y<t and input features x.

LCE = −
T∑

t=1

logP (yt|y<t,x) (14)

To combine the loss functions for both decoders, a bespoke loss function is defined by summing two components:

the Mean Squared Error (MSE) loss between the fluent and stuttered spectrogram frequency bins, and the Cross-

Entropy loss between the predicted token probability distribution and the ground truth tokens.

StutterZero utilized the Adam optimizer for training, starting with an initial learning rate of 1e−4 and a weight

decay of 1e−6. The weight decay discourages large weights by incorporating the L2 norm of the weights into the

loss function. Like the ASR-based approach, 80% of all audio-transcript pairs were used for training, 10% used

for testing, and 10% used for validation. It was trained for 1000 epochs on an NVIDIA RTX 3080 with 10 GB

VRAM across five-fold cross-validation (90% training, 10% evaluation).

F. StutterFormer Model Architecture

StutterFormer maintains the same multitask architecture as StutterZero, but switches out internal layers for the

Attention mechanism found in Transformers as described in [57]. Figure 6 displays a high-level summary of

StutterFormer s architecture.

1) Multi-Head Attention: Multi-head attention serves as the fundamental building blocks of StutterFormer.

Compared to single-head attention, which computes attention in a single attention distribution, multi-head attention

projects queries, keys, and values into multiple subspaces, applies attention in parallel, and then recombines the

results. This makes it possible for the model to take a joint attention function to data from several learned subspaces.

For instance, one head may focus on short-range syntactic dependencies only while another head tracks long-range

semantic connections. This increase in flexibility allows multi-head attention to learn a greater breadth of information

while keeping the parameter count relatively equal to a larger single-head attention module [57].

For every head i, global Q/K/V values are first projected into individual learned subspaces with linear projection

matrices using matrices WQ
i , WK

i , and WV
i .

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i (15)

Each head then computes Attention individually:

headi = Attention(Qi,Ki, Vi) (16)

Finally, all attention heads are reconcatenated:

MultiHead(Q,K, V ) = Concat(head1, . . . , headn) (17)
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2) StutterFormer Encoder: The encoder input remains a Log-Mel spectrogram. Because a Transformer processes

all input frames in parallel, it does not have a sense of order by default. Sinusoidal positional encoding gives each

time step a deterministic vector (based on the position index) for the embedding at each time step. Residual and

layer normalization layers are used between the multi-head attention and feed-forward layers to mitigate vanishing

or exploding gradients [60] [59]. Three multi-head attention units are utilized in the encoder, each consisting of

four heads. Similarly to StutterZero, the encoder outputs a context vector — a learned hidden representation of the

input.

3) StutterFormer Decoders: The spectrogram decoder uses the context vector from the input and uses a similar

pre-net architecture as StutterZero to learn a lower-dimension representation. Masked multi-head self-attention is

used to prevent the decoder from ”looking ahead” at future frames that have not been predicted yet. After applying

the mask, the decoder can only attend to itself and past frames. Cross attention utilizes queries from the preceding

decoder layer, while the keys and values are derived from the original encoder context vector. This allows the

decoder to observe the entire encoder context when deciding the next frame.

Interestingly, StutterFormer’s spectrogram decoder predicts both a ”coarse” and ”fine” spectrogram. The coarse

spectrogram is a high-level prediction of the fluent signal — capturing global structures such as broad formats and

the general distribution of energy. A fine spectrogram is used to supplement the final prediction with more subtle,

detailed signals such as fricatives. Both spectrograms are merged with an element-wise weighted sum. The fine

spectrogram is weighted at 30% of the strength of the coarse spectrogram. This ensures the fine spectrogram only

augments the coarse spectrogram and does not overpower it. Figure 5 shows the coarse and fine spectrograms in

the bottom left and right.

Finally, a post-net consisting of five 1-dimensional convolutions refines the predicted mel spectrogram to denoise

and sharpen the final audio signal [27] [61].

The transcript decoder uses a very similar architecture to the spectrogram decoder and employs the same

Transformer decoder architecture.

Fig. 5: Comparison of input, output, coarse, and fine spectrograms. Top Left: Input (stuttered) spectrogram, Top Right: Final

predicted fluent spectrogram, Bottom Left: Coarse predicted spectrogram, Bottom Right: Fine predicted spectrogram.
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Fig. 6: Full network architecture of StutterFormer: Transformer-based end-to-end network for stutter correction.

4) StutterFormer Training: Like StutterZero, StutterFormer employs a hybrid loss function that combines multiple

weighted losses. The spectrogram decoder also uses mean-squared error loss between the predicted and ground

truth spectrograms. MSE loss is only used to predict the coarse fluent spectrograms. In addition to MSE loss, the

spectrogram decoder also computes a mean absolute error (MAE) loss for predicting fine spectrograms only. MAE

loss measures the absolute difference of the predicted values and target values without squaring. When tested with

spectrogram applications, MAE loss promotes sharper spectrograms that prevent the predicted fluent speech from

sounding slurred [63]. The transcript decoder also uses cross-entropy loss.

Like StutterZero, StutterFormer was trained for 1000 epochs on an NVIDIA RTX 3080 with 10 GB VRAM

across five-fold cross-validation (90% training, 10% evaluation).
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IV. RESULTS

A. Benchmarking

In addition to the ASR-based and end-to-end approaches used in this study, state-of-the-art fluent-speech ASR

models were also evaluated to establish a baseline for how accurately current speech recognition systems transcribe

stuttered speech. This study used the Whisper-Tiny, Whisper-Small, and Whisper-Medium pretrained fluent ASR

models as baselines. The 10% validation data split was used to assess each of the six models.

Three metrics were used to evaluate all models: Word Error Rate (WER), Character Error Rate (CER), and

BERTScore. CER is defined in Equation (18) as the proportion of incorrectly predicted characters compared to

the ground truth string. To assess the semantic similarity between the ground truth and predicted utterances, a

BERTScore is calculated using pre-trained contextual embeddings from the Bidirectional Encoder Representations

from Transformers (BERT) language model [30]. Cosine similarity is used as a metric to quantify similarity between

high-dimensional embedding vectors. The BERTScore defines how similar the two strings are semantically, meaning

it is more forgiving towards minor transcription mistakes that still preserve the overall meaning of the utterance

[30].

CER =
char. substitutions + char. deletions + char. insertions

number of characters in the reference
(18)

Because both approaches in this research produce audio signals, the audio signals must be converted back to text

before any word or character-level evaluation. This study used an unmodified, pretrained copy of the Whisper-Small

ASR model to transcribe the predicted fluent sequences from both the ASR and end-to-end approaches, as shown

in Figure 7. This was an attempt to simulate what an untrained, average English-speaking person would interpret

the fluent speech to be. The predicted transcripts of the fluent speech were compared with ground truth transcripts

to calculate the final metrics. Table IV displays the mean WER and CER. The mean BERT scores for precision,

recall, and F1 are shown in Table V.

Fig. 7: The validation pipeline. An untouched Whisper-Small ASR model acted as ”judge” to evaluate speech clarity and

intelligibility
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Model WER CER

Whisper-Tiny 0.415± 0.485 0.227± 0.326

Whisper-Small 0.370± 0.364 0.171± 0.293

Whisper-Medium 0.361± 0.302 0.162± 217

ASR-based 0.04± 0.032 0.02± 0.15

StutterZero (end-to-end) 0.116± 0.101 0.110± 0.096

StutterFormer (end-to-end) 0.08± 0.089 0.07± 0.109

TABLE IV: WER and CER Metrics for various models

Model Mean BERTScore Precision Mean BERTScore Recall Mean BERTScore F1

Whisper-Tiny 0.5768± 0.157 0.6046± 0.1542 0.5915± 0.151

Whisper-Small 0.5956± 0.1581 0.6182± 0.1553 0.6076± 0.1531

Whisper-Medium 0.601± 0.1571 0.6195± 0.1579 0.6107± 0.1545

ASR-based 0.9516± 0.04 0.9517± 0.03 0.9517± 0.04

StutterZero (end-to-end) 0.9174± 0.034 0.9102± 0.025 0.9034± 0.046

StutterFormer (end-to-end) 0.9411± 0.012 0.9102± 0.011 0.9034± 0.013

TABLE V: Model performance comparison using BERTScore metrics

B. Wilcoxon Signed-Rank Test

The non-parametric, two-sided Wilcoxon Signed-Rank Test is used to confirm the statistical significance of the

improvement made by this research’s findings and baseline Whisper performance. Comparing the performance of the

ASR-based approach with Whisper-Medium (the best performing Whisper model), the Wilcoxson Test returns a test

statistic of 77631.0, a p-value of < 1e−100, significant at α = 0.05. Running the test comparing the performance of

the end-to-end StutterZero and StutterFormer models against Whisper-Medium also returns a p-value of < 1e−100,

significant at α = 0.05. This shows that both StutterZero and StutterFormer demonstrate a significant improvement

over state-of-the-art fluent speech models.

C. Ablation Study

An ablation study was conducted to determine the impact of the multitask architecture and transcript decoder.

StutterZero and StutterFormer were re-trained across a five-fold cross-validation with all hyperparameters, data

splits, and other tunable values kept constant. However, the transcript decoder was removed from both models

during the ablation.

Model WER CER Mean BERTScore Precision

StutterZero (with transcript decoder) 0.116± 0.101 0.110± 0.096 0.9174± 0.034

Ablated StutterZero (without transcript decoder) 0.339± 0.176 0.260± 0.166 0.437± 0.1658

StutterFormer (with transcript decoder) 0.08± 0.089 0.07± 0.109 0.9411± 0.012

Ablated StutterFormer (without transcript decoder) 0.221± 0.213 0.194± 0.286 0.552± 0.2096

TABLE VI: Ablation comparison using BERTScore metrics
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This significant difference in every metric after the ablation in both models demonstrates the importance of the

transcript decoder. Observing StutterZero, the WER increased by 22.3% whilst the CER only increased by 15%.

This shows the ablated StutterZero predicted most of the characters in a word correctly, but perhaps missed a few

characters in some more words. The same phenomenon is seen in StutterFormer ablation, but to a lesser degree.

This aligns with the functionality of the transcript decoder — to help both end-to-end models capture more detailed

orthographical features in words. A greater increase in WER than in CER could mean StutterZero/StutterFormer

incorrectly predicted more allophones and homophones, which have similar character-level spellings but are different

words.

V. DISCUSSION

This study introduces three pipelines for stuttered speech conversion and correction: a fine-tuned automatic speech

recogntion-based system and two multitask end-to-end models.

All three approaches introduced by this study significantly outperformed state-of-the-art fluent speech recognition

models. This research first validated the performance of a fine-tuned Whisper-Small ASR model and built the entire

speech conversion pipeline by applying a TTS model to the fluent transcripts.

More importantly, this research presents the first end-to-end models for stutter correction. This proves the viability

of end-to-end and encoder-decoder models in this application and opens the door for future research with more

powerful and diverse encoder-decoder models. StutterZero demonstrates a significant improvement fluent speech

models by using conventional LSTM and convolutional layers. By taking advantage of the nonlinear dependencies

in human speech, the Transformer-based StutterFormer is able to perform slightly better than StutterZero by only

using the Attention mechanism.

Finally, as per the ablation study, the multitask decoder architecture is crucial to model performance.

A. Limitations

There remain potential areas for improvement that can be explored in future research. First, StutterZero’s reliance

on TTS-generated fluent speech data for a substantial portion of the training and evaluation data introduces a prosodic

mismatch between synthetic and naturally spoken audio. While this TTS-generation approach allowed for efficient

generation of semantically accurate large-scale audio data, it limits StutterZero from fully capturing tone or emotion

in the speaker’s voice.

Second, the diversity of the training corpus was constrained by limited access to datasets such as UCLASS or

FluencyBank. The absence of these datasets restricted coverage of various speaker demographics, accents, and tones,

which in turn limits generalizability. There may be risks of overfitting and undergeneralization when training on

only the SEP-28K data from the LibriStutter datasets. Even though five-fold cross-validation was used to produce

a more candid estimate of the true performance both approaches, future steps should focus on data augmentation

and training on larger datasets.

Third, the training process was constrained by significant hardware limitations. Since the model was trained on

a single GPU with only 10 GB of VRAM, both the batch size and model complexity had to be reduced to make
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training feasible. This, however, resulted in slower training and unstable convergence of the training loss. With

access to more powerful hardware, it would be possible to incorporate more advanced architectural choices —

such as increasing the number of heads in the multi-head attention mechanism — potentially resulting in improved

model accuracy.

B. Future Work

While this research achieves impressive preliminary results, it also acts as a proof-of-concept, opening the doors

for more advanced end-to-end models in stutter correction.

To alleviate the prosodic loss due to training on TTS-generated fluent speech samples, using multiple encoders to

capture the tonal and prosodic content of the stuttered speech could be explored. Multi-encoder models have been

explored in dysarthic speech conversion, specifically using a prosody encoder to extract prosodic features [44]. This

would enable fluent outputs that retain the speaker’s identity, pitch, and expressive nuance. Additionally, expanding

to multilingual and low-resource languages through cross-lingual pretraining and transfer learning would extend

accessibility to a wider global population [50].

StutterZero/StutterFormer has great potential in automating and assisting with delayed auditory feedback (DAF),

a common technique used in speech-language therapy. It involves recording and playing back a PWS’s speech after

a brief delay (usually a few milliseconds to fractions of a second) [52] [51]. Playback of the fluent speech can

demonstrate how fluent speech is supposed to sound, thereby reinforcing self-monitoring and reducing disfluencies.

Instead of the individual hearing their disfluent utterances delayed, the model could provide them with a fluent

version of what they intended to say. This would supply the brain with consistent, fluent auditory feedback,

potentially reducing the reinforcement of stuttered patterns while strengthening neural pathways associated with

fluent production. Indeed, speaking in unison with a fluent signal (an external “fluent version” of one’s speech

content) reliably induces near-instant fluency in most PWS [56].

This research also has uses for real-time stuttering correction applications, especially over digital communication.

StutterZero/StutterFormer could be further optimized through methods such as quantization or distillation to run more

efficiently on lower-powered devices. Then, StutterZero/StutterFormer can work in real-time to correct the stutters of

speakers. StutterZero/StutterFormer could be used in phone calls, video conferences, or online meetings. If a person

stutters, their voice can be passed through StutterZero/StutterFormer before reaching everyone else in the meeting

so that StutterZero/StutterFormer else hears only the fluent speech. In the same vein, StutterZero/StutterFormer

has applications in voice recording and sound engineering, where a speaker’s accidental stutter can be corrected

flawlessly without having to re-record the speech.

VI. CONCLUSION

The research presents several contributions to the field of stutter correction and speech conversion. First, an ASR-

based pipeline utilizing fine-tuned Whisper-Small that achieved significant performance improvements, reducing

Word Error Rate to 4% compared to 36.1% for the baseline Whisper-Medium model. Second, and more importantly,

this research introduced StutterZero and StutterFormer, the first two end-to-end stutter correction models that
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directly convert stuttered speech to fluent audio without intermediate transcription steps. StutterZero was a multitask

encoder-decoder architecture using conventional convolution and LSTM layers, reducing Word Error Rate to 11%.

StutterFormer was based on a modern Transformer architecture and reduced Word Error Rate even further to 8%.

Being the first end-to-end models for stutter correction, both StutterZero and StutterFormer pave the way for future

development of larger and more accurate end-to-end models. Specifically, the encoder-decoder architecture allows

for great flexibility in the choice of encoder and decoder, allowing several multitask encoders and decoders to work

in unison to learn different representations of the audio. In industry, this research may pave the way for more

accessible human-machine interaction and communication.
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