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HTT-HDAC Axis links Major Depressive Disorder and

Alzheimer’s Disease: A Transformer-Based Multi-Omics
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Cylina Yuechen Wang

Abstract
Alzheimer’s disease (AD), affecting over 55 million globally, is marked by cognitive decline,
amyloid-β plaques, and tau tangles. Major depressive disorder (MDD), impacting 280 million
worldwide, involves persistent depression and anhedonia. Strikingly, 30–50% of AD patients
develop MDD, while late-life MDD increases AD risk by 1.5–2 fold, suggesting a
bidirectional relationship between the two. Despite evidence of shared mechanisms, the links
between AD and MDD—spanning genetic, molecular, and clinical dimensions—remain
poorly defined, largely due to conflicting genetic evidence and the inconsistent efficacy of
antidepressants in treating comorbid populations. Here, we identified a gene regulatory
network (GRN) linking AD and MDD, established a transformer model to identify convergent
pathways underlying their comorbidity, and evaluated the established network, prioritized
genes, and drug candidates in C. elegans transgenic models. Contrary to prior studies that
focused on genetic or pharmacological mechanisms independently, this study explores the
comorbidity between AD and MDD through multiple dimensions. Our findings reveal that this
comorbidity is driven by shared biological pathways, particularly chromatin organization and
epigenetic regulation, centered on the GRN we identified. These findings challenge the
traditional view of AD and MDD comorbidity as a shared pathophysiological process instead
of a complex network. By linking computational predictions with experimental validation, this
study provides a mechanistic framework for future dual-target therapies. This advances the
precision of treatment strategies for comorbid AD and MDD, addressing a critical gap in
neurodegenerative and psychiatric knowledge and care.

Keywords: Alzheimer’s disease, major depressive disorder, single-cell transcriptomics,
transformer model, machine learning, large language model, epigenetics
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1. Introduction
Age-related cognitive impairment often comes with emotional alterations such as sadness,
depression, and anxiety. However, the biological mechanism behind this remains poorly
understood, limiting the development of effective interventions in elder care. Alzheimer’s
disease (AD), the most prevalent form of dementia, is marked not only by cognitive decline
but also by emotional changes such as irritability and persistent sadness (Heilman & Nadeau,
2022). These symptoms often emerge before or alongside cognitive deficits, which suggests a
more complicated overlap (Heilman & Nadeau, 2022). In recent years, major depressive
disorder (MDD) has been increasingly diagnosed with AD. MDD is a neuropsychiatric
condition characterized by persistent sadness and altered behavioral regulation (Cui et al.,
2024). This overlap raises a critical question: Is there a shared neurodegenerative
mechanism between AD and MDD on a genetic and molecular level? To address this
question, we hypothesize that there exists a gene regulatory network between AD and MDD.
Below, three perspectives of the link between AD and MDD will be examined:
epidemiological link, pathophysiological overlap, and pharmacological connection.

1.1 Epidemiological Link Between AD and MDD

Depression is both a risk factor and a common neuropsychiatric symptom observed in AD.
Within the 55 million AD patient population, up to 60% exhibit at least one neuropsychiatric
symptom (Lyketsos et al., 2002), and approximately 38-40% of AD patients experience
comorbid depression (Botto et al., 2022). This is a prevalence far exceeding chance
association.

Figure 1. Risk of AD in Depressed Populations. (a) Hazard Ratio of AD Among Individuals with
Depression, stratified by age ranges; Data adapted from Heun et al. (2001). (b) Based on Depression

Severity; Data adapted from Kim et al. (2021).

This association is also supported by a severity-dependent observation: longitudinal data show
that depression severity correlates with dementia risk (Figure 1b) (Holmquist et al., 2020),
and AD-related neurodegeneration may itself trigger depressive symptoms. For example, 16-
32% of AD patients experience depressive symptoms, which, at any stage, accelerates disease
progression (Aguera-Ortiz et al., 2021; Asmer et al., 2018). It is also shown that late life MDD
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patients suffer an approximately doubled risk of AD development (Figure 1a) (Barnes et al.,
2012). These findings strongly suggest a shared mechanism between AD and MDD, with
MDD as both a risk factor for AD and a secondary consequence of AD.

1.2 Pathophysiological Overlap between AD and MDD

In AD, brain regions, such as the hippocampus, amygdala, entorhinal cortex, and temporal
lobe, exhibit significant atrophy and neuronal loss. Interestingly, these areas are also involved
in emotional regulation and processing. This anatomical overlap suggests the possibility of
neurodegeneration linked to emotional dysregulation and partially answers how AD and MDD
are pathophysiologically connected. Evidence increasingly supports that depression may be
both a risk factor and an early symptom of AD.

The directionality of this relationship remains less certain. For one reason, the heterogeneity of
depressive phenotypes complicates the mechanistic study of their connection (Monereo-
Sanchez et al., 2021). Clinical and neuroimaging data were able to suggest shared pathology
but remained inconclusive regarding the possible mechanisms linking AD and MDD. For
instance, both diseases often exhibit common characteristics such as the reduction of
hippocampal volume and amyloid-β (Aβ) accumulation, which may together exacerbate
depressive symptoms (Babulal et al., 2020; Pomara et al., 2012).

Similarly, genetic studies remain inconclusive. While one study found no common polygenic
structure between AD and MDD (Gibson et al., 2017), others have identified approximately 98
causal genetic variants that overlaps between AD and MDD and linked higher AD polygenic
risk scores with increased risk of late-life depression (Monereo-Sanchez et al., 2021; Wingo et
al., 2023). These contradictories warrant further investigation. This study aims to resolve these
inconsistencies to pave way for targeted therapeutic interventions that address the shared and
distinct pathological pathways of both disorders.

1.3 Pharmacological and Clinical Connection between AD and MDD

Pharmacological evidence further strengthens the connection between AD and MDD.
Although primarily prescribed for depression, selective serotonin reuptake inhibitors (SSRIs)
exhibit unexpected benefits in AD models. Prolonged SSRI use of approximately three years
delays AD progression in individuals with mild cognitive impairment (MRI) (Bartels et al.,
2018). Studies also find that escitalopram, a type of SSRI, reduces Aβ plaques in cognitively
normal older adults (Cirrito et al., 2020; Sheline et al., 2020). These findings suggest serotonin
signaling and other potential mechanisms linking MDD with AD.

However, not all antidepressants yield positive effects. Other classes of antidepressants,
including norepinephrine reuptake inhibitors (SNRIs) and tricyclic antidepressants (TCAs),
were found to increase the risk of dementia among adults of middle or older age (Brauer et al.,
2019). This inconsistency in antidepressant efficacy suggests the central role of target
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specificity to pathways linking AD and MDD in determining the therapeutic efficacy of the
treatment (Dudas et al., 2018; Orgeta et al., 2017).

Ongoing clinical trials further support the potential of shared pathways between AD and MDD.
One study, Depression Treatment and Aβ Dynamics, conducted at the New York University
School of Medicine, is evaluating the impact of escitalopram oxalate on Alzheimer’s
biomarkers in cognitive unimpaired older adults with MDD (Aβ Dynamics in LLMD, 2021).
Along this line, a Transcranial Magnetic Stimulation for MCI trial, sponsored by the National
Institute on Aging (NIA), is testing intermittent theta-burst repetitive transcranial magnetic
stimulation as a non-pharmacological treatment for individuals with both MCI and depression
(Transcranial Magnetic Stimulation for MCI (PUSH2), 2023). These pharmacological and
neuromodulatory findings support a mechanism linking AD and MDD and the therapeutic
potential of interventions that target both disorders.

1.4 Applying Transformer Architectures to Map Links between AD and MDD

A persistent challenge in neuropsychiatric research remains in resolving the multi-layer
genetic, molecular, and cellular interactions. Differential expression approaches often have
limited capability due to normalization methods and cumulative biases. Essentially, these
methods force non-linear gene interactions into linear frameworks. These limitations are
especially pronounced when analyzing single-cell genomics data with varied cellular
heterogeneity, which is the case for neurons in the brain, where preserving biological integrity
and scaling to millions of data points are equally important.

To address this challenge, researchers have turned to artificial intelligence (AI), particularly
the transformer model, which is a neural network architecture originally developed for
processing sequential data. Unlike traditional models that analyze data step by step,
transformers use self-attention to weigh the importance of each element in a sequence relative
to others, allowing them to capture long-range and context-dependent relationships. This
mechanism not only allows efficient parallel processing but also enables large language
models (LLMs), like ChatGPT, in prioritizing subtle signals across datasets. In recent years,
transformer models have been increasingly used for researchers to identify unconventional
relationships across genes, pathways, and cell types (Vaswani et al., 2017). In biomedical
contexts, transformers have demonstrated success in predicting drug-target interactions
(Huang et al., 2021), decoding genomic sequence (Dalla-Torre et al., 2025), and detecting
disease patterns (Vorontsov et al., 2024). Building on these advances, our study aims to use
the ability of transformer models to detect long-range dependencies to reveal previously
overlooked pathways linking AD and MDD.

1.5 Innovation and Significance

To the best of our knowledge, this study is one of the first to integrate GWAS, single-cell
transcriptomics, and chromatin accessibility data to map shared molecular pathways between
AD and MDD. We also developed QuokkaVision, a transformer-based framework that
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resolves nonlinear gene-pathway-subtype interactions, such as Htt’s chromatin scaffolding
role in hippocampal neurons.

In 2019, the World Alzheimer’s Report revealed that more than 55 million individuals
globally were affected by dementia, with the associated economic burden estimated at 1.3
trillion (World Alzheimer Report 2024: Global changes in attitudes to dementia, 2024). This
disease burden is particularly evident in comorbid disorders, particularly AD and MDD.
Individually, AD is ranked seventh-leading cause of death, and MDD as third cause of disease
burden (Bains & Abdijadid, 2025). However, this report doesn’t take comorbid patients into
account, who suffer significant disease burden.

Our identification of shared pathways lays the foundation of dual-target interventions
that simultaneously address neurodegenerative and neuropsychiatric conditions. For
example, one promising candidate is histone deacetylases (HDACs) inhibitors. HDACs are
enzymes that regulate gene expression epigenetically by condensing chromatin, which may
suppress genes critical for plasticity and neuronal survival (Milazzo et al., 2020). In contrast,
HDAC inhibitors block this process, and reactivate suppressed gene networks (Milazzo et al.,
2020). Compounds like suberoylanilide hydroxamic acid (SAHA; otherwise known as
vorinostat) have been shown preclinically to reduce amyloid toxicity (AD) and enhance
plasticity (MDD & AD) (Kilgore et al., 2010; Meng et al., 2014). Together, these strategies
together offer a hopeful path to targeting AD and MDD comorbidity in aging populations.

1.6 Research Question and Hypothesis

This study aims to explore the underlying genetic and molecular pathways between AD and
MDD through an integrative approach which adopts an MDD-to-AD framework. This
framework allows us to explore a more clearly defined disease progression as the inherent
heterogeneity of MDD complicates the process of associating AD with MDD.

Figure 2. Hypothesized molecular framework linking MDD with AD (created with Biorender).

We hypothesize that there exists a gene regulatory network between AD and MDD that would
influence certain pathways, such as neuroinflammatory, glucocorticoid, and serotonergic
pathways, and amplify Aβ toxicity and tau hyperphosphorylation (Figure 2).
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2. Materials and Methods
In this study, multi-omic datasets were processed and analyzed to reveal the underlying link
between AD and MDD (Figure 3). To reveal shared protein networks, overlapping genes
between AD and MDD were identified from open-sourced genome-wide association study
(GWAS) and single-cell RNA sequencing (scRNA-seq) datasets and subsequently analyzed
via STRING. To trace underlying pathways, a transformer model, namely QuokkaVision, was
developed to identify the critical yet unconventional pathways linking the critical gene(s).
Based on these findings, targeted pharmacological treatments were selected and functionally
tested in AD Caenorhabditis elegans (C. elegans) models carrying RNAi knockouts of
prioritized gene(s). Through in vivo validation, the validity of the link and efficacy of the
treatment will be assessed through a multitude of assays. These experiments aim to identify
potential dual-target therapeutics for both AD and MDD.

Figure 3. Integrated multi-omic workflow for discovery and validation (created with Biorender).

2.1 Multi-Omic Data Acquisition and Preprocessing

GWAS Datasets
The genetic variants associated with MDD were identified through a meta-analysis of large-
scale GWAS consortia. To identify overlapping genes with genome-wide significance
between MDD GWAS datasets, the PMC3837431 dataset of MDD mega-analysis from
Psychiatric Genomics Consortium (n = 108,287 cases/controls) and the PMC6522363 dataset
(n = 807,553 cases/controls), a genome-wide meta-analysis highlighting prefrontal cortex-
linked loci and genes, were employed (Howard et al., 2019; Major Depressive Disorder
Working Group of the Psychiatric et al., 2013). Protein-protein interaction (PPI) networks and
KEGG/GO pathway enrichment analyses were then conducted via the STRING database
(v12.0) to map shared biological pathways (Szklarczyk et al., 2023).

Single-cell RNA Datasets
scRNA-seq datasets were selected and obtained from publicly available repositories to capture
neuronal heterogeneity in disease-specific contexts through statistical computation. The
GSE208438 dataset, comprising scRNA-seq datasets of induced pluripotent stem cell (iPSC)-
derived neurons from MDD and healthy control cohorts, was selected to assess pan-cellular
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and cell-type-specific transcriptional shifts across cohorts in MDD (Lu et al., 2023). The
GSE157827 dataset, comprising single-nucleus RNA sequencing of 169,496 nuclei from the
prefrontal cortex (PFC) of AD patients and healthy controls, was also selected to conduct
transcriptomic analyses on AD patients (Lau et al., 2020). Datasets underwent a multi-step
preprocessing workflow to mitigate technical noise and batch effects. Cellular transcriptomes
were filtered to exclude poor-quality cells. Normalization was performed using the log
normalization method to standardize data representation, followed by data integration via
principal component analysis (PCA) to harmonize batches. Dimensionality reduction was
achieved through uniform manifold approximation and projection (UMAP) using the top 30
principal components (PCs). Ingenuity Pathway Analysis was applied to analyze GSE208438,
centering on a regulatory network of prioritized gene(s).

Epigenetic Data
Chromatin accessibility at the Htt locus (chr4: 3,074,147–3,243,896, GRCh38) was analyzed
using single-nucleus ATAC-seq (snATAC-seq) data from the Seattle Alzheimer’s Disease
Brain Cell Atlas (SEA-AD), under the Allen Brain Atlas. Preprocessed bigWig files
representing normalized accessibility scores for individual neuronal subtypes in the PFC were
directly retrieved from the SEA-AD portal. Cell-type-specific tracks included SST inhibitory
neurons, L5 excitatory neurons, and L2/3 excitatory neurons. Accessibility scores for each
neuronal subtype were visualized on the UCSC Genome Browser (GRCh38/hg38 assembly)
using unmodified SEA-AD tracks. Aggregate accessibility signals at the Htt locus were
computed by summing per-base accessibility scores across the locus for each cell type.
Differential accessibility between AD (NC3 pathology) and neurotypical controls (NC0) was
calculated.

Clustering Analysis and Cell Type Annotation Using Reference Gene Markers
Clustering was performed via an unsupervised machine learning algorithm on the shared
nearest neighbor graph derived from harmonized PCs. Differentially expressed genes (DEGs)
across clusters were identified using a likelihood-ratio test (|log2 fold-change| > 0.5, adjusted p
< 0.05), and are visualized through volcano plots. Cell type identities were annotated using the
following canonical marker genes: serotonergic neurons (SLC6A4, TPH2, FEV), astrocytes
(AQP4, GLUL), glutamatergic neurons (SLC17A6, SLC17A7), oligodendrocyte precursor cells
(PDGFRA, VCAN), excitatory neurons (SLC17A7, CAMK2A), and inhibitory neurons (GAD1,
GAD2, SLC32A1).

2.2 Construction of QuokkaVision

QuokkaVision Model Architecture
The QuokkaVision model processes single-cell RNA-seq data through a pathway-informed
transformer architecture (Figure 4). By integrating pathway activation scores with gene
expression, this study demonstrates QuokkaVision’s capacity to: (1) label cell types with
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higher resolution than existing methods, (2) depict relevant genetic and regulatory pathways
upregulated or downregulated across cell types via quantifiable pathway-gene covariance
matrices, and (3) map disease-relevant genes to their respective genetic and biological
pathways through entropy-optimized information transfer.

Structural-wise, QuokkaVision differentiates itself from prior models for several important
reasons: (1) It’s scalable. QuokkaVision adopts a memory-efficient structure that enables
large-scale multi-disease analysis. (2) It’s flexible. QuokkaVision enables the use of different
pathway databases and demonstrates a wide variety of applications in terms of pathway
analysis on the genetic, molecular, cellular, and human diseases levels. (3) It’s unbiased.
QuokkaVision processes cell-type classification independent of pathway analysis with
independently trained gene-centric classifier and context-specific pathway activation patterns
derived from self-attention mechanisms.

Figure 4. Algorithmic framework of QuokkaVision. QuokkaVision maximizes information extraction
through multi-scale attention mechanisms.
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Pathway Mask Construction
The pathway-gene Matrix M is constructed using the Allen Brain Atlas (Siletti et al., 2023) by
mapping all genes in the input data to pathways from the Allen Brain Atlas and transposing
and casting it to a binary tensor.

Cell-type Classifier
For each cell, normalized gene expression values (n genes) are first projected into a pathway-
encoded embedding space. This is done using a knowledge-guided mask matrix M, which is a
binary matrix of size (n  p), where p is the number of pathways. The transformation is
applied as:

����ℎ���� = � ⋅ �

where M is a binary matrix where each entry Mi,j = 1 if gene i is associated with pathway j,
based on the data from the Allen Brain Atlas.

Next, the pathway embedding undergo processing in a biological encoder, using an
exponential linear unit (ELU) activation function with layer normalization:

� = ���(���������(����ℎ�������� + ����))

where ���� is a learnable weight matrix (p × 512) using backpropagation that updates the
weight matrix to minimize the loss function using optimization algorithms, and benc is a
learnable bias term.

The model then applies multi-head biological attention to compute contextualized pathway
representations:

� = � = � = �

��������� �, �, � = �������
���

��
�

������ = ��������� � = �����������(ℎ���1, …, ℎ���8)�O​

where �, �, � are the query, key, and value matrices respectively, and �� is the dimension per
attention head (set to 64), and the attention mechanism utilizes 8 parallel attention heads.

Finally, the model classifies cell types using a fully connected layer with batch normalization
and ELU activation:

� = �������(​ ��256→��(���(��512→256(� + �����)))

where FC denotes fully connected layers with batch normalization and nc is the number of cell
types.
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Data Processing Pipeline
1. Data Merging: The reference and query datasets are integrated by finding their common
genes:

������� = ���� ∩ ������

2. Quality Control: Cells expressing fewer than 200 genes are removed; genes detected in
fewer than 30 cells are filtered out; cells with mitochondrial gene content exceeding 20% are
removed.

3. Normalization: Expression values are log-transformed.

Reference-Specific Model Training
The model trains exclusively on reference data through cross-entropy loss L2 regularization:

L =
�=1

��

��
��� log �(��

���|����) + � � 2
2�

where � = 0.01 and controls weight decay to prevent overfitting and ycref are reference cell
type labels. Gradient updates use:

��+1 = �� − �� ∂Lref
∂W

(frozen for query prediction)

where Wt is the model weights at training step t, �� is the learning rate, and ∂Lref
∂W

is the

gradient of reference-only loss.

The model is optimized via AdamW with learning rate decay. Gradient norms are clipped to
1.0 to prevent explosion.

Query Prediction Protocol
Unlabeled query cells are processed through the frozen model:

� ��
��� � = ������� ��������(������

���ℎ����)

Composite Score Calculation
For each cell, the model computes attention-weighted pathway activity scores, resulting in a
matrix A ℝN*p, where N is the number of cells and p is the number of pathways. For each
gene of interest, the model provides a vector of attention weights over all pathways from a
learned matrix P  ℝN*p. This matrix encodes the relevance of each gene to each pathway, as
learned through training. For a set of target genes, their corresponding rows from P were
extracted, yielding a weighted matrix W ℝN*k. To compute the composite scores, we project
the pathway activity of each cell onto the gene-specific weight vectors. This matrix
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multiplication yields a composite score per cell, reflecting the aggregated influence of each
gene across latent pathways. These composite scores were subsequently stored for
visualization and downstream analysis.

Visualization Framework
i. Heatmap
Pathway activation scores are z-scored across cells for heatmap visualization:

��−����� =
��,� − ��

��

where �� and �� are the mean and standard deviation of pathway j’s activity.

ii. UMAP
UMAP reduces 512-dimensional pathway embeddings to two dimensions using cosine
distance and min_dist = 0.3:

����� = ����(��� ��−�����, ������ = 50 , min_���� = 0.3)

The first UMAP is colored by their annotated cell type labels, and a second UMAP displays
cells colored according to composite scores calculated for each target gene.

iii. Violin Plot
For each gene, composite scores were compared between disease and control groups using
violin plots.

Implementation Details
QuokkaVision was developed using PyTorch 2.2.2 and Scanpy 1.10.4, with 8 parallel heads, a
0.2 dropout rate, and trained for 15 epochs (batch size=256)

2.3 Validation of QuokkaVision

Full Model ROC Validation
The full QuokkaVision model (with pathway mask) was evaluated on held-out reference cell-
type data using one-vs-rest receiver operating characteristic (ROC) analysis (Figure 5). Cell
type labels � ∈ 1, …, �� were binarized into ���� ∈ {0, 1}�∙�� , and AUC scores computed for
each class.

Ablation Study for Pathway Contribution
To quantify the impact of pathway integration, two model variants were compared: (1) full
QuokkaVision architecture incorporating the pathway-gene matrix M, and (2) an ablated
variant where M was replaced by a zero matrix (Figure S4). Both models were trained on
reference data using identical hyperparameters. Statistical significance of differential AUC
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values was assessed using a paired Wilcoxon signed-rank test, with the test statistic W defined
as:

� =
�=1

��

���� |∆���� ∙ ���� ∆���� ,�

where rank denotes the absolute value ranking of AUCc.

Figure 5. ROC curves of prediction accuracy by neuronal subtype. The black dashed line indicates
chance performance (AUC = 0.5). Curves are annotated with per-class AUC values, rounded to two decimal

places.

2.4 Functional and In Vivo Validation of Candidate Genes in C. elegans

C. elegans culture and maintenance
Two C. elegans strains were used in this study: GRU102 and CL2006. GRU102 expresses
pan-neuronal truncated human Aβ (Aβ1-42) under the control of the Pmyo-2 promoter and
exhibits a progressive neurodegenerative phenotype, including cognitive deficits such as
impaired associative memory (Fong et al., 2016). In contrast, CL2006 expresses Aβ1-42 in body
wall muscle cells under the control of the Punc-54 promoter, which enabled it to present a
progressive, adult-onset paralysis and premature death (Lublin & Link, 2013). GRU102 was
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used exclusively in body length, speed, and chemotaxis assays to assess overall health,
neuronal function, and memory, while CL2006 was used in RNA interference (RNAi) and Aβ
deposition assays.

Both strains were maintained on nematode growth medium (NGM) agar plates seeded with
Escherichia coli OP50 at 20°C. Synchronized populations were obtained by 2-hour egg-laying
at 20°C, then cultured to adulthood for 6 days. Adults were transferred to NGM plates with 5-
fluoro-2'-deoxyuridine (FUdR) treatment.

Stains and Crosses
Double-stranded RNA interference (dsRNAi) was performed on the CL2006 strain.
HT115(DE3) bacteria carrying either the empty vector pL4440 (negative control) or double-
stranded RNA (dsRNA) targeting Htt-1, ortholog of Htt, were cultured in lysogeny broth (LB)
containing carbenicillin (25 µg/mL), tetracycline (15 µg/mL), and isopropyl β-D-1-
thiogalactopyranoside (IPTG; 5 mg/mL) for 6 hours at 37°C. Synchronized L4-stage CL2006
worms (n = 30 per group, 3 biological replicates) were transferred to RNAi plates seeded with
HT115 bacteria expressing htt-1 dsRNA or pL4440 controls.

Dose-response Toxicology Assays
Dose-dependent toxicity profiles of candidate drugs were established in Aβ-expressing
CL2006 worms. CL2006 strains were transferred to NGM plates with test compounds (0.1%
DMSO vehicle, 0.1 µM SAHA, 10 µM SAHA, 0.6 mM VPA, or 1.2 mM VPA). Survival was
quantified after 144 hours.

Pharmacological Treatments
To evaluate the potential therapeutic efficiency targeting Htt, two HDAC inhibitors were
selected, namely suberoylanilide hydroxamic acid (SAHA; Sigma-Aldrich) and valproic acid
(VPA; Selleck Chemicals LLC). Drug solutions were prepared by dissolving 10 µM SAHA or
0.6 mM VPA in 0.1% dimethyl sulfoxide (DMSO) and incorporated into NGM agar during
plate preparation. Synchronized L4-stage CL2006 worms were exposed to drug-supplemented
plates or vehicle control for 7 days at 20°C. Experimental cohorts include: (1) 10 µM SAHA,
(2) 0.6 mM VPA, (3) combination treatment: 10 µM SAHA and 0.6 mM VPA, and (4) vehicle
control (n = 50 per group, 3 biological replicates.

Lifespan Assays
All lifespan assays were conducted using synchronized L4-stage of CL2006 worms (n = 50
per group; 3 biological replicates) maintained at 20°C on freshly prepared drug or control
plates. To prevent progeny contamination, worms were transferred daily to fresh NGM plates
during the egg-laying period (days 1-3 of adulthood) and every 3-4 days thereafter. For each
cohort of worms, survival was assessed daily; worms were scored as dead if unresponsive to
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gentle stimulation. Animals that crawled off plates, exhibited internal hatching, or displayed a
ruptured vulva were censored.

Body Length and Speed Quantification
Locomotor performances were quantified in L4-stage CL2006 and GRU102 worms (n = 20
per group) acclimated for 5 minutes on fresh NGM plates without OP50 bacteria (Figure 6).
Body length and speed were quantified via WormLab under a stereomicroscope over a 30-
second interval per worm (MBF Bioscience LLC, Williston, VT USA).

Chemotaxis Assay
Chemotaxis assay was performed on GRU102 worms (Figure 6). Odorant preference was
assessed using a 6 cm NGM plate divided into quadrants. The attractant (0.1% benzaldehyde)
and control (100% ethanol) solutions were supplemented with 1 µL 1 M sodium azide and
applied to opposing quadrants. Synchronized adult worms (n = 30 per group; 3 biological
replicates) were placed at the plate center and allowed to navigate for 60 minutes at 20°C. The
chemotaxis index (CI) was calculated as:

�� =
number of worms at attractant location − number of worms at control location

total number of worms on the plate

Figure 6. Workflow for C. elegansMotor and Chemotaxis Assays (created with Biorender).

Aβ Deposition Assay
Aβ deposition assay was conducted with L4-stage CL2006 (n = 30 per group). Worms were
fixed in 4% paraformaldehyde/PBS (pH 7.4) for 24 hours at 4°C, followed by permealization
in 5% fresh β-mercaptoethanol, 1% Triton X-100, 125 mM Tris (pH 7.4) at 37 °C for 24 hours.
Worms were stained with 0.125% thioflavin S (Sigma-Aldrich) in 50% ethanol for 2 min,
destained in 50% ethanol for 2 minutes, washed with PBS and mounted on slides prepared
with agar pads for visualization. Fluorescence imaging was carried out using a Nikon SMZ18
fluorescence microscope.
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Statistical Analysis
Lifespan data were analyzed using Kaplan-Meier survival curves with log-rank tests. Body
length and speed were compared across groups via two-way ANOVA followed by Tukey’s
honestly significant difference (HSD) post-hoc test. Chemotaxis indices were compared by
one-way ANOVA with pairwise post-hoc test.

3. Results

3.1 Integrated PPI Network Reveals a Htt-HDACAxis in MDD and AD

To investigate the molecular interactions between MDD and AD, we overlapped the DEGs of
two independent MDD GWAS datasets and constructed a protein-protein interaction (PPI)
(Figure 7). Through the PPI analysis, we revealed a layered genetic architecture. Notably, a
highly interconnected network of canonical histone variant genes, including H2BC15,
H2BC17, H4C8, H2AC13, H3C12, H1-5, H2BC13, interacts with Htt and CACNA2D1
(Figure 7). This histone-encoding network is particularly significant given that HDACs have
been identified as key pathophysiological markers of MDD, and six out of seven histone-
related genes in this network are involved in HDAC-mediated histone deacetylation pathways
(Figure S5).

Figure 7. Protein-Protein Interaction (PPI) Network of DEGs from Two MDD GWAS Datasets. Nodes
were color-coded based on psychological measurement layers: depressive symptom measurement (red),
wellbeing measurement (blue), neuroticism measurement (green), mood instability measurement (yellow),

and emotional symptom measurement (pink).
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Intriguingly, genes uncommonly associated with MDD or AD are linked to histone-related
genes, such as Htt, which is commonly associated with Huntington’s disease (HD), and
CACNA2D1 (Calcium Voltage-Gated Channel Auxiliary Subunit Alpha2delta 1), which is
often linked to early-onset developmental epileptic encephalopathy (Figure 7). Their striking
presence suggests a potential role as a broader link between MDD and AD.

The functional coherence of these interactions was also confirmed by pathway enrichment
analysis (Figure 8). MDD-associated DEGs from overlapped GWAS datasets were enriched
for regulation of cellular homeostasis (FDR = 1.2e−7), generation of neurons (FDR = 4.1e−7),
and regulation of axonogenesis (FDR = 4.7e-6), processes central to both disorders. The main
enriched pathways identified through GWAS data comparing MDD patients and AD patients
coincide with the role of Htt in axonogenesis, neural development, neuron differentiation, and
its indirect role in the regulation of cell size. This positions the Htt-HDAC network as a
network participating in MDD pathology.

Figure 8. Biological Process Enrichment of DEGs Between MDD and Control Groups. The signal is
graphed with respect to the false discovery rate (FDR).

3.2 Htt as a Transcriptional Hub Linking Epigenetics and Synaptic Dysfunction

Next, to reveal the downstream effects of the Htt-HDAC network, we constructed a regulatory
network with Htt as a central mediator. This network revealed interactions between Htt and
genes such as APBB2, ELAVL3, and PNISR, which are genes known to involve in neuronal
function synaptic integrity and linked to both AD and MDD (Figure 9; S7). For example,
ARX upregulation (identified in transcriptomic analysis) suggests Htt’s involvement in RNA
regulation, potentially via its interaction with ELAVL3. This interaction could stabilize ARX
transcripts, amplifying inhibitory signaling and destabilizing the cortical excitation/inhibition
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balance. Similarly, other Htt-associated genes, including APBB2 (linked to increased risk of
late-onset AD and depression) and PNISR (promising candidate for AD), further support the
network’s relevance to AD and MDD (Figure 9). As implicated from earlier pathway
enrichment with GWAS data, loss of Htt may also cause axonal transport defects and disrupt
the transportation of BDNF, which is also a pathological event observed in AD and MDD
(Gauthier et al., 2004). These downstream genes are also analyzed for their expression level
across six cell types in MDD patients (Figure S8). In short, the Htt-HDAC network emerges
as a promising link between AD and MDD, mediated by synaptic signaling, axonal transport,
and direct regulatory mechanisms.

Figure 9. Htt as an Upstream Regulator of Potential Pathways Linking AD and MDD. Previous Htt
regulatory network also positions Htt as a central hub in regulating neurodevelopment (Poplawski et al.,
2020). Here, Htt is associated with other key genes in the disease progression of AD and MDD, including

PNISR, APBB2, and ELAVL3).

3.3 Transcriptomic Profiling Highlights Neurodevelopmental, GABAergic, Histone
Dysregulation Across Subtypes

To explore these interactions on a transcriptomic level, we performed transcriptomic profiling
in search of DEGs between MDD patients and healthy controls (Figure 10a). This revealed
significant downregulation of NNAT (responsible for cellular proliferation), NKX2-2 (involved
in embryonic patterning), and NLRP2 (an inflammasome component involved in
neurodevelopmental processes), as well as the upregulation of ARX (a regulator of GABAergic
neuron differentiation). These findings are consistent with early AD pathology for which the
disrupted neurogenesis and GABAergic dysfunction precede amyloid accumulation.

Building on this, we next performed neuron-specific DEG analysis to further explore the
molecular pathology of MDD (Figure 10b-e). Expected overlaps between neuron-specific
DEGs and pan-cellular neuronal signatures are observed (NNAT, NKX2-2, ARX). Interestingly,
we observed the consistent dysregulation of histone-encoding genes (HIST1H2AC, H3F3B,
H1F0, and H1FX) across five out of six neuronal subpopulations (Figure 10b-e; S6). These
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genes are also part of the Htt-HDAC network. The recurrent dysregulation of histone-related
genes also validates the role of chromatin-level regulation in MDD pathophysiology and the
significance of the Htt-HDAC network.

Figure 10. Transcriptomic Analysis of DEGs in MDD and Control Groups. For (a) all neurons, genes
were considered significantly differentially expressed with a p-value < 0.01 and |log₂FC| ≥ 1.0. For (b)

excitatory neurons, (c) glutamatergic neurons, (d) inhibitory neurons, and (e) serotonergic neurons, genes
were considered significantly differentially expressed with a p-value < 0.05 and |log₂FC| ≥ 0.5. Note that
glutamatergic neurons are a subtype of excitatory neurons, and it is isolated from the rest of the excitatory

neuron group for the analysis in (c).

Figure 11. Transcriptomic Analysis of MDD DEGs and Histone-related Genes in AD and Control
Groups. Asterisks indicate statistical significance: p < 0.01 (**), and p < 0.001 (***).

To validate the significance of our network in AD, we mapped DEGs and histone-related
genes identified in MDD onto AD-specific scRNA-seq datasets. Notably, excitatory neurons
in AD patients exhibited significant expression differences in CACNA2D1, HIST1H2AC,
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H3F3B, H1FX, and H1F0 compared to controls, with insignificant upregulated expression
level shifts for Htt (Figure 11). This confirms the genetic overlaps between AD and MDD and
the centrality of histone-related genes in both diseases; while the insignificance of Htt’s
expression changes suggests that Htt is not regulated on a transcriptional level compared to the
other genes in the network. Given the close interaction of Htt with histone variants and the
lack of significant transcriptomic changes, we hypothesize that its regulatory role operates at
the chromatin structural level rather than through transcription.

3.4 Chromatin Accessibility Shifts at the Htt Locus in AD Neurons

To test our hypothesis that Htt functions at the chromatin level, we revealed chromatin-level
modifications at the Htt locus undetectable at the transcriptional level. Using the UCSC
Genome Browser, we analyzed chromatin accessibility in two neuronal subtypes previously
implicated in MDD pathway analyses from QuokkaVision: SST inhibitory neurons and L5
excitatory neurons (Figure 12).

Figure 12. Differential Chromatin Accessibility for L5 Excitatory Neurons and SST inhibitory
Neurons from AD patients (ADNC3 vs. Control).

In late-stage AD (NC3), SST inhibitory neurons exhibited noticeably increased chromatin
accessibility at the Htt locus compared to controls (NC0) (Figure 12). Conversely, L5
excitatory neurons showed a markedly decrease in accessibility at the same locus (Figure 12).
These divergent epigenetic profiles hold critical importance as excitatory-inhibitory (E/I)
imbalance was identified as one of the important pathological markers of both diseases. These
analyses position Htt as a chromatin scaffold regulating epigenetic modifications.

In diseased L5 excitatory neurons, reduced accessibility at the Htt locus disrupts its
scaffolding function. Reduced chromatin openness limits Htt’s ability to recruit HDACs or
architectural proteins, which is evident in the impaired calcium signaling (CACNA2D1
downregulation) and axonal transport (FEZF2/PDYN loss). This loss of chromatin plasticity
exacerbates excitotoxicity and synaptic instability, driving neurodegeneration. While in L5-6
SST inhibitory neurons, increased accessibility at the Htt locus enables compensatory
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chromatin remodeling. Here, Htt acts as a docking site for HDACs, which repress SST
enhancers while activating stress-response genes (such as TH) through chromatin looping,
where Htt’s open chromatin physically interacts with distal regulatory elements. This spatial
reorganization allows stress-responsive transcription factors to bind and upregulate
compensatory pathways, temporarily preserving inhibitory pathway activation despite global
SST repression. This suggests that the Htt-HDAC network drives neurodegeneration as well as
potential compensatory mechanisms through chromatin plasticity.

Figure 13. Chromatin Accessibility Changes at the Htt Locus in AD patients (ADNC3 vs. Control).
Changes are mapped according to chromosomal position in (a) L5 excitatory neurons and (b) SST inhibitory
neurons. (c) H3K27ac and H3K4me3 signals in healthy control and AD patients, and CTCF signals in MCI

and AD patients are mapped (CTCF data for healthy controls is unavailable).

Further analyses of H3K27ac and H3K4me3 signals between healthy controls and AD patients
revealed a slight increase in H3K27ac and an approximate two-fold rise in H3K4me3 activity
at the Htt promoter region, consistent with our discovery of selective increased accessibility in
specific neuronal populations, despite overall reduced accessibility (Figure 13c). Together,
these findings suggest that the Htt-HDAC network operates through dynamic chromatin
accessibility, with histone-related genes modulating Htt as upstream regulators, and Htt, in
turn, influencing downstream disease-relevant pathways.

3.5 QuokkaVision Links Htt-HDAC Network to Layer-Specific Dysregulation

To map the established Htt-HDAC network onto genetic and molecular pathways while
preserving biological nuanced data, we developed a transformer model, QuokkaVision, to
highlight the regulation of pathways in relation to the identified genes. QuokkaVision can be
trained on multiple different pathway datasets to map neuronal subtypes and genetic markers
to specific activated or repressed pathways. Here, we have QuokkaVision trained on the Allen
Brain Atlas (genetic), KEGG Human 2021 (metabolic), and Reactome Pathways 2024
(signaling) to analyze MDD scRNA-seq datasets.
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As expected, QuokkaVision highlighted pathways that are highly correlated with excitatory
and inhibitory neurons dysregulation (Figure 14). Notably, there’s a pronounced increase in
activation in the Excitatory L5 FEZF2 NREP-AS1 and Excitatory L5-6 FEZF2 IFNG-AS
pathways. FEZF2 is implicated to be associated with the neurodevelopmental phenotypes in
recent studies (Garber et al., 2024). At the same time, inhibitory L5 neurons are also
associated with pathways that are uniformly downregulated in cerebellar inhibitory,
hippocampal CA1-4, and thalamic excitatory neurons (Figure 14). This centers L5 excitatory
and inhibitory neurons as important candidates for the detection of pathway alterations in
MDD.

Figure 14. Neuron-specific Genetic Pathway Activation in MDD Patients Mapped Against Allen
Brain Atlas Pathway Mask. This analysis is generated by QuokkaVision, an AI-powered, transformer-
based LLM model providing a sophisticated computational framework for high-precision mapping.

To reveal specific pathways associated with the Htt-HDAC network, QuokkaVision
systematically mapped Htt, HIST1H2AC, CACNA2D1, H1F0, H1FX, and H3F3B onto their
respective pathways (Figure 15). QuokkaVision highlighted a uniform downregulation of
inhibitory neurotransmission pathways, including SST (Somatostatin) and NPY (Neuropeptide
Y), across L1-6 inhibitory neurons, consistent with transcriptomic deficits in GABAergic
signaling, which plays a significant role in both AD and MDD (Figure 14). This aligns with
prior studies where mRNA levels of SST were found to decrease in brain with AD. However,
in a striking divergence, histone-related genes (H1F0, H1FX, and H3F3B) were associated
with upregulated activity in the L5-6 SST pathway, despite global suppression of SST
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expression (Figure 14 & 15). This anti-intuitive co-occurrence of pathway activation and gene
repression potentially suggests a compensatory mechanism: while SST transcription is
universally reduced, in some critical populations, epigenetic modification at specific loci like
Htt may amplify residual SST signaling. The Htt-HDAC network, which integrates histone
modifiers and calcium channels (CACNA2D1), emerges as a likely mediator of this
compensation.

Figure 15. Gene-to-pathway Association Map of the Htt-HDAC Network. This analysis is generated by
QuokkaVision, an AI-powered, transformer-based LLM model providing a sophisticated computational

framework for high-precision mapping.

To further validate the significance of the Htt-HDAC network, we conducted analyses with
KEGG and Reactome Pathway Masks. Analyzing all neuronal subtypes, QuokkaVision
revealed enrichment in the following pathways: chromatin organization, epigenetic regulation
of gene expression, and chromatin-modifying enzymes (such as HDACs and histone
acetyltransferases) pathways (Figure S9). It also confirms the relevance of previously
established pathways, such as serotonergic synapse, long-term depression, MAPK signaling,
ERBB signaling, etc., in depression (Figure S10) (Blier & El Mansari, 2013; Chakraborty et
al., 2019; Chen et al., 2022; Du et al., 2019; Mango et al., 2019; Zhou et al., 2021). These
findings solidified the role of epigenetic modulation in regulating MDD and identify Htt as an
epigenetic modulator that influences downstream targets, thereby contributing to AD- and
MDD-related phenotypes.

3.6 Functional Validation of the Htt-HDAC Network via dsRNAi Suppression

To establish roles of the Htt-HDAC in vivo, we targeted htt-1 (ortholog of human Htt) in Aβ1-
42-expressing CL2006 C. elegans using dsRNAi. Synchronized L4-stage worms (n = 50 per
group, 3 biological replicates) exposed to htt-1 dsRNA exhibited a significant delay in
paralysis onset and an approximately 4-day extension in lifespan (p < 0.001) (Figure 16).
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These findings indicate that, loss of htt-1 yields a survival advantage under Aβ-induced stress.
This observation aligns with the transcriptional expression analysis, which revealed that Htt is
upregulated in AD patients (Figure 11), raising the possibility that Htt may promote Aβ-
related pathways that accelerate neurodegeneration and reduce lifespan. To test this hypothesis,
thioflavin S staining was performed in CL2006 worms (n = 20 per group, 3 biological
replicates). Quantitative analysis revealed a significant reduction in integrated Aβ fluorescence
intensity in htt-1 RNAi worms compared with controls (L4440 and HT115). This
demonstrates that htt-1 knockdown reduces Aβ accumulation in vivo, supporting our
hypothesis that Htt actively contributes to Aβ deposition.

Figure 16. htt-1 RNAi Knockdown Effects on Paralysis and Survival Assays. RNAi knockdown (a) delays
paralysis onset by 4 days, and (b) extends lifespan by 4 days. Asterisks indicate statistical significance: p <

0.001 (***).

Figure 17. htt-1 RNAi Knockdown Effects on Aβ deposits. Representative fluorescence images of
CL2006 worms: (a) control (no RNAi) and (b) htt-1 RNAi knockdown. (c) Integrated intensity of
fluorescence signal across three groups: htt-1 RNAi, L4440, and HT115 (calculated as area  mean

fluorescence intensity). Asterisks indicate statistical significance: p < 0.05 (*).

3.7 Therapeutic Efficacy Evaluation via Pathological Inhibition of the Htt-HDAC
Network by HDAC Inhibitors

Building on genetic validation, we pharmacologically targeted the network using HDAC
inhibitors to determine therapeutic efficiency. To rigorously establish the optimal drug
concentrations for C. elegans, dose-response toxicology experiments were conducted with
SAHA at 0.1 and 10 µM and VPA at 0.6 mM and 1.2 mM (Figure S11). Candidate
concentrations were selected based on prior studies establishing non-toxic ranges (Chen et al.,
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1999; Grigolon et al., 2022). Survival assays confirmed 100% viability of C. elegans at 10 µM
SAHA and 0.6 mM VPA individually (Figure S11). These concentrations were thus applied
in drug treatment.

Figure 18. Length and Speed Measurements of GRU102.Measurements of GRU102 C. elegans were
taken under different HDAC inhibitor treatments over three days following the L4 stage (n = 3 biological
replicates; n = 20 per group). (a) Mean body length (μm) and (b) mean locomotion speed (μm/s) of worms

treated with SAHA, VPA, SAHA+VPA combination, or DMSO vehicle control. Asterisks indicate
statistical significance: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****).

To further confirm overall health and cognitive function, the GRU102 worm model was
adopted. Worms were fed with HDAC inhibitors at the optimal concentrations, and worm
length, speed, and chemotaxis index were measured post-treatment day 1, 2, and 3 (Figure 18,
19). Dual HDAC inhibition with SAHA+VPA produced an 18.7% increase in body length on
day 1 (1466 μm vs DMSO: 1235 μm, p < 0.01) (Figure 18). Locomotor-wise, SAHA+VPA
treated worms achieved speeds of 324 μm/s, which is 27.5% faster than DMSO (254 μm/s, p <
0.01) (Figure 18). Additionally, chemotaxis assays revealed the combination therapy's
cognitive enhancement: SAHA+VPA (CI = 0.551) generated a 39.5% greater chemotaxis
index than SAHA monotherapy (CI = 0.395) and 224% improvement over VPA alone (CI =
0.170, p < 0.001), while completely reversing the negative chemotaxis observed in DMSO
controls (CI = - 0.504, p < 0.001) (Figure 19). Collectively, these data demonstrate a potential
synergistic effect with SAHA and VPA in the GRU102 model, significantly surpassing VPA
monotherapy effects (Figure 19).
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Figure 19. Chemotaxis index of GRU102 under HDAC inhibitor treatments (n = 3 biological
replicates; n = 50 worms/group; 5 technical replicates of 10 worms each). The dashed horizontal line at
zero indicates no chemotaxis preference. Asterisks indicate statistical significance: p < 0.05 (*) and p <

0.001 (***).

4. Discussion
Although emotional and cognitive changes in aging are increasingly recognized as connected,
research and clinical practice often treat them separately. Cognitive changes, for example, are
typically linked to overall brain structure, while emotional shifts are associated with specific
neural circuits (Knight et al., 2020; Mather, 2024). In older adults, this is especially
concerning: symptoms like forgetfulness or mood changes are often broadly labeled as
“normal aging,” even though the connection between them remains unclear. This
oversimplification can hide early pathological changes, delaying early intervention for
neurodegenerative or neuropsychiatric conditions. Critically, the shared biological
mechanisms behind these co-occurring symptoms remain poorly understood. Here, we address
this gap by identifying the Htt-HDAC axis as one of such important pathways linking AD and
MDD. Through in vivo validation, we show that this axis affects both lifespan and cognitive
performance, providing mechanistic insight into the connection between emotional and
cognitive changes in aging. Recognizing this shared pathway holds significant potential for
developing improved clinical strategies to better serve aging populations.

4.1 QuokkaVision in Context: FromArchitecture to Implications

Here, we developed QuokkaVision, which is a transformer-based LLM framework that
directly links molecular pathways (related to neurodegeneration and neuropsychiatric
disorders) to quantifiable genetic dysregulation in specific neuronal populations. Unlike
conventional gene-centric models, which often prioritize differential expression of genetic
markers without mechanistic context (Adema et al., 2024; Liu & Trapnell, 2016),
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QuokkaVision embeds pathway structure into the model architecture and supports gene-to-
pathway attribution under a cell-type-specific resolution. Building on prior biological
knowledge-integrated networks (Chen et al., 2023), and recent LLMs for transcriptomic
analyses (Brixi et al., 2025), our model reveals region-specific circuits, such as heme signaling
disruption, ERBB2 and ERBB4 signaling, and chromatin instability, that may be obscured in
gene-level analyses. With multi-head biological attention, QuokkaVision maps functional
pathway activity at single-cell resolution, bridges molecular identity with functional
dysregulation, and supports hypothesis-free, region- and subtype-specific discovery.
Specifically, in this study, QuokkaVision enabled us to reveal the scaffolding role of Htt in
neurodegenerative and neuropsychiatric disorders.

Intriguing, QuokkaVision unbiasedly implicated that different cortical layers exhibit divergent
chromatin responses to cognitive impairment: one epigenetic regulatory network may be
compensatory in some layers, while pathological in others. This raises a fundamental question:
To what extent do layer-specific chromatin states dictate disease trajectories? Based on our
hypothesis, we propose a concept of “spatial epigenetic adaptation” to describe circuit-specific
chromatin regulation. In this model, cognitive impairment drives epigenetic changes on a
cellular level, triggering different responses across cortical layers. For Htt, expression is
downregulated in most layers but upregulated in some, potentially preserving its other
essential functions (Figure S12). This adaptative characteristic allows neuronal populations to
modulate gene expression in a layer-specific way that responds to circuit-specific demands or
pathological stress. Here, Htt acts as a critical mediator to recruit chromatin modifiers to form
compensatory loops that delay synaptic plasticity loss and neurodegeneration.

4.2 Implications of the Htt-HDACAxis

The Htt-HDAC axis centers on Htt, which is implicated to be a gene regulating lifespan, motor
control, and cognition. A previously published study on neural progenitor cells (NPC)
highlights Htt’s key role in regulating neural plasticity and restoring gene activity patterns
(Poplawski et al., 2020). In mice, Htt deletion at embryonic stage E12 significantly impairs
plasticity regeneration (Poplawski et al., 2020). Interestingly, this goes against our conclusion
of the detrimental effects of Htt. However, note that our study selected samples in their adult
or elderly stages. This immediately points to age-related factors: Htt may have temporal-
dependent roles. During embryonic and developmental stages, Htt builds and restores neural
plasticity, and in the late years, potential epigenetic alterations in Htt contribute to shortened
lifespan and impaired motor and cognitive abilities. These epigenetic alterations, as we see,
may draw links between Htt and neuropsychiatric disorders.

As demonstrated in our study, the Htt-HDAC axis is modulated via chromatin reorganization,
yet the current drug screenings, presented in our study for SAHA and VPA, have limited
capacity to achieve layer-specific, multi-targeted effects. In this context, natural products (NPs)
emerge as a promising candidate for therapeutic discovery. Unlike synthetic compounds, NPs
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are naturally optimized for biological systems, particularly the immune system, which is a key
player in neurological disorders such as AD and MDD (Brian, 2010; Glass et al., 2010). While
the application of NPs has been limited by challenges in screening, characterization, and
optimization, recent technological advances in targeted genome mining and AI-powered
machine learning have opened new revenues for drug development (Atanasov et al., 2021).
For instance, employing machine learning to predict bioactivities and molecular targets greatly
accelerates the time needed to mine potential NP candidates. Building on these advances, our
transformer-based LLM model QuokkaVision could be adapted to efficiently screen NPs for
layer-specific and multi-target activities centered on the Htt-HDAC axis. By targeting Htt-
HDAC axis, it is made possible for us to address both mood and cognitive symptoms in effort
to improve the quality of life of aging populations, which is a critical advance for aging
populations with comorbid AD and MDD.

4.3 Limitations and Future Directions

While our framework reveals spatially resolved epigenetic mechanisms, we note several
limitations of our study. While QuokkaVision enables pathway-level interpretations and layer-
specific annotations, the lack of spatial resolution and cohort diversity may restrict its
generalizability. Due to time and resource constraints, we were unable to pursue higher-
resolution profiling. However, our hypothesis of spatial epigenetic adaptation––which asserts
that disease trajectories are associated with layer-specific chromatin states––requires single-
cell, spatially-indexed data for rigorous validation. Future studies should establish multi-omics
comprehensive mapping with tools such as 10x Visium (Stahl et al., 2016), multiplexed
immunofluorescence (Lin et al., 2018), MERFISH (Chen et al., 2015), Slide-seq (Rodriques et
al., 2019; Stickels et al., 2021), and STARMap (Wang et al., 2018; Zeng et al., 2023), to pin-
point layer-specific epigenetic alterations. Moreover, methods developed to associate
epigenetic modifications with aging lack the spatial and cellular resolution needed to map
where and how such changes occur in the brain (Lu et al., 2019). Thus, extending our findings
with spatially resolved methods will be essential to validate our hypothesis of spatial
epigenetic adaptation and to capture the heterogeneity of neurodegenerative trajectories across
individuals.

Furthermore, while our C. elegans-based pharmacological assays provided initial functional
validation of the Htt-HDAC axis, they are limited by organism-wide drug exposure, low
resolution, and modest throughput. The lack of spatial and temporal specificity makes it
difficult to isolate Htt-specific effects, and the use of non-layer-specific, broad-spectrum
HDAC inhibitors introduces potential off-target effects. Moreover, C. elegans is not optimal
for high-throughput, human-relevant drug screening, which limits its translatability. To
overcome these limitations, we propose an approach: first, use AlphaFold3 to predict Htt
molecular conformations to identify structurally critical sites for potential drug binding
(Abramson et al., 2024); next, integrate CRISPR perturbations in human iPSC-derived
neurons to validate these target sites (Jinek et al., 2012); and finally, conduct high-throughput
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drug screening with spatial precision and target specificity informed by predicted
conformations and validated targets. These insights will be essential for refining HDACs-
targeted therapies to specific neuronal populations exhibiting Htt-related deficits.

Another challenge remains in isolating age-related chromatin shifts from disease-specific
changes. Our framework implicitly assumes a stable epigenetic baseline across age, but
HDAC-modulated pathways likely evolve with neuronal aging. While our study specifically
focused on male subjects in their 90s to compare control, MCI, and AD groups, temporal
plasticity may confound interpretations of disease-specific signatures. We advocate for the
development of an age-dependent database that integrates transcriptomic profiles,
electroencephalogram (EEG) recordings, and behavioral data. This resource would be
critically important for separating aging effects from true pathological regulation and for
supporting more targeted interventions for cognitive and emotional decline.

Moving forward, this study reveals a unified therapeutic opportunity: targeting layer-specific
epigenetic shifts in the Htt-HDAC network to address both cognitive and affective decline.
Such an approach may pave the way for earlier interventions and help preserve the quality of
life as populations age.

5. Conclusion and Perspectives
 We identified the Htt-HDAC network as a shared mechanism connecting AD and MDD.
 We revealed consistent dysregulation of histone-related genes across neuronal subtypes in

MDD and selectively in AD.
 QuokkaVision, our transformer-based LLM model, highlighted chromatin regulation as a

shared pathological mechanism.
 We positioned Htt as a key epigenetic hub, connecting chromatin dysregulation to synaptic

and neurodevelopmental deficits; Genes downstream of Htt (APBB2, PNISR, and ELAVL3)
are highly relevant to both AD and MDD.

 Using QuokkaVision, we mapped this network to layer 5 excitatory and inhibitory neurons.
 We validated Htt in vivo by knocking down its ortholog in AD C. elegans models, which

delayed paralysis, extended lifespan, and reduced Aβ accumulation.
 We pharmacologically targeted the Htt-HDAC network using HDAC inhibitors, which

improved C. elegans health and cognitive function.
 We emphasized the need for further subtype-specific and comprehensive multi-omics

studies to fully resolve how epigenetic alterations contribute to disease trajectories.
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Data Availability Statement
All datasets used in this study are obtained from public data repositories. MDD datasets are
available from GEO “GSE208438” (MDD; scRNA-seq), “GSE148822” (AD; scRNA-seq),
“PMC3837431” (GWAS), and “PMC6522363” (GWAS). AD datasets are available from
GEO “GSE157827” (snRNA-seq) and Allen Brain Atlas “SEA-AD”
(https://registry.opendata.aws/allen-sea-ad-atlas) (snATAC-seq). The pathway mask matrix
used in this work is based on knowledge datasets from GSEA (http://www.gsea-
msigdb.org/gsea/downloads.jsp) and Allen Brain Atlas (https://portal.brain-map.org). The
UCSC Genome Browser used is from https://genome.ucsc.edu. Protein level analyses are
conducted with STRING (https://string-db.org). Htt’s downstream network were analyzed
with QIAGEN IPA (QIAGEN Inc., https://digitalinsights.qiagen.com/IPA). All other relevant
data supporting the key findings of this study are available within the article.
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Supplemental Data

Figure S1. UMAP of MDD patients with QuokkaVision. Cells are color-coded according to predicted
cell type, with two cohorts present: MDD and controls. This classification framework is used consistently in

subsequent analyses.

Figure S2. UMAP of Htt-HDAC Network Genes with QuokkaVision. Genes are mapped to UMAPs of
diseased and control patients colored by composite scores, which represent the contribution of each gene
across model-learned pathway activations. These scores are computed by weighing each cell’s pathway

activity by the gene's associated attention profile in the model.
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Figure S3. Violin Plots of Htt-HDAC Network Gene Expression. Plots show (a) gene scores recalculated
using a pathway-informed masking approach (composite scores), and (b) baseline distribution of gene

expression levels without pathway adjustment. Asterisks indicate statistical significance: p < 0.001 (***).

Figure S4. Validation of QuokkaVision Accuracy with and without Pathway Mask. Mean AUC with
pathway mask was 0.992, compared with 0.978 without pathways (AUC = 0.014, p-value: 2.32e-04).
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Figure S5. Protein-Protein Interaction (PPI) Network of Overlapping DEGs from Two MDD GWAS
Datasets. Genes are color-coded by pathways in which HDACs deacetylate histones.

Figure S6. Transcriptomic Analysis of DEGs in MDD and Control Groups. The specific neuronal
subtypes analyzed include (a) astrocytes and (b) OPCs. Genes were considered significantly differentially

expressed with a p-value < 0.05 and |log₂FC| ≥ 0.5.
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Figure S7. Htt Downstream Signaling Network Across Cellular Compartments. The network is mapped
across extracellular space, plasma membrane, cytoplasm, and nucleus.
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Figure S8. Expression of Htt Network Downstream Genes in MDD. Expression levels are shown across
six different cell types: astrocytes, excitatory neurons, glutamatergic neurons, inhibitory neurons,

oligodendrocyte precursor cells (OPCs), and serotonergic neurons.

Figure S9. Neuron-specific Reactome Pathway Activation in MDD Patients. Pathway activation is
mapped against a Reactome reference dataset; generated by QuokkaVision.
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Figure S10. Neuron-specific KEGG Pathway Activation in MDD patients. Pathway activation is
mapped against a KEGG pathway reference dataset; generated by QuokkaVision.

Figure S11. Dose-dependent Toxicity Assay of HDAC inhibitors in Aβ-expressing CL2006 C. elegans
(n = 50 worms per condition). (a) SAHA: Stereomicroscopy images (left) and survival quantification
(right) for vehicle and two concentrations (0.1 μM and 10 μM). (b) VPA: Stereomicroscopy images (left)
and survival quantification (right) for vehicle and two concentrations (0.6 mM VPA and 1.2 mM VPA),

using the same control cohort.
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Figure S12. Chromatin Accessibility Changes at the Htt locus in AD patients (ADNC3 vs. Control).
Changes are mapped according to chromosomal position in L2/L3 excitatory neurons.
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