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A B S T R A C T
Pesticide contamination threatens ecosystems, yet traditional monitoring through soil and water
sampling cannot capture spatial exposure heterogeneity or provide real-time alerts. Honey bee
colonies foraging across 7 km² daily offer distributed biosensing capacity, but current detection
methods require weeks of laboratory analysis or rely on subjective manual observation.
Recent automated tracking demonstrates that pesticide exposure alters foraging patterns,
yet these approaches analyze treatment-control comparisons rather than predicting unknown
contamination. Acoustic monitoring encodes exposure information but uses shallow machine
learning that cannot capture temporal dependencies. Critically, no prior work addresses
weather as a confounding variable despite evidence that meteorological conditions dramatically
influence both foraging and acoustics, potentially masking or mimicking pesticide effects.
We introduce the Weather-Contextualized Multimodal Network (WCM-Net), integrating
foraging behavior and colony acoustics with explicit weather control for pesticide exposure
detection. Weather-contextualized gating learns which behavioral features maintain predictive
power despite environmental variation, while cross-modal attention captures synergistic
foraging-acoustic relationships. Evaluated on 433 individually tagged bees across six colonies
exposed to field-realistic pesticide concentrations over 30 days, WCM-Net achieved reliable
detection within three days with an AUC of 0.736±0.061, sustaining a mean AUC of
0.805±0.036 and a peak AUC of 0.829. Weather contextualization contributed 0.078 AUC
and cross-modal fusion added 0.056 AUC, outperforming audio-only and foraging-only
approaches by 0.103-0.123 AUC and achieving threshold detection 7-11 days earlier than
traditional machine learning baselines. Feature attribution identified temporal behavioral
rhythms as the most sensitive early indicators, aligning with circadian disruption mechanisms.
This automated system enables beekeepers to relocate hives from contaminated sites and
provides regulatory agencies with evidence for compliance monitoring and contamination
source identification. Additionally, the weather-contextualized multimodality fusion could be
generalized to behavioral monitoring under variable environmental conditions.

1. Introduction
Pesticide contamination in agricultural landscapes

poses significant ecosystem risks, yet effective
monitoring remains challenging due to the spatial and
temporal heterogeneity of exposure (Han, Tian, Li, Yao,
Yao, Zhang and Wu, 2025). Traditional environmental
monitoring relies on soil and water sampling at fixed
locations, which is resource-intensive, spatially limited,
and provides only periodic snapshots of contamination
status. These methods often fail to capture pesticide
drift events, cumulative low-level exposure, or
contamination in areas distant from application sites
(Olawade, Wada, Ige, Egbewole, Olojo and Oladapo,
2024). Biological indicators offer complementary
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advantages for environmental monitoring: they
integrate exposure across time and space, respond to
biologically relevant concentration ranges, and provide
ecologically meaningful assessments of contamination
impacts. Among biological indicators, honey bees are
particularly valuable due to their extensive foraging
range (7 km2 per colony), continuous environmental
sampling through daily foraging trips, and high
sensitivity to neurotoxic compounds (Papa, Pellecchia,
Capitani and Negri, 2025).

Current pesticide exposure monitoring in honey
bees relies on three approaches with significant
limitations for real-time environmental detection.
Chemical residue analysis quantifies pesticide
concentrations in honey, pollen, and bee tissues but
requires destructive sampling, expensive laboratory
processing, and weeks of analysis time (Smith,
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Vorce, Holler, Shimomura, Magluilo, Jacobs and
Huestis, 2007). Molecular biomarkers, including
gene expression profiling and enzyme activity assays,
offer increased sensitivity to sublethal exposure but
require destructive sampling and delayed laboratory
analysis (Shen, Qi, Zeng, Li, Liu, Zhu and Cao,
2025). Manual behavioral observation relies on trained
observers conducting assessments on fixed schedules,
limiting scalability and objectivity in identifying
exposure effects (Polders, Van Haperen and Brijs,
2018). These constraints motivate automated behavioral
monitoring systems that can detect pesticide exposure
non-invasively, continuously, and at scale.

Recent advances in computer vision and radio
frequency identification (RFID) systems enable
continuous tracking of individual bee flight activity.
Studies using these high-resolution behavioral datasets
have demonstrated that pesticide exposure causes
measurable foraging behavioral changes through
statistical methods, such as ANOVA and GLMMs,
applied to treatment-control comparisons. However,
whether behavioral patterns can predict unknown
pesticide exposure remains largely unexplored (Robb,
Regina and Baker, 2017). This predictive capability
is essential for real-world environmental monitoring,
where exposure events are unknown and must be
detected proactively rather than confirmed post-hoc
through controlled experiments.

Recent studies have demonstrated successful
detection of pesticide exposure and air pollutants
from hive acoustics alone, validating the feasibility
of sound-based biosensing (Mustafa, Mohaghegh,
Ardekani and Sarrafzadeh, 2025). However, these
approaches rely on shallow machine learning
architectures that cannot capture complex temporal
dependencies in acoustic patterns. Furthermore,
while observational studies have also confirmed that
meteorological conditions significantly influence both
foraging behavior and colony acoustics, no prior work
incorporates weather as an explicit control variable in
predictive frameworks (Ngo, Rustia, Yang and Lin,
2021; Goerlitz, 2018; Jhawar, Davidson, Weidenmüller,
Wild, Dormagen, Landgraf and Smith, 2023). These

acoustic-based methods ignore a fundamental challenge:
weather-driven behavioral variation can mask or mimic
pesticide-induced changes, causing false positives
during storms or false negatives during heat stress.
Without weather contextualization, detection systems
cannot distinguish pesticide effects from normal
environmental adaptation.

We address these limitations through three
contributions. First, we introduce WCM-Net,
the first automated pesticide detection system
integrating foraging behavior and colony acoustics
with explicit weather control. This architectural
principle generalizes beyond pesticide monitoring
to behavioral surveillance systems operating under
variable environmental conditions, including wildlife
tracking and precision agriculture. Second, in
WCM-Net, weather-contextualized gating learns which
behavioral patterns indicate pesticide exposure across
varying conditions versus normal climate responses,
while cross-modal attention captures synergistic
foraging-acoustic relationships that unimodal
approaches miss. Third, we identified that temporal
behavioral rhythms such as first departure hour and last
return hour provide the most sensitive early indicators of
pesticide exposure through feature attribution analysis.
These patterns align with established neurotoxicology
mechanisms, including circadian disruption preceding
motor impairment (Ahsan, Wu, Lin, Ji and Wang,
2025), validating biologically meaningful learning and
providing actionable guidance for field deployment
prioritization.

2. Related Work
2.1. Pesticide Effects on Bee Foraging Behavior

Sublethal pesticide exposure disrupts multiple
behavioral systems in honey bees even at concentrations
below those causing acute mortality. Neonicotinoids,
organophosphates, and pyrethroids impair spatial
memory, navigation, and circadian regulation through
different neural mechanisms (Cabirol and Haase,
2019; Robb et al., 2017; Soderlund, 2010). O’Reilly
et al. demonstrated that dimethoate reduced colony
departures by 67%, while lambda-cyhalothrin reduced
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pollen returns by 62% (O’Reilly and Stanley, 2023).
Barascou et al. found that sublethal doses of sulfoxaflor
at 16 and 60 ng decreased daily flight activity by
24-33% in a dose-dependent manner (Barascou, Requier,
Sené, Crauser, Le Conte and Alaux, 2022). Colin et al.
demonstrated that trace imidacloprid exposure during
the larval stage reduced lifetime foraging flights by 28%
(Colin, Meikle, Wu and Barron, 2019). These behavioral
disruptions establish that foraging activity patterns serve
as sensitive indicators of pesticide exposure.

2.2. Acoustic Environmental Monitoring
Recent studies have demonstrated that beehive

acoustics can serve as biological indicators of
environmental stressors. Di et al. and Yu et al. showed
that beehive sounds can detect environmental pollution
and specific air pollutants using K-Nearest Neighbors
(KNN), Random Forest (RF), and Support Vector
Machines (SVM) (Di, Zhu, Hu, Sharif, Yu and Liu,
2025; Yu, Huang, Sharif, Di and Liu, 2025; Yu, Huang,
Sharif, Jiang, Di and Liu, 2023). Zhao et al. used an
SVM with Mel-frequency cepstral coefficients (MFCCs)
to classify pollutant exposure from acoustic data (Zhao,
Deng, Zhang, Di, Jiang and Li, 2021). Otesbelgue
et al. employed Hidden Markov Models (HMM) to
detect sublethal pesticide exposure to chlorpyrifos in
stingless bees through sound analysis alone (Otesbelgue,
Orth, Fong, Fassbinder-Orth, Blochtein and Pereira,
2025). While these studies established the feasibility
of acoustic-based detection using traditional machine
learning approaches, the potential of deep learning
architectures, particularly attention-based models, to
capture complex temporal patterns in pesticide-induced
acoustic disruptions has not been investigated.

2.3. Weather Confounds in Behavior
Weather represents a critical confounding variable

in behavioral analysis, as temperature, humidity, and
wind significantly influence both foraging activity and
acoustic signatures. Vincze et al. reported that bees
typically forage optimally between 20–30 ◦C, with
activity decreasing at wind speeds above 1.6–6.7 m/s,
and that foraging activity is negatively correlated with
humidity (Vincze, Lelelőssy, Zajácz and Mészáros,

2024). For acoustic patterns, Saha et al. found that
wingbeat frequencies, the primary acoustic signal
produced by flying bees, increase with temperature
at approximately 2.02 Hz/°C (Saha, Genoud, Park
and Thomas, 2024). These observational findings
establish that any behavioral and acoustic detection
system must account for weather-related variations to
isolate pesticide-specific patterns from environmental
confounds.

2.4. Bee Tracking Technologies
Multiple tracking approaches have been developed

to monitor individual bee behavior at scale. Colin et
al. used RFID technology with separated traffic tunnels
to track individual honey bee foraging performance in
full-strength field colonies across different environments
and seasons (Colin, Warren, Quarrell, Allen and Barron,
2022). Wild et al. introduced binary-coded visual
markers approximately 2 mm in diameter, enabling deep
convolutional neural networks to identify individual
bees in dense hive environments (Wild, Sixt and
Landgraf, 2018). Boenisch et al. and Gernat et al.
employed similar marker-based systems with automated
image analysis for long-term behavioral tracking
(Boenisch, Wild, Dormagen et al., 2021; Gernat, Rao,
Middendorf et al., 2022). The BeesBook project uses
uniquely coded markers and high-resolution cameras to
track all individuals over their entire lifespan, enabling
reconstruction of complete social networks (Dormagen
and Wild, 2021). Our study employs computer vision
with visual markers as a scalable and affordable
alternative to RFID systems for tracking individual
foraging activities.

3. Experimental Design and Setup
We collected data from the bee colonies housed

in standardized 10-frame Langstroth hives containing
48,500 ± 4,200 workers (mean ± SD, assessed
by standardized frame coverage method following
Delaplane, Van Der Steen and Guzman-Novoa (2013))
in San Jose, California (37.33°N, 121.89°W) in 2024
and 2025. We designed three treatment groups to
evaluate pesticide impacts on foraging behavior: (1)
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Control - 50% sucrose solution, (2) Imidacloprid
exposure - 10 ppb in 50% sucrose solution, and (3)
Bifenthrin exposure - 10 ppb in 50% sucrose solution.
Pesticide concentrations were selected to represent
field-realistic sublethal exposure levels based on residue
studies in agricultural environments (Sanchez-Bayo and
Goka, 2014; Woodcock, Bullock, Shore, Heard, Pereira,
Redhead and Pywell, 2017). Pesticide solutions were
prepared from commercial formulations: imidacloprid
from BioAdvanced Tree and Shrub Protect and Feed
(1.47% concentrate) and bifenthrin from Sevin Garden
Insect Killer Ready to Use Dust (0.1% concentrate).
Feeders (500 mL capacity) were replenished every 24
hours over a continuous 30-day period.

3.1. Bee Tagging
We trained forager bees to locate artificial feeders

by gradually moving feeders containing 50% sucrose
solution from hive entrances to a final distance of
10 meters. Once consistent foraging patterns were
established, we captured departing foragers at hive
entrances and marked them with 5 mm diameter
circular tags, inspired by a modified BeesBook protocol
(Wario, Wild, Rojas and Landgraf, 2017) (Figure
1). Each tag had two functional components. The
outer ring displayed an 8-sector binary code encoding
individual bee identity, supporting up to 256 unique IDs
per colony. The inner semicircle orientation marker,
with its black half facing the bee’s head, enabled
automated detection of entry versus exit movements.
The binary-coded design offers benefits such as rotation
invariance and motion blur tolerance that improve
detection performance compared to numeric tags or
barcodes. Tags were affixed to the thoracic dorsum using
cyanoacrylate adhesive.

3.2. Data Acquisition
3.2.1. Behavioral and Acoustic Recording

We deployed an automated monitoring system
to continuously record foraging behavior and hive
acoustics over 30 days (Figure 2). Video and audio
streams were captured by Raspberry Pi 4B units and
transmitted to processing computers for offline analysis.

Figure 1: Bee tagging and monitoring. (A) Individual bee
with binary-coded identification tag attached to thoracic
dorsum. (B) Tagged workers at custom-designed hive
entrance for automated tracking.

The system operated autonomously using 20 W solar
panels with lithium-ion battery backup.

We positioned an Arducam IMX519 camera
approximately 40 cm above hive entrances to capture
bee traffic without disturbing colony activity. The
cameras recorded at 720p resolution and 60 frames per
second using back-illuminated sensors with 1.22 𝜇m
pixel pitch and f/1.75 autofocus lenses. Custom entrance
tunnels channeled bee movement to maximize tag
visibility in the camera field of view.

We placed PoP Voice omnidirectional microphones
inside hive entrances to record internal colony acoustics.
The microphones featured 30 dB sensitivity and a 20
Hz to 20 kHz frequency response, capturing wingbeat
frequencies and collective hive sounds. Built-in
noise cancellation reduced ambient environmental
interference.

The automated tracking system recorded entrance
and exit timestamps for each tagged bee, resulting in a
dataset of 34,282 foraging trips from 433 individuals
across 6 colonies (Table 1). In parallel, the acoustic
dataset consisted of 7,200 thirty-second audio segments.

3.2.2. Weather Monitoring
An AcuRite Pro weather station positioned within

10 meters of the hives measured temperature, relative
humidity, wind speed, and precipitation at hourly
intervals. The station transmitted data to a computer
via USB connection through the PC Connect software
interface.
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Figure 2: Automated bee monitoring system components. (A) Camera positioned above hive entrance for image
capture, (B) Raspberry Pi for data transfer and system control, (C) Solar panel for a sustainable power supply, and (D)
Microphone for bee sound recording.

Table 1
Summary of tagged bees and recorded trips by treatment
group

Group Concentration Bees Trips

Control – 148 13,129
Imidacloprid 10 ppb 145 9,875
Bifenthrin 10 ppb 140 11,278

Total – 433 34,282

3.3. Data Annotation for Bee Identification
We used Label Studio to annotate individual bees

from sampled video frames (Figure 3). For each frame,
we drew bounding boxes (BBox) around bee bodies and
wings, generating label files in YOLO format containing
object ID, BBox X-axis center, Y-axis center, width, and
height. Each bee in multi-bee frames received a separate
annotation line.

To ensure annotation quality, we excluded frames
where bees showed less than 50% body visibility or
were excessively blurred. Two annotators independently
verified a random subset of annotations to ensure
consistency. After detecting bees with YOLO, we
applied the same annotation pipeline to identify and
label individual bee tags.

Figure 3: Bee detection sample annotation in the Label
Studio.

3.4. Feature Engineering
Predicting pesticide exposure from behavior

requires features mechanistically linked to pesticide
effects while remaining robust to natural variation. We
designed features from foraging behavior and hive
acoustics that capture pesticide-induced disruptions
validated in neurobiology studies, while incorporating
environmental context to distinguish contamination
from weather-driven changes.
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3.4.1. Behavioral Features from Foraging Activity
Sublethal pesticide exposure disrupts honey bee

foraging through three neural pathways: cholinergic
impairment affects motor coordination, navigational
memory degradation disrupts spatial processing, and
metabolic stress alters energy allocation (Crall and
Raine, 2023; Bullinger, Greggers and Menzel, 2023;
Kuo, Lu, Lin, Lin and Wu, 2023). We extracted
eight daily metrics from the beehive entry and exit
timestamps, including activity intensity (trip count,
total flight duration, in-hive duration), foraging
efficiency (average trip duration, trip rate as trips

per active hour), and circadian regulation (first
departure hour, last return hour, trip window from

first departure to final return).
This design enables detection across pesticide

classes with different modes of action: neonicotinoids
primarily disrupt circadian timing, organophosphates
impair motor coordination, and pyrethroids affect both
(Tasman, Rands and Hodge, 2020; Stuligross, Melone,
Wang and Williams, 2023).

3.4.2. Acoustic Features from Hive Sounds
Hive acoustics reveal collective stress responses

invisible to entrance monitoring. We sampled audio at
16 kHz, capturing bee wingbeat frequencies from 200
to 300 Hz fundamentals through their 1 kHz harmonics.
From raw audio streams, we extracted 13 Mel-frequency
cepstral coefficients (MFCC) using 25 ms Hamming
windows with 10 ms overlap. MFCCs capture spectral
patterns in wingbeat frequencies and collective buzzing
while reducing dimensionality by three orders of
magnitude compared to raw spectrograms, enabling
efficient transformer processing.

3.4.3. Environmental Features from Weather
Monitoring

A fundamental challenge in field monitoring is
distinguishing pesticide effects from weather-driven
behavioral changes. We recorded temperature, relative

humidity, wind speed, and precipitation at hourly
intervals and aggregated them to daily means,
matching the temporal resolution of behavioral and
acoustic features. We used only mean values to

avoid multicollinearity from including minimum and
maximum statistics. Weather features enable the model
to learn context-dependent patterns: reduced foraging
activity during adverse weather reflects normal behavior,
whereas unexplained reductions on favorable days signal
potential pesticide exposure.

4. Methods
4.1. Bee Tracking and Identification

We employ a two-stage YOLOv8 pipeline for
bee localization and tag identification. The first stage
detects individual bees in video frames using a model
trained on 1,524 annotated frames spanning diverse
lighting conditions and colony activity levels. The
second stage processes detected bee regions to identify
binary tags, trained on 1,856 cropped bee images. Both
models use data augmentation, including geometric
transformations (rotation ±15°, scaling 0.8–1.2×),
photometric adjustments (brightness ±20%, contrast
±15%, saturation ±10%), and spatial augmentations
(horizontal and vertical flipping) to ensure robust
performance across diverse field conditions.

Detected tags are subsequently processed through
an EfficientNet-B0 network with dual-task heads for
simultaneous bee ID classification and movement
direction detection. For each bee crossing the hive
entrance boundary, the system records individual ID,
direction, and timestamp. Consecutive detections within
2-second windows for the same bee are merged to
eliminate duplicates.

4.2. Pesticide Exposure Prediction
4.2.1. Problem Formulation

We formulate pesticide exposure detection as a
sequential classification problem over multimodal data.
We collect bee behavioral features 𝐱(𝑖)foraging,𝑡 ∈ ℝ8,
acoustic features 𝐱audio,𝑡 ∈ ℝ13, and weather conditions
𝐱weather,𝑡 ∈ ℝ4 at each day 𝑡 over the total observation
period of 𝑇𝑖 days. Unlike fixed-window approaches, the
sequence length 𝑇𝑖 varies across bees due to natural
mortality. Our objective is to predict pesticide exposure
𝑦(𝑖) ∈ {0, 1} using observations up to detection time
𝑡 ≤ 𝑇𝑖.
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Figure 4: WCM-Net Architecture for Pesticide Exposure Detection. The framework processes three data streams: foraging
behavior, hive acoustics, and weather conditions. (1) Transformer encoders capture long-range temporal dependencies in
foraging behavior and hive acoustics, (2) weather-contextualized gating adjusts features based on environmental context
through learned modality-specific gates, and (3) bidirectional cross-modal attention fuses complementary signals. A
two-layer classifier produces binary exposure predictions.

4.3. WCM-Net Model Architecture
We developed the Weather-contextualized

Multimodal Network (WCM-Net) that integrates
individual bee foraging behavior and acoustics to
detect environmental pesticide contamination while
controlling for weather factors (Figure 4). The core
contribution is weather-contextualized gating that
learns to adjust each modality based on environmental
context before cross-modal integration .

4.3.1. Modality-Specific Encoders
Behavior Encoder. Pesticide effects accumulate

over days, requiring models that preserve long-range
dependencies. We use a 4-layer Transformer encoder
with 8 attention heads and 256-dimensional hidden
states with sinusoidal positional encoding. We choose
Transformers over LSTMs because self-attention
models dependencies across all time steps without
vanishing gradients, connecting day 1 exposure to day
30 impairment directly.

After encoding individual sequences, we aggregate
per-bee embeddings via learned attention pooling to
obtain bee foraging embeddings 𝐳foraging ∈ ℝ256.
This automatically weights experienced foragers more

heavily with accumulated exposure than newly emerged
bees with minimal foraging.

Acoustic Encoder. Hive acoustics capture
colony-level stress responses invisible to entrance
monitoring, such as agitated buzzing or disrupted
wingbeat coordination. Daily MFCC sequences from
30-second audio clips are processed by an identical
4-layer Transformer with 8 heads and 256 hidden
units. We apply Transformers directly to MFCCs rather
than adding convolutional layers because MFCCs
already encode frequency structure through discrete
cosine transformation, making additional spectral
preprocessing redundant. The self-attention mechanism
learns which temporal segments are diagnostic. Global
average pooling produces the hive acoustic embedding
𝐳audio ∈ ℝ256.

Weather Encoder. Weather provides contextual
information for interpreting behavior and acoustics
rather than a diagnostic signal, so we intentionally use
a lightweight two-layer multilayer perceptron (MLP)
to produce the weather embedding 𝐳weather ∈ ℝ64.
Over-parameterizing this branch would misallocate
model capacity away from learning pesticide patterns,
which are the actual prediction target.
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4.3.2. Weather-contextualized Gating
Simple concatenation of multimodal embeddings

forces the classifier to implicitly separate weather from
pesticide effects. Manual normalization approaches,
such as z-score standardization, apply uniform
transformations across all conditions and cannot
capture nonlinear, context-dependent relationships
between weather and behavior. We introduce explicit
weather-dependent gating mechanisms that modulate
behavior and acoustic features based on weather
conditions before cross-modal fusion, enabling the
model to learn modality-specific weather adjustments
automatically:

𝐠𝑚 = 𝜎
(

𝐖𝑔𝑚𝐳weather + 𝐛𝑔𝑚
)

(1)

where 𝑚 ∈ {foraging, audio}, 𝜎 is the sigmoid
function, 𝐖𝑔𝑚 ∈ ℝ256×64 is a learned weight matrix,
𝐛𝑔𝑚 ∈ ℝ256 is a bias vector, and 𝐳weather ∈ ℝ64 is the
weather embedding. For each modality 𝑚, this produces
256 gate values in [0,1] applied via element-wise
multiplication:

𝐳adj
𝑚 = 𝐳𝑚 ⊙ 𝐠𝑚 (2)

where ⊙ denotes element-wise multiplication and
𝐳adj
𝑚 ∈ ℝ256 is the weather-adjusted embedding.

Gate values 𝐠𝑚 near 1.0 preserve weather-invariant
features (e.g., navigation errors and flight
duration variance), while values near 0.0 suppress
weather-dependent features (e.g., reduced flight counts
on extreme temperature days). Separate gates for
behavior and acoustics accommodate their asymmetric
weather dependencies: temperature reduces flight
activity by up to 40%, but shifts wingbeat frequency by
only 2 Hz/◦C (Kenna, Pawar and Gill, 2021; Saha et al.,
2024).

4.3.3. Bidirectional Cross-Modal Attention
Weather-adjusted embeddings are fused via

bidirectional attention to model mutual dependencies
between foraging disruptions and acoustic stress.

Forward attention uses behavior as the query and
audio as key/value to identify which acoustic features are
most relevant given the observed behavioral patterns:

zattn
fwd = Attention(𝐖𝑄𝐳

adj
foraging,𝐖𝐾𝐳

adj
audio,𝐖𝑉 𝐳

adj
audio)

(3)

where 𝐖𝑄,𝐖𝐾 ,𝐖𝑉 ∈ ℝ256×256 are learned
projection matrices and 𝐳adj

fwd ∈ ℝ256.
Backward attention reverses roles to identify

behavioral patterns correlating with acoustic signals.

𝐳attn
bwd = Attention(𝐖𝑄′𝐳adj

audio,𝐖𝐾′𝐳adj
foraging,𝐖𝑉 ′𝐳adj

foraging)
(4)

where 𝐖𝑄′ ,𝐖𝐾′ ,𝐖𝑉 ′ ∈ ℝ256×256 are learned
projection matrices and 𝐳attn

bwd ∈ ℝ256.
The concatenated output 𝐳fused ∈ ℝ512 preserves

complementary information from both perspectives
(𝐳attn

fwd and 𝐳attn
bwd) through a linear projection.

4.3.4. Classification
The fused representation 𝐳fused passes through two

dense layers with ReLU and dropout, then a sigmoid
output produces 𝑝 ∈ [0, 1]. We optimize binary
cross-entropy loss with L2 regularization using AdamW
optimizer with a learning rate 10−4, cosine learning rate
decay, and early stopping with patience of 20 epochs to
prevent overfitting.

4.4. Model Interpretability
We implemented two complementary

interpretability analyses to understand model
decisions: temporal analysis revealing when these
patterns become important during pesticide exposure
progression, and feature-level analysis identifying
which behavioral patterns are most discriminative.
Together, these analyses provide insights into both the
temporal dynamics of behavioral deterioration and the
biological mechanisms of pesticide effects.
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4.4.1. Temporal Feature Attribution Analysis
To reveal the temporal evolution of feature

timestamp throughout the exposure period, we
computed time-resolved gradient-based attributions.
For each feature 𝑥𝑖 at time step 𝑡, we calculated the
temporal attribution score as:

𝐴𝑖,𝑡 =
1
𝑁

𝑁
∑

𝑛=1

|

|

|

|

|

|

𝜕𝑦̂𝑛
𝜕𝑥(𝑛)𝑖,𝑡

|

|

|

|

|

|

(5)

where 𝑦̂𝑛 represents the model prediction for sample
𝑛, and 𝑥(𝑛)𝑖,𝑡 denotes the value of feature 𝑖 at time 𝑡 for
sample 𝑛. Feature importance scores are normalized
from 0 to 1, where 1 represents maximum discriminative
power and values below 0.5 indicate limited utility for
classification.

4.4.2. Feature Importance Analysis
To identify the most discriminative behavioral

features for pesticide exposure, we aggregated
gradient-based attribution scores across all time steps:

𝐼𝑖 =
𝑇
∑

𝑡=1
𝐴𝑖,𝑡 (6)

where 𝐼𝑖 represents the total importance of feature 𝑖
across all time steps, and 𝐴𝑖,𝑡 denotes the attribution
score for feature 𝑖 at time 𝑡. The aggregated feature
importance scores were then normalized to sum to one
across all features.

5. Results
5.1. Experiment Setup

Bees were randomly assigned to training (60%),
validation (20%), and testing (20%) datasets. We
primarily assessed model performance using area
under the curve (AUC), a threshold-independent metric
well-suited for biological applications where decision
thresholds may vary (Barendregt, Gold, Josić and
Kilpatrick, 2022). Secondary metrics included precision,
recall, and F1-score. Each experiment was repeated
across 30 random seeds to ensure statistical reliability,
with results summarized as mean ± standard deviation.

Figure 5: WCM-Net performance over observation period.
AUC and F1-score demonstrate progressive improvement,
with reliable detection (AUC > 0.75) achieved by day
3 and peak performance reaching 0.829 AUC by day 5.
Shaded areas represent 95% confidence intervals.

Model training was performed on NVIDIA Tesla V100
GPUs equipped with 32 GB of RAM.

5.2. Bee Detection and Tracking Accuracy
The bee detection and tracking pipeline comprises

three sequential detection stages. First, YOLOv8 bee
detection demonstrated 94.8% precision, 95.9% recall,
and 98.6% mAP@50. Second, the specialized YOLOv8
tag detection network achieved 82.8% precision, 83.9%
recall, and 85.6% mAP@50. Third, the EfficientNet-B0
dual-head classifier achieved 81.1% accuracy for bee
ID classification and 82.9% accuracy for directional
movement detection.

5.3. WCM-Net Performance Evaluation
5.3.1. Overall Classification Results

We assessed WCM-Net’s performance to detect
pesticide exposure over a 30-day observation period
(Figure 5). During the early phase (days 1–5), AUC
increased from 0.635 to 0.829 with a mean of
0.736±0.061, while F1-score improved from 0.605 to
0.790 with a mean of 0.698±0.056. The model achieved
reliable detection (AUC > 0.75) as early as day 3.

After day 5, WCM-Net maintained robust predictive
performance with AUC values ranging from 0.784
to 0.828 and averaging 0.807±0.031, while F1-scores
ranged from 0.752 to 0.814 with a mean of
0.781±0.029. Overall, the model attained a mean
AUC of 0.805±0.036 across all 30 days, with
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Table 2
WCM-Net Ablation Study Results. † Day represents first observation when AUC > 0.75.

Model Variant Early AUC (1–5d) Mean AUC Peak AUC Day† ΔAUC

WCM-Net (Full) 0.736±0.061 0.805±0.036 0.829 3 –
w/o Cross Attention 0.692±0.065 0.749±0.041 0.786 4 -0.056
w/o Weather Gating 0.680±0.066 0.727±0.042 0.774 5 -0.078
w/o Weather 0.657±0.066 0.713±0.040 0.754 7 -0.092
Foraging Only 0.647±0.068 0.702±0.043 0.743 9 -0.103
Audio Only 0.623±0.070 0.682±0.045 0.714 11 -0.123

peak performance of 0.829 AUC reached on day
5. Confidence intervals progressively narrowed from
±0.068 to ±0.022 for AUC and from ±0.072 to ±0.024
for F1-score between days 1 and 30.

5.3.2. Ablation Study
To quantify the contribution of each architectural

component, we conducted systematic ablation
experiments (Table 2). Single-modality models
exhibited substantial performance degradation. The
audio-only model yielded the weakest results, achieving
a mean AUC of 0.682 (ΔAUC = -0.123) and a peak
AUC of 0.714, with reliable detection delayed until day
11. The foraging-only variant performed moderately
better with a mean AUC of 0.702 (ΔAUC = -0.103) and
a peak AUC of 0.743, reaching the detection threshold
by day 9, representing a 0.020 AUC improvement over
the audio-only approach.

Weather contextualization proved essential for
accurate detection. Complete removal of weather
features decreased mean AUC to 0.713 and peak AUC
= 0.754, postponing threshold attainment to day 9.
The weather gating mechanism alone accounted for
0.078 AUC; its removal resulted in mean AUC of 0.727
and peak AUC of 0.774, delaying detection to day 7.
Similarly, the cross-attention mechanism contributed
0.056 AUC, as evidenced by the w/o Cross Attention
variant achieving mean AUC of 0.749 and peak AUC
of 0.786, also with day 7 threshold detection.

The importance of multimodal integration was
particularly evident during early detection phases
(days 1–5). Early AUC values declined progressively
from 0.736±0.061 for the full model to 0.692±0.065

(w/o Cross Attention), 0.680±0.066 (w/o Weather
Gating), 0.657±0.066 (w/o Weather), 0.647±0.068
(Foraging Only), and 0.623±0.070 (Audio Only).
This consistent degradation pattern underscores the
synergistic value of combining multiple data modalities
with sophisticated fusion mechanisms for early pesticide
exposure detection.

5.3.3. Baseline Comparison
We benchmarked WCM-Net against four

conventional machine learning approaches over
the 30-day period (Table 3). WCM-Net substantially
outperformed all baselines across every metric,
demonstrating early AUC of 0.736±0.061, mean
AUC of 0.805±0.036, and peak AUC of 0.829, while
achieving the detection threshold earliest at day 3.

Among the baseline models, GRU displayed the
most competitive performance, attaining a mean AUC
of 0.737 (ΔAUC = -0.068) and peak AUC of 0.775, with
threshold crossing at day 5. SVM performed moderately
with a mean AUC of 0.702 (ΔAUC = -0.103) and
peak AUC of 0.755, reaching the threshold at day
8. Random Forest showed considerable degradation
with a mean AUC of 0.659 (ΔAUC = -0.146) and
peak AUC of 0.708, achieving reliable detection only
by day 11. Logistic Regression exhibited the weakest
performance, recording a mean AUC of 0.612 (ΔAUC
= -0.193) and peak AUC of 0.662, never exceeding the
0.75 detection threshold throughout the entire 30-day
evaluation period, with peak performance occurring at
day 14.
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Table 3
Baseline Model Comparison. † Day represents first observation when AUC > 0.75.

Model Early AUC (1–5d) Mean AUC Peak AUC Day† ΔAUC

WCM-Net 0.736±0.061 0.805±0.036 0.829 3 –
GRU 0.687±0.065 0.737±0.041 0.775 5 -0.068
SVM 0.650±0.068 0.702±0.043 0.755 8 -0.103
Random Forest 0.605±0.072 0.659±0.044 0.708 11 -0.146
Logistic Regression 0.560±0.075 0.612±0.046 0.662 14 -0.193

Figure 6: Temporal attribution heatmap across
observation days. Feature importance is highest in early
days and declines over time.

5.4. Interpretability Analysis
5.4.1. Feature Importance Temporal Dynamics

Temporal feature attribution analysis reveals the
dynamic importance of behavioral features across
the 30-day observation period (Figure 6). Feature
importance peaked during the early learning phase
(days 1–5) and progressively declined. Temporal
features (first departure hour, last return hour)
demonstrated the strongest discriminative power in early
detection. Trip-level metrics (trip count, average trip

duration, trip rate) maintained moderate to elevated
importance through day 6, then gradually diminished.
Window-based features (trip window, flight duration)
showed comparable patterns with slightly lower peak
importance during days 1–4. Consistent with the overall
feature ranking, in-hive duration exhibited the lowest
temporal importance across all observation days.

5.4.2. Feature Importance Analysis Results
Feature importance analysis showed distinct

contributions of foraging and acoustic features to

Figure 7: Feature importance scores for imidacloprid
exposure detection. First departure hour and average trip

duration are the most predictive behavioral indicators.

pesticide exposure prediction (Figure 7). Temporal
features dominated predictive power, with first

departure hour achieving the highest importance
score (0.186), followed closely by last return hour

(0.169). Trip-level metrics demonstrated substantial
contributions: trip count (0.158), average trip

duration (0.141), trip window (0.109), trip rate

(0.101), and flight duration (0.089). Notably, in-hive
duration exhibited the lowest importance score
(0.045), suggesting that foraging patterns provide more
discriminative signals than nest residency time for
detecting pesticide exposure.

6. Discussion
Our findings demonstrate that WCM-Net enables

reliable early detection of pesticide exposure in honey
bees, achieving an AUC of 0.736±0.061 within the first
three days and sustaining strong performance across
the full monitoring window (mean AUC 0.805±0.036).
This capacity to identify exposure at an early stage is
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critical for environmental surveillance, as honey bees
act as sentinel organisms whose behavioral disruptions
provide early warning signals of contamination.
The model’s strength lies in its integration of
foraging behavior, acoustic signatures, and weather
contextualization—complementary data streams
that together capture the multifaceted physiological
disturbances caused by pesticide exposure. In contrast
to prior methods that rely on single modalities or
manual observations, WCM-Net delivers automated,
continuous, and objective monitoring at the scale
required for systematic ecosystem assessment.

The ablation analysis shows that each architectural
component plays a distinct role, with performance
driven by their combined effect. Removing weather
features reduced mean AUC by 0.092, while excluding
the gating mechanism alone lowered it by 0.078,
highlighting the importance of distinguishing
pesticide-induced behavior from normal weather-driven
variation. Without these mechanisms, the model
misclassified weather responses as exposure signals,
leading to false positives or false negatives. Cross-modal
attention provided an additional gain of 0.056 AUC
by learning relationships between foraging and
acoustic changes, such as disrupted foraging rhythms
paired with stress-induced acoustic shifts (Klein,
Cabirol, Devaud, Barron and Lihoreau, 2017).
Single-modality approaches averaging 0.682–0.702
AUC underperformed considerably compared to the
full model at 0.805 AUC. These results confirm that
pesticide exposure manifests across multiple behavioral
dimensions, consistent with biological evidence that
pesticide impairs both nicotinic acetylcholine receptor
function that affects flight coordination and colony-level
communication (Chen, Tzeng and Yang, 2021).

Baseline comparisons further underline the
advantage of deep learning for temporal behavioral
analysis. While the GRU baseline captured sequential
dependencies reasonably well (mean AUC 0.737), its
lack of explicit cross-modal modeling limited sensitivity
(AUC = -0.068). Traditional machine learning methods
performed progressively worse: SVM reached only
0.702 (AUC = -0.103), Random Forest 0.659 (AUC

= -0.146), and Logistic Regression 0.612 (AUC =
-0.193). Importantly, these models crossed the 0.75
AUC threshold much later (days 8–14) than WCM-Net
(day 3), diminishing their practical utility since
sublethal damage accumulates rapidly during initial
exposures. The progressive narrowing of confidence
intervals, from ±0.068 on day 1 to ±0.022 on day 30,
suggests that WCM-Net develops increasingly stable
representations as exposure signatures grow more
distinct over time.

From an applied perspective, achieving reliable
detection at 0.75 AUC by day 3 has significant
implications. For beekeepers, early detection supports
intervention strategies such as hive relocation,
supplemental feeding, or treatment application before
worker bee populations decline. For regulatory
agencies and environmental managers, it provides rapid
feedback on pesticide contamination, enabling timely
responses such as issuing public health advisories,
conducting targeted soil and water sampling in
affected areas, implementing temporary restrictions
on pesticide applications, or initiating investigations
into potential drift events. This early warning capacity
is particularly valuable for monitoring compliance
with pesticide-free zones near sensitive habitats and
for detecting unauthorized or excessive applications
before ecological damage cascades through pollinator
networks.

Interpretability analysis clarifies which features
most strongly signal exposure. Temporal rhythm
disruptions dominated, with first departure hour

(0.186) and last return hour (0.169) emerging
as the leading predictors, consistent with known
effects of pesticides on circadian regulation and
spatial memory (Honatel, Arbo, Leal, da Silva Júnior,
Garcia and Arbo, 2024). Trip-level indicators including
trip count, average trip duration, and trip

rate contributed moderately (0.101–0.158), reflecting
reduced foraging efficiency as neurotoxic effects
accumulated. As shown in Figure 6, these signals
were strongest in the first five days, after which their
discriminability declined, suggesting acute disruption
followed by partial behavioral adjustment (Herman,
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2013). In contrast, in-hive duration carried minimal
predictive value (0.045), indicating that hive residency
patterns remain largely stable even as external
foraging deteriorates. These patterns align with
neurotoxicological literature showing that pesticides
preferentially disrupt higher-order tasks such as
navigation and temporal learning while leaving basic
motor functions relatively intact during sublethal
exposure (Fischer, Müller, Spatz, Greggers, Grünewald
and Menzel, 2014; Williamson, Willis and Wright,
2014).

Despite its promise, several limitations remain. This
study focused solely on imidacloprid at field-realistic
concentrations under controlled feeder-based conditions.
Broader validation across other neonicotinoids,
organophosphates, and pyrethroids is needed, as each
class operates through distinct neurotoxic mechanisms
and may leave different behavioral signatures. The
dataset including 433 bees across six colonies
offers a modest sample, and sensitivity may vary
by geography, subspecies, or season. Furthermore,
we addressed only binary classification (exposed vs.
control), whereas real-world monitoring would benefit
from identifying pesticide class and concentration.
Future work should therefore expand the dataset
across diverse compounds and field contexts, develop
models for concentration-level prediction, and pursue
edge-deployable architectures with robust noise
handling to enable practical real-time use in beekeeping
and environmental management.

7. Applications
The WCM-Net framework is deployed through a

mobile application that translates complex temporal
behavioral analyses into clear, actionable insights
for commercial beekeepers, environmental regulators,
and agricultural researchers. The platform delivers
automated pesticide exposure detection (Figure 8A),
feature-level analyses that highlight specific behavioral
disruptions (Figure 8B), and longitudinal tracking of
colony health (Figure 8C). Users can upload data for
immediate evaluation and receive automated alerts
when contamination is detected.

Figure 8: WCM-Net mobile application interface. (A)
Data upload and pesticide exposure assessment, (B)
Behavioral deviation analysis from baseline, and (C)
Historical exposure records.

8. Conclusion
This study presents WCM-Net, a multimodal

deep learning framework that integrates foraging
behavior, colony acoustics, and weather context
to enable early and accurate detection of pesticide
exposure in honey bees. The model achieved reliable
detection within three days (AUC = 0.736±0.061)
and sustained strong performance over the 30-day
period (mean AUC = 0.805±0.036, peak AUC
= 0.829). Ablation experiments confirmed the
complementary contributions of the Transformer
encoder, weather-conditioned gating, and cross-modal
attention in separating pesticide-induced disruptions
from normal environmental variation, while feature
attribution analysis identified temporal rhythm
disruption as the most sensitive early behavioral signal
of pesticide exposure.

Compared with traditional machine learning
approaches, WCM-Net delivers substantially earlier
and more reliable detection while offering interpretable
insights into the underlying behavioral mechanisms.
This early detection capability serves dual purposes:
enabling beekeepers to protect colonies through
timely interventions such as hive relocation, and
providing regulatory agencies with rapid evidence
for compliance monitoring, contamination source
identification, and enforcement actions. These
capabilities establish a foundation for deploying honey
bees as sentinel organisms in precision agriculture
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and ecosystem health monitoring. Future directions
include expanding the framework to multi-pesticide
detection, extending prediction to concentration levels,
and developing edge-computable implementations that
support real-time field deployment across agricultural
landscapes.
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