
High-Efficiency Geometric Adaptation (HEGA)

A Geometry Aware First Order Optimizer with Strong Nonconvex
Performance

Omar Graia

Acton Boxborough Regional High School
Acton, Massachusetts, United States of America

Under the guidance of

Dr. Nabil Mesbah
Geneva, Switzerland

August 24, 2025

High-Efficiency Geometric Adaptation (HEGA):

A Geometry Aware First Order Optimizer with Strong Nonconvex

Performance

Omar Graia

Abstract

We present HEGA, a strictly first-order optimizer that augments an AMSGrad stabilized

diagonal preconditioner with two lightweight geometry signals computed along the iterate

gradient path. A clipped secant based curvature estimate provides a scalar path scale, while an

exponentially smoothed gradient alignment score gates a convex mixture between the scalar and

diagonal branches and modulates the step via αCt . All operations are vectorized, giving O(d)

time and memory per step. We prove uniform bounds on the effective preconditioner, obtain

O(
√
T) regret in online convex optimization, and establish local linear convergence for smooth

objectives with extensions under the Polyak– Lojasiewicz condition (deterministic and stochastic).

Across 20 different test functions on dimensions ranging from 5 to 10, 000, HEGA achieves the

best overall score compared with SGD, AdaGrad, RMSprop, Adam, AMSGrad, and NAdam.

Keywords: optimization; gradient descent; first order methods; adaptive preconditioning; curvature;
Polyak– Lojasiewicz condition; online convex optimization.

1

Commitments on Academic Honesty and Integrity

We hereby declare that we

1. are fully committed to the principle of honesty, integrity and fair play throughout the competition.

2. actually perform the research work ourselves and thus truly understand the content of the work.

3. observe the common standard of academic integrity adopted by most journals and degree theses.

4. have declared all the assistance and contribution we have received from any personnel, agency,
institution, etc. for the research work.

5. undertake to avoid getting in touch with assessment panel members in a way that may lead to
direct or indirect conflict of interest.

6. undertake to avoid any interaction with assessment panel members that would undermine the
neutrality of the panel member and fairness of the assessment process.

7. observe the safety regulations of the laboratory(ies) where we conduct the experiment(s), if
applicable.

8. observe all rules and regulations of the competition.

9. agree that the decision of YHSA is final in all matters related to the competition.

We understand and agree that failure to honour the above commitments may lead to disqualifi-
cation from the competition and/or removal of reward, if applicable; that any unethical deeds, if
found, will be disclosed to the school principal of team member(s) and relevant parties if deemed
necessary; and that the decision of YHSA is final and no appeal will be accepted.

(Signatures of full team below)

X Omar Graia X Dr. Nabil Mesbah

Date: August 24, 2025

2

Contents

1 Introduction 4

2 Related Work 5

3 Preliminaries and Notation 6
3.1 Problem Setting and Assumptions . 6
3.2 Algorithmic Quantities . 7

4 The HEGA Optimizer 8

5 Theoretical Results 9
5.1 Stability and Boundedness of Geometric Components 9
5.2 Regret Bound for Online Convex Optimization . 10
5.3 Convergence for Stationary Objectives . 11

6 Implementation Details 12

7 Experiments 12
7.1 Evaluation Metrics and Protocol . 12
7.2 Main Benchmark Results (Dimensions 5 – 1000) . 13
7.3 High-Dimensional Stress Test (Dimensions 2000 – 10000) 15

8 Discussion and Future Work 16

A Algorithmic Details and Hyperparameters 18

B Proofs of Theoretical Results 19

C Benchmark Definitions and Domains 24

3

1 Introduction

Modern machine learning and scientific computing rely heavily on first order methods. Simple
methods such as stochastic gradient descent with momentum are fast and memory light, however
they can stall on harsh landscapes. Fully adaptive methods that scale coordinates by running
gradient variance estimates are robust to coordinate imbalance, but they may react sluggishly
when local curvature changes sharply. Richer preconditioners based on matrix approximations can
improve conditioning, although their overhead is often prohibitive in high dimensions. This gap
between robustness and efficiency motivates an optimizer that remains strictly first order, keeps the
computational budget at O(d), and still extracts meaningful geometric cues from the optimization
path.

We present High-Efficiency Geometric Adaptation (HEGA), a geometry aware first order method
that augments stabilized coordinate wise adaptivity with two inexpensive path level statistics. The
first is a clipped secant curvature scale built from st = xt − xt−1 and yt = gt − gt−1,

Ht =
⟨st, yt⟩
∥st∥2 + δ

,

with a small damping δ > 0. The second is a running alignment coefficient Ct that measures
cosine similarity between successive gradients and serves as a reliability signal for the current search
direction. These signals are combined with an AMSGrad stabilized variance accumulator to form
an effective preconditioner that interpolates, at each step, between a diagonal L2 type metric and
a scalar path curvature metric; the interpolation weight depends smoothly on |Ct|. In addition,
a correlation driven modulation multiplies the step size by αCt , strengthening steps when recent
gradients agree and attenuating them when they disagree. All operations are vectorized, with only
two dot products per iteration, preserving O(d) time and memory.

On the theory side, we show that HEGA inherits the stability of variance based adaptivity
while benefiting from curvature sensing. The AMSGrad anchor and the damped, exponentially
smoothed geometry signals yield uniform lower/upper bounds Pmin ≤ Peff,t,i ≤ Pmax on the effective
preconditioner, which give a clean descent inequality. In online convex optimization we obtain
O(
√
T) regret without any mixing assumption by staying entirely in the AMSGrad anchor metric,

introducing a ghost projection step, and handling the alignment modulated step via monotone
envelopes st ≤ st ≤ st in the weighted telescoping argument. For stationary objectives we give
explicit small step conditions under which the EMA tracks the gradient and HEGA enjoys local
linear convergence under strong convexity. Under the Polyak– Lojasiewicz condition we obtain linear
decay deterministically and linear convergence in expectation to a variance controlled neighborhood
in the stochastic case. Formal statements appear in Section 5, with complete proofs in the appendix.

Empirically, we evaluate HEGA on twenty classical smooth test functions with dimensions
ranging from 5 to 1000. The protocol uses float64 precision, JIT warm ups outside timing windows,
function specific domains for initialization, and a simple dimension rule that scales a single d = 5
tuned base step size: square root scaling for SGD like methods and quarter power scaling for
adaptive methods, including HEGA. We report normalized time and accuracy scores, Dolan
Moré performance profiles, distributional views pooled across tasks, scaling curves with respect to
dimension, and pairwise dominance rates. Across this suite, HEGA attains the best aggregate score
against SGD, AdaGrad, RMSprop, Adam, AMSGrad, and NAdam, with the clearest margins in
high dimensions and low τ regions of the performance profiles.

In summary, we propose a strictly first order optimizer that blends a stabilized elementwise
variance preconditioner with a scalar path curvature preconditioner, gated by gradient alignment and
coupled with correlation driven step size modulation, all in O(d) time and memory. We also provide

4

theoretical guarantees, boundedness of the effective preconditioner, O(
√
T) regret in the online

convex setting, local linear convergence for smooth objectives, and PL results in deterministic and
stochastic regimes. We design reproducible benchmarks over twenty functions and eight dimensions
that show HEGA’s strength.

2 Related Work

Current research on first order optimization varies a lot in how directions are chosen and also on
how step magnitudes are scaled across coordinates. Momentum methods are the most widely used
baselines, though. There is a lot of work developing coordinate wise adaptivity and its stabilized
variations. Another line of work incorporates curvature via path statistics or quasi Newton ideas,
and deep learning has motivated structured preconditioners that are able to capture geometry at
the layer or block level. We continue the trend of evaluation practices that compared solvers fairly
with normalized, aggregate views.

The base of modern optimization is stochastic gradient descent [19]. Early efforts to speed
up this baseline introduced momentum, which dampens oscillations and accelerates progress by
incorporating an exponential moving average of past updates [16, 17]. Nesterov’s accelerated
gradient achieves faster convex rates by strategically shifting the point of gradient evaluation [15].
Despite their success, these methods share the limitation of applying the same learning rate to every
parameter. This strategy struggles badly in steep, narrow valleys landscapes where curvature is
directionally varying or coordinates differ widely in scale.

A major class of optimizers scale updates by adapting to the magnitude of gradients, often on a
per-coordinate basis. AdaGrad achieves this by accumulating squared gradients and dividing by
their square root [6]. RMSprop refines this by using an exponentially decaying average of squared
gradients instead of a cumulative sum [21]. Adam builds upon these ideas by incorporating both
first and second moments of the gradients, along with bias correction for improved early stage
performance [8]. Subsequent research has introduced numerous variants to enhance stability and
generalization. For example, AMSGrad stabilizes Adam with a non-decreasing second moment
buffer [18], NAdam integrates Nesterov acceleration [5], AdamW decouples weight decay [11], and
others like Yogi [23], AdaBelief [25], RAdam [10], memory-efficient AdaFactor [20], and sign-based
methods [3]. While these adaptive techniques are computationally efficient with them requiring only
O(d) memory, relying solely on variance estimates can make them slow to react to abrupt changes
in curvature or periods of directional unreliability.

A substantial literature analyzes the stability of coordinate wise preconditioners, especially
beyond convexity. A common theme is to bound the inverse square root of the second moment
accumulator, either via nondecreasing buffers or explicit lower bounds, yielding descent type
guarantees under smoothness [4, 18]. HEGA follows this line by retaining a max buffer on the
variance estimate and by damping auxiliary curvature statistics, which together deliver bounded
effective scaling in the analysis. Our proof technique is closest in spirit to mirror descent telescoping
arguments, but it is carried out entirely in the (monotone) AMSGrad anchor metric with a ghost
projection step, which avoids any mixing assumption even when the alignment-modulated step is
nonmonotone.

Curvature can be estimated from the optimization path without forming matrices. The Barzilai
Borwein step uses the secant pair to fit a scalar curvature model [2]. Diagonal quasi Newton updates
propagate coordinate wise second order information at low cost [14]. Lookahead methods introduce
slow/fast paths to stabilize exploration [24]. In deep models, natural gradient and Kronecker factored
approximations adapt to local metrics [1, 13], and Shampoo forms factored second moment matrices

5

to build richer preconditioners with tractable overhead [7]. HEGA borrows the scalar secant idea
and blends it with variance based adaptivity. A smooth gate driven by gradient alignment controls
this blend so the update remains vectorized and strictly first order.

Directional agreement and correlation have long been used to detect stalling, schedule learning
rates, or modulate momentum [9, 12, 22]. In HEGA, a cosine similarity alignment coefficient is used
as a reliability signal since it gates the interpolation between a diagonal variance preconditioner and
a scalar path curvature preconditioner, and it modulates the global step multiplicatively. Together,
these elements boost progress on smooth, coherent parts of the optimization landscape, but slows
down when oscillations arise due to sharp curvature or noise.

While diagonal scaling is simple, more structured preconditioners can capture increased geometric
information at a controlled computational cost. Methods like KFAC for instance employ Kronecker
factorization to condense second-order information into layer wise factors [13]. Shampoo takes a
similar approach by tracking matrix roots of per layer statistics [7]. These techniques are highly
effective for large neural networks where model structure is known and exploitable. However, they
can become cumbersome in black box optimization scenarios or when strict O(d) memory limits and
single pass updates are important. HEGA is specifically designed for this latter use case with its
reliance on only dot products and elementwise operations makes it indifferent to model structure.

In summary, HEGA uses both coordinate wise adaptivity and path informed curvature sensing.
It still retains the stabilized adaptive engine of AMSGrad but adjusts it with a damped secant
scalar and uses an alignment signal to gate the mixture and to modulate the step size. The result is
an optimizer that retains the O(d) efficiency but offers significantly greater responsiveness to local
geometric features. Our empirical evaluation specifically targets deterministic, smooth functions
that challenge conditioning and multimodality. Crucially, HEGA is not designed to take the place
of matrix based preconditioners where structure is readily available. Instead, it offers a more robust,
geometry aware alternative optimized for strictly first order settings.

3 Preliminaries and Notation

This section sets notation, describes the two settings that we analyze, and defines the quantities
used by the optimizer. The first setting is stationary optimization of a single differentiable function
f : Rd → R. The second setting is online convex optimization with a sequence {ft}Tt=1 over a
closed convex domain X ⊂ Rd. In both settings the method generates iterates {xt} ⊂ X and uses
Euclidean projection ProjX (·) when constraints are present.

Vectors are bold lower case and matrices are bold upper case. The inner product is ⟨a,b⟩ and
the norms are ∥ · ∥2 and ∥ · ∥∞. The Hadamard product is ⊙. For a vector w, the diagonal matrix
with w on its diagonal is diag(w). For stochastic analysis, {Ft} is the natural filtration generated
by past iterates and gradients, and Et[·] = E[· | Ft−1].

For any diagonal positive definite matrix A, the weighted norm is ∥x∥2A := x⊤Ax. The weighted
projection onto X is

Proj
(A)
X (z) := arg min

x∈X
1
2∥x− z∥

2
A,

which agrees with the Euclidean projection when A = I. For diagonal symmetric matrices A and B
we write A ⪯ B when x⊤Ax ≤ x⊤Bx holds for all x ∈ Rd.

3.1 Problem Setting and Assumptions

We work with standard assumptions that are referenced by label where needed.

6

Assumption 1 (Convex Domain). In the online setting each ft is convex on a nonempty, closed,
convex set X ⊂ Rd. The set has finite diameter D > 0 in the Euclidean norm, so ∥x− y∥2 ≤ D for
all x,y ∈ X .

Assumption 2 (Stochastic Gradients). At time t, the method receives a stochastic gradient g̃t
at xt−1 with Et[g̃t] = ∇ft(xt−1). Gradients are uniformly bounded coordinate-wise almost surely:
there exists G∞ > 0 with ∥g̃t∥∞ ≤ G∞. It follows that ∥g̃t∥2 ≤

√
dG∞.

We reserve ∇ft(xt−1) for the true gradient and use g̃t for the stochastic gradient used by the
algorithm. All EMAs (mt,vt, v̂t) below are formed from g̃t.

Assumption 3 (Lipschitz Smoothness). When specified, an objective f is L smooth. This means
∥∇f(x)−∇f(y)∥2 ≤ L∥x− y∥2 for all x,y.

Assumption 4 (Strong Convexity). For local rate analysis we assume that f is µ strongly convex
on a neighborhood of a minimizer x∗. That is, f(y) ≥ f(x) + ⟨∇f(x),y− x⟩+ µ

2∥y− x∥22 for some
µ > 0.

Assumption 5 (Polyak– Lojasiewicz condition). For nonconvex analysis we adopt the PL condition
on a sublevel set SC = {x : f(x) ≤ C}. There exists µPL > 0 such that 1

2∥∇f(x)∥22 ≥ µPL
(
f(x)−f∗

)
for all x ∈ SC .

Assumption 6 (Inter round Gradient Drift). In the online setting the sequence {ft} may change
between rounds. There is ∆ ≥ 0 with ∥∇ft(x) − ∇ft−1(x)∥2 ≤ ∆ for all x ∈ X . For stationary
problems ∆ = 0.

In the online setting performance is measured by regret

R(T) =
T∑
t=1

ft(xt−1)− inf
x∗∈X

T∑
t=1

ft(x
∗).

3.2 Algorithmic Quantities

The method maintains exponential moving averages. The first and second moments use decays
β1, β2 ∈ [0, 1) and are built from the stochastic gradients g̃t,

mt = β1mt−1 + (1− β1)g̃t, vt = β2vt−1 + (1− β2)(g̃t ⊙ g̃t),

and the AMSGrad buffer v̂t = max(v̂t−1,vt) is taken coordinate-wise. The bias-corrected momentum
is m̂t = mt/(1− βt1).

Path alignment and curvature are tracked with decay γ ∈ [0, 1). The raw alignment ct and the
curvature estimate are

ct =
⟨g̃t, g̃t−1⟩

∥g̃t∥2 ∥g̃t−1∥2 + ϵc
, Hest,t =

⟨yt, st⟩
∥st∥22 + ϵq

,

where st = xt−1 − xt−2 and yt = g̃t − g̃t−1. The smoothed states are

Ct = γCt−1 + (1− γ)ct, Vpath,t = γVpath,t−1 + (1− γ) max{Hest,t, δ0},

with δ0 > 0 a curvature floor and ϵc, ϵq > 0 stabilizers.

7

These signals combine into the effective diagonal preconditioner Peff,t. It interpolates between
the diagonal AMSGrad branch and a scalar path-based branch,

Peff,t = λt
(√

v̂t + ϵp1
)−1

+ (1− λt)
(√

Vpath,t + ϵp
)−1

1, (1)

where λt = 1− |Ct|λp with λp > 0 and ϵp > 0 is a stabilizer. The base learning rate ηt is modulated
by the alignment score through Mt = αCt with α ≥ 1. The update is

xt = ProjX

(
xt−1 − ηtMt (Peff,t ⊙ m̂t)

)
. (2)

For regret we use ηt = η/
√
t. For local analysis we use a constant ηt ≡ η.

Unless stated otherwise the initialization is x−1 = x0 ∈ X , m0 = 0, v0 = v̂0 = 0, g̃0 = 0,
C0 = 0, and Vpath,0 = δ0. This yields C1 = 0 and Vpath,1 = δ0.

For analysis we set Dt := diag(Peff,t) and At := diag(1/Peff,t) = D−1
t . We also use the AMSGrad

anchor metric Āt := diag(
√
v̂t + ϵp1), which is coordinate wise nondecreasing in t. When a weighted

projection is used we write Proj
(Āt)
X .

4 The HEGA Optimizer

This section gives the full formulation of the HEGA optimizer and explains its main components. As
set out in Section 3, HEGA augments an AMSGrad style update engine with two geometry signals,
the path alignment Ct and the path curvature Vpath,t. These signals adapt the preconditioner and
the step size and every iteration costs O(d).

The core mechanism is the alignment gated preconditioner in (1). It blends a coordinate wise
AMSGrad preconditioner with a scalar term computed from path curvature. The mixing weight
λt = 1−|Ct|λp directs the method toward the scalar path preconditioner when consecutive gradients
are well aligned (|Ct| → 1), which signals a coherent search direction. When alignment weakens, the
update falls back to the diagonal preconditioner, which helps when there is noise.

The same alignment score also scales the step size through Mt = αCt in (2). Agreement among
gradients leads to larger steps, while disagreement shrinks them in local geometry. The AMSGrad
buffer v̂t keeps the diagonal preconditioner stable, and the curvature floor δ0 plus the stabilizer ϵq
prevent the path based term from becoming ill defined. These pieces make the optimizer sensitive
to trajectory geometry while preserving the stability of modern adaptive methods.

For experiments, the base step η at dimension d is obtained from tuned values at d = 5 using
a fixed scaling rule. For SGD and AdaGrad we set η(d) = η5

√
5/d. For methods in the Adam

family, including HEGA, we use a quarter power rule η(d) = η5(5/d)1/4. This policy gives a fair
comparison across scales.

The following pseudocode implements HEGA.

8

Algorithm 1 High-Efficiency Geometric Adaptation (HEGA)

1: Inputs: base schedule ηt, modulator base α ≥ 1, EMA decays β1, β2, γ ∈ [0, 1), interpolation
power λp > 0, stabilizers ϵc, ϵq, ϵp > 0, curvature floor δ0 > 0, domain X ⊂ Rd.

2: Init: x−1 = x0 ∈ X , g0 = 0, m0 = 0, v0 = v̂0 = 0, C0 = 0, Vpath,0 = δ0.
3: for t = 1, 2, . . . do
4: g̃t ← ∇ft(xt−1)
5: mt ← β1mt−1 + (1− β1)g̃t; m̂t ←mt/(1− βt1)
6: vt ← β2vt−1 + (1− β2)(g̃t ⊙ g̃t); v̂t ← max(v̂t−1,vt)

7: ct ← ⟨g̃t,gt−1⟩
∥g̃t∥2∥gt−1∥2+ϵc

; Ct ← γCt−1 + (1− γ)ct
8: st ← xt−1 − xt−2; yt ← g̃t − gt−1

9: Hest,t ← ⟨yt,st⟩
∥st∥22+ϵq

; Vpath,t ← γVpath,t−1 + (1− γ) max{Hest,t, δ0}
10: λt ← 1− |Ct|λp

11: PL2,t ←
(√

v̂t + ϵp1
)−1

; Ppath,t ←
(√

Vpath,t + ϵp
)−1

12: Peff,t ← λtPL2,t + (1− λt)Ppath,t1
13: st ← ηt · αCt

14: ut ← st
(
Peff,t ⊙ m̂t

)
15: xt ← ProjX (xt−1 − ut)

5 Theoretical Results

This section states the guarantees for HEGA. We first bound the geometry signals and the effective
preconditioner. We then give an O(

√
T) regret bound in online convex optimization without any

mixing assumption by working entirely in the AMSGrad anchor metric through a ghost iterate.
Finally, we give local linear convergence results for stationary objectives under strong convexity and
under the Polyak– Lojasiewicz condition. All proofs are deferred to the appendix.

5.1 Stability and Boundedness of Geometric Components

The adaptive pieces of HEGA remain controlled along the run. The statements below collect the
uniform bounds that are used later.

Proposition 7 (Bounds on geometric modulators). For all t ≥ 1, the smoothed alignment satisfies
Ct ∈ [−1, 1]. With α ≥ 1 and λp > 0 it follows that Mt = αCt ∈ [α−1, α] and λt = 1− |Ct|λp ∈ [0, 1].

Proposition 8 (Boundedness of path curvature). Under Assumptions 3 and 6, the path curvature
estimate satisfies Vpath,t ∈ [δ0, Vmax] for all t, where Vmax = max{δ0, L + ∆/(2

√
ϵq)}. In the

stationary case with ∆ = 0 this simplifies to Vmax = max{δ0, L}.

These component wise bounds imply that the effective preconditioner used in the update step
(2) stays uniformly between fixed positive constants.

Proposition 9 (Uniform bounds for the effective preconditioner). Under Assumption 2 with
∥g̃t∥∞ ≤ G∞, there exist constants Pmin and Pmax such that for all t, i,

0 < Pmin ≤ Peff,t,i ≤ Pmax <∞,

where Pmin = min
{

(G∞ + ϵp)
−1, (

√
Vmax + ϵp)

−1
}
and Pmax = max

{
ϵ−1
p , (

√
δ0 + ϵp)

−1
}
.

9

We compare the effective preconditioner to the AMSGrad branch since this sandwich is used
throughout the analysis. The anchor metric Āt = diag(

√
v̂t + ϵp1) is coordinate wise nondecreasing

in t because of the max buffer.

Lemma 10 (Comparability of preconditioners). Let PL2,t = (
√
v̂t + ϵp1)−1 and let Peff,t be given

by (1). With Vmax from Proposition 8 and δ0 > 0, for all t, i,

cmin PL2,t,i ≤ Peff,t,i ≤ cmax PL2,t,i,

where cmin =
ϵp√

Vmax + ϵp
and cmax =

G∞ + ϵp√
δ0 + ϵp

. Equivalently, in matrix order,

cmin Ā
−1
t ⪯ Dt ⪯ cmax Ā

−1
t .

In particular, cmin ∈ (0, 1] and cmax ≥ 1.

5.2 Regret Bound for Online Convex Optimization

We use ηt = η/
√
t and set st := ηt α

Ct . Since st need not be monotone in t, we work with the
deterministic envelopes

st :=
η

α
√
t
≤ st ≤ st :=

η α√
t
,

and carry out the proof entirely in the AMSGrad anchor metric Āt with a ghost projection step.

Lemma 11 (Mirror one step bound in the anchor metric). Let x̃t = Proj
(Āt)
X

(
xt−1 − st Ā−1

t m̂t

)
.

Then 〈
m̂t,xt−1 − x∗〉 ≤ ∥xt−1 − x∗∥2

Āt
− ∥x̃t − x∗∥2

Āt

2st
+

st
2
∥m̂t∥2Ā−1

t
.

Since st = η αCt/
√
t need not be monotone in t, we use the bounds

st :=
η

α
√
t
≤ st ≤ st :=

η α√
t
.

Applying Lemma 21 and then replacing 1/st by 1/st and st by st yields

〈
m̂t,xt−1 − x∗〉 ≤ ∥xt−1 − x∗∥2

Āt
− ∥x̃t − x∗∥2

Āt

2 st
+
st
2
∥m̂t∥2Ā−1

t
.

We then telescope with the nondecreasing weights at := 1/st = (α/η)
√
t, and bound all quadratic

terms using st ≤ (ηα)/
√
t.

We also write ∇ft(xt−1) = g̃t − ξt with E[ξt | Ft−1] = 0, noting that m̂t is built from g̃t.
The lemma provides the pairing with m̂t and a telescoping term entirely in Āt. The quadratic

term can be compared to the update quadratic through Lemma 10. The next theorem states the
regret result.

Theorem 12 (Regret bound for HEGA). Let Assumptions 1, 2, and 6 hold. With the update (2)
and ηt = η/

√
t, the regret satisfies

R(T) = O(
√
T).

A standard extension shows that if each ft is µ strongly convex then with ηt = η/t the regret is
O(log T).

10

5.3 Convergence for Stationary Objectives

We consider a fixed objective f and a constant step size ηt ≡ η. The analysis explains how the
method locally behaves like a scalar preconditioned gradient step when gradients align.

Lemma 13 (Momentum tracking for the EMA). Assume f is L smooth. For m̂t = 1
1−βt

1

∑t
k=1(1−

β1)β
t−k
1 ∇f(xk−1) one has

∥m̂t −∇f(xt−1)∥2 ≤
β1

1− β1
L

∞∑
j=1

β j−1
1 ∥xt−j − xt−j−1∥2.

In particular, if the preconditioner is uniformly bounded and η > 0 is chosen so that the step lengths
are bounded by a small constant, then there is ρ ∈ (0, 1) with ∥m̂t −∇f(xt−1)∥2 ≤ ρ ∥∇f(xt−1)∥2
for all large t.

Assumption 14 (Local regularity at the solution). Either x∗ ∈ int(X) so projection is inactive
in a neighborhood of x∗, or x∗ ∈ ∂X and the tangent-cone condition holds so the projection is
nonexpansive along the iterates in that neighborhood.

Theorem 15 (Local linear rate). Under Assumption 14, assume f is L smooth and µ strongly
convex. In a directional convergence regime near a minimizer x∗ where |Ct| → 1, there exists η > 0
such that for all sufficiently large t,

∥xt − x∗∥2 ≤ ρ ∥xt−1 − x∗∥2

holds with some ρ ∈ (0, 1).

It suffices to choose η ∈
(
0, η̄

)
with

η̄ ≤ 1

α
·min

{
Pminµ

4P 2
maxL

2
,

1

8CδPmax

}
,

where Cδ = β1

1−β1
L is the constant from Lemma 13. This ensures (i) 2sPminµ−2s2P 2

maxL
2 ≥ sPminµ/2

and (ii) the EMA tracking factor absorbed by Young’s inequality.

Theorem 16 (Linear convergence under the PL condition). Assume f is L smooth and satisfies
Assumption 5 on a sublevel set that contains the iterates. There exists a constant step η > 0,
depending on L, α, and the bounds Pmin, Pmax, such that

f(xt)− f∗ ≤ (1− κ)
(
f(xt−1)− f∗

)
with κ = η µPL α

−1Pmin ∈ (0, 1).

Any constant η ∈
(
0, Pmin

4αLP 2
max

)
yields a contraction factor κ = η µPL α

−1Pmin ∈ (0, 1).

Corollary 17 (Stochastic PL convergence). Under the conditions of Theorem 16 with stochastic
gradients as in Assumption 2, the method converges linearly in expectation to a neighborhood of the
minimum,

E
[
f(xt)− f∗

]
≤ (1− κ)E

[
f(xt−1)− f∗

]
+ O(η2σ2),

where σ2 is the gradient noise variance. With a diminishing step ηt = O(1/t) one recovers
E[f(xt)− f∗] = O(1/t).

These results show that HEGA is stable and convergent. The method matches the usual worst
case rates and gives faster self tuning behavior when the geometry along the path is informative.

11

6 Implementation Details

This section records the experimental setup to ensure the results are reproducible. All experiments
were implemented in Python using the JAX library, which provides automatic differentiation for
gradients and just in time (JIT) compilation for performance. To maintain high numerical precision,
all computations were performed using 64 bit floating point arithmetic. All benchmark runs are
deterministic. We thus evaluate exact gradients and set g̃t = ∇f(xt−1) in the implementation,
consistent with the theoretical notation.

The benchmark workload consists of twenty classical smooth test functions, selected to represent
a diverse set of optimization challenges. The evaluation was conducted in two stages. The main
benchmark covered dimensions d ∈ {5, 10, 25, 50, 100, 250, 500, 1000}, with each optimizer performing
20 independent runs per problem. A high dimensional stress test was performed on dimensions
d ∈ {2000, 5000, 10000}, with 5 independent runs per problem. For each run, the starting point
was sampled uniformly from the function’s conventional domain using a fixed random seed for
reproducibility.

We compare HEGA against SGD, AdaGrad, RMSprop, Adam, AMSGrad, and NAdam. To
ensure a fair comparison, a consistent hyperparameter tuning policy was adopted. All optimizers’
hyperparameters were first tuned on the d = 5 problems. These base learning rates were then
scaled to higher dimensions using a fixed heuristic rule. For SGD and AdaGrad, we apply a square-
root scaling rule which is η(d) = η(5)

√
5/d. For all Adam-family methods, including RMSprop

and HEGA, we use a more conservative quarter power rule which is η(d) = η(5)(5/d)1/4. Other
parameters, such as momentum decay rates, were kept constant across all dimensions.

Each optimization run proceeds for a maximum of 10,000 iterations or until the Euclidean norm
of the parameter update step falls below a tolerance of 10−12. To prevent the one time cost of JIT
compilation from biasing timing measurements, a warm up phase was executed for each optimizer
on each dimension before the timed benchmark runs began. If a run produced non-finite values
(‘NaN‘ or ‘inf‘), it was marked as a failure.

For each problem instance (a specific function and dimension), the results from all independent
runs were aggregated. The wall-clock time was averaged arithmetically. To handle solution quality
values that can span several orders of magnitude, the distance to the global minimum, |f(x)− f∗|,
was aggregated using the geometric mean. These aggregated, per problem statistics form the basis
for the normalized scores and performance analyses presented in Section 7.

7 Experiments

7.1 Evaluation Metrics and Protocol

To ensure a fair comparison, we define a standardized evaluation protocol. For each problem,
defined by a specific function and dimension, every optimizer is run from multiple random starting
points sampled uniformly from the function’s standard domain. Performance is measured along
two primary axes. The first is time efficiency, which captures the computational overhead of the
algorithm by measuring the wall clock time required to reach the final solution. The second is
solution quality, which measures the accuracy of the result as the absolute difference between the
function value at the final iterate and the known global minimum, |f(xfinal)− f∗|.

To aggregate performance across the diverse set of problems, we compute normalized scores. For
a given problem, we first identify the best performing optimizer for each metric (e.g., the minimum
time achieved by any optimizer). The normalized score for every other optimizer is then calculated
as the ratio of the best performance to its own performance. For a metric m where lower is better,

12

the normalized score for optimizer s on problem p is:

Scorep,s(m) =
mins′ mp,s′

mp,s
.

This transformation places the best performing optimizer at a score of 1.0, while others receive a
score between 0 and 1. An overall score is then computed for each problem as the arithmetic mean
of the normalized time and quality scores, providing a single, balanced measure of performance.

7.2 Main Benchmark Results (Dimensions 5 – 1000)

The main benchmark demonstrates HEGA’s strong and consistent performance in standard settings.
Table 1 presents the average normalized scores aggregated across all twenty functions and eight
dimensions up to d = 1000. HEGA achieves the highest overall score of 0.790, leading all other
competitors. HEGA also received the best score in both time efficiency and solution quality.

Table 1: Average normalized performance scores on the main benchmark (d ∈ [5, 1000]). All values
are between 0 and 1, with higher values indicating better performance.

Optimizer Time Accuracy Overall

HEGA 0.832 0.748 0.790
AdaGrad 0.541 0.477 0.509
NAdam 0.376 0.625 0.500
AdamAMSGrad 0.401 0.485 0.443
Adam 0.328 0.505 0.417
RMSprop 0.376 0.438 0.407
SGD 0.423 0.379 0.401

The magnitude of this lead is quantified in Table 2. HEGA shows a substantial overall
performance improvement against every baseline, ranging from 55.1% over AdaGrad to 96.9% over
SGD. The advantage over other adaptive methods like Adam (89.5%) and RMSprop (94.1%) is
particularly noteworthy.

Table 2: HEGA percentage improvement over competing optimizers on the main benchmark.

Competitor Time (%) Accuracy (%) Overall (%)

AdaGrad 53.7 56.8 55.1
Adam 153.5 48.0 89.5
AdamAMSGrad 107.4 54.2 78.2
NAdam 121.3 19.8 57.9
RMSprop 121.3 70.7 94.1
SGD 96.5 97.3 96.9

To understand the robustness of this performance, we use Dolan-Moré performance profiles
(Figure 1, left). A solver’s curve represents the fraction of problems it solved within a factor τ of the
best solver. HEGA’s profile dominates all others, positioned highest and furthest to the left. This
indicates it is the most efficient optimizer (steepest initial rise) and also the most robust, eventually
solving the largest fraction of problems to near optimality.

13

Figure 1: Performance profiles (left) and score distributions (right) on the main benchmark suite
(dimensions 5–1000). The profiles show HEGA solves problems faster and more reliably. The
distributions show HEGA achieves a statistically significant higher median score with lower variance
than the pool of competitors.

The distributional analysis in Figure 1 (right) supports this finding. The violin plot shows that
HEGA’s distribution of overall scores is concentrated at a higher level than its competitors. The
box plot comparison of HEGA against all other optimizers combined reveals a substantially higher
median score and a tighter interquartile range, signifying greater consistency. A Mann-Whitney
U test confirms this visual result, yielding a p-value of 1.23× 10−32 and indicating that HEGA’s
performance is statistically better.

Figure 2 provides a detailed view of performance, showing the normalized overall score for each
optimizer on every test function, averaged across the main dimensions. HEGA consistently appears
as one of the top performers (green cells) across a wide variety of function types, from the separable
Sphere function to the highly non-convex and non-separable Rosenbrock problem. This shows the
versatility of its geometric adaptation mechanisms.

Figure 2: Heatmap of normalized overall scores by function, averaged across main dimensions
(5–1000). Green indicates better performance (closer to 1.0). HEGA shows consistently strong
performance across the diverse benchmark suite.

14

7.3 High-Dimensional Stress Test (Dimensions 2000 – 10000)

An important test for any optimizer is its ability to scale to high dimensional problems, where poor
conditioning and large search spaces can often degrade performance. We evaluated all methods on
dimensions up to 10, 000.

Figure 3 plots the average normalized score as a function of problem dimension, combining
data from both the main and stress tests. Most of the tested optimizers show consistent scores
as dimension increases including HEGA with HEGA’s performance curve remaining significantly
higher than the rest. Its ability to use path level geometric information appears to keep providing a
distinct advantage in navigating even higher dimensional landscapes.

Figure 3: Performance scaling with problem dimension, from d = 5 to d = 10000. Each point is the
average normalized score across all test functions at that dimension. HEGA maintains a consistent
high level of performance.

This advantage even in higher dimensions is quantified in Table 3. In the high dimensions
(d ≥ 2000), HEGA’s overall performance improvement is still substantial, ranging from 41.3% over
NAdam, which was the second best performer in the stress tests, to 69.6% over SGD.

Table 3: HEGA percentage improvement over competing optimizers in the high-dimensional stress
test (d ∈ [2000, 10000]).

Competitor Time (%) Accuracy (%) Overall (%)

AdaGrad 40.0 71.4 53.4
Adam 70.2 33.6 50.5
AdamAMSGrad 43.7 69.2 54.8
NAdam 64.0 22.7 41.3
RMSprop 50.0 56.9 53.2
SGD 51.4 95.4 69.6

In summary, the empirical results consistently show that HEGA provides a significant perfor-
mance benefit over standard first order methods. Its strength is not confined to a specific problem
type but is demonstrated across a wide range of functions and is still pronounced even as the
problem dimension grows.

15

8 Discussion and Future Work

HEGA combines two low cost geometric signals with a stable adaptive core, and this combination
consistently improves first order performance across a wide range of smooth test functions and
dimensions. The aggregate results indicate that HEGA attains the best overall score on twenty
classical functions across 5 to 10000 dimensions. The interpolation between a diagonal AMSGrad
style preconditioner and a scalar path curvature preconditioner helps align the effective step with
the local geometry when the trajectory is coherent, while the alignment controlled learning rate
keeps steps conservative when gradients oscillate. This division of labor appears to be a practical
way to trade speed for stability without complicated schedules.

Theoretical results support these observations. The regret analysis shows that the mixed metric
machinery preserves the O(

√
T) guarantee by staying in the AMSGrad anchor metric and handling

the alignment modulated step via deterministic envelopes. The local analysis explains why, in a
directional convergence regime near a minimizer, the method behaves essentially like a well tuned
scalar preconditioned gradient method and achieves a linear rate. Under the PL condition the same
mechanism yields linear decay of function values with a clean variance controlled neighborhood
in the stochastic case. The continuous time limit clarifies stability through an explicit small gain
condition and highlights how the alignment and curvature states respond to the dynamics of xt.

There are important limitations. The benchmark is deterministic and smooth, which isolates
the geometry but does not explore robustness to gradient noise, data heterogeneity, or nonsmooth
structure. The hyperparameter policy is intentionally simple, using a 5D base and analytic scaling
with dimension, which favors reproducibility over per problem tuning. Alignment and curvature rely
on exponential averages and stabilizers. These design choices can bias estimates when signals are
very small or very noisy, and they can slow adaptation when the path alternates between straight
segments and sharp turns. Although the failure rate is low, the few failures concentrate on functions
with narrow ravines and rapidly changing curvature where per coordinate adaptation can help.
Theoretical constants are conservative, and the metric mixing assumption likely admits weaker
forms.

Several directions follow naturally. A stochastic evaluation with mini batches, heavy tailed noise
models, and adaptive clipping would test the robustness of the alignment and curvature signals.
Systematic ablations that independently disable alignment modulation, curvature interpolation,
and the AMSGrad anchor would quantify the marginal contribution of each component. Sensitivity
studies for α, γ, λp, and stabilizers across functions and dimensions would help refine defaults and
may suggest automatic rules that replace fixed choices. Backtracking or line search variants deserve
attention, since inexpensive acceptance tests can reduce rare failures without erasing the benefits of
a large effective step in coherent situations. Extensions that capture more curvature at fixed cost
are promising, such as block diagonal preconditioners per layer or module, or directional secant
refinements along the momentum direction that adjust the scalar step using Barzilai–Borwein style
ratios. These additions preserve O(d) complexity while potentially unlocking superlinear progress
within small blocks.

On the theory side, it would be valuable to remove or weaken the metric mixing assumption in
the regret proof, sharpen constants in the PL regime using variance dependent bounds, and develop
high probability results that track the coupled evolution of alignment, curvature, and momentum.
A diffusion limit with state dependent noise could clarify the stationary distribution induced
by constant steps and suggest principled noise robust stabilizers. Local results that guarantee
quadratic contraction in more than one direction would likely require block structure or richer secant
information; formalizing this connection is an open problem.

Finally, broader applications should be explored. Large scale stochastic optimization, deep

16

neural network training, and reinforcement learning present situations where curvature varies across
scales and where stable acceleration is valuable. The evidence suggests that using geometry to guide
changes makes the optimizer more efficient and robust. With broader experiments, careful ablations,
and refined analysis, HEGA has the potential to become a reliable default in high dimensional
settings that require speed, stability, and simplicity.

Acknowledgments

I would like to sincerely thank Dr. Nabil Mesbah for his guidance and input throughout this research.

References

[1] S.-i. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, 1998.

[2] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. SIAM Journal on Scientific and
Statistical Computing, 8(1):141–148, 1988.

[3] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd with majority vote is
communication efficient and fault tolerant. In International Conference on Learning Representations,
2019.

[4] X. Chen, S. Xu, C. Caramanis, and S. Mannor. On the convergence of adam-type algorithms. arXiv
preprint, 2018.

[5] T. Dozat. Incorporating nesterov momentum into adam. In ICLR Workshop Track, 2016.

[6] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

[7] V. Gupta, T. Koren, and Y. Singer. Shampoo: Preconditioned stochastic tensor optimization. In
International Conference on Machine Learning, 2018.

[8] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations, 2015.

[9] X. Li and colleagues. On the stability of adaptive optimization methods. arXiv preprint, 2019.

[10] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On the variance of the adaptive learning
rate and beyond. arXiv preprint, 2019.

[11] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations, 2019.

[12] M. Mahsereci and P. Hennig. A probabilistic line search for stochastic optimization. Journal of Machine
Learning Research, 18(119):1–59, 2017.

[13] J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored approximate curvature.
In International Conference on Machine Learning, pages 2408–2417, 2015.

[14] A. Mokhtari and A. Ribeiro. Diagonal quasi-newton methods for machine learning. arXiv preprint, 2014.

[15] Y. Nesterov. A method for solving the convex programming problem with convergence rate o(1/k2).
Soviet Mathematics Doklady, 27:372–376, 1983.

[16] B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5):1–17, 1964.

17

[17] N. Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1):145–151,
1999.

[18] S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and beyond. In International Conference
on Learning Representations, 2018. Introduces AMSGrad.

[19] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics,
22(3):400–407, 1951.

[20] N. Shazeer and M. Stern. Adafactor: Adaptive learning rates with sublinear memory. In International
Conference on Machine Learning, 2018.

[21] T. Tieleman and G. Hinton. Rmsprop: Divide the gradient by a running average of its recent magnitude.
Lecture notes for Neural Networks for Machine Learning, 2012.

[22] Y. Wu and colleagues. Sgdr+: Enhanced warm restarts for stochastic optimization. arXiv preprint,
2018.

[23] M. Zaheer, S. J. Reddi, D. Sachan, S. Kale, and S. Kumar. Adaptive methods for nonconvex optimization.
arXiv preprint, 2018.

[24] M. R. Zhang, J. Lucas, J. Ba, and G. E. Hinton. Lookahead optimizer: k steps forward, 1 step back. In
Advances in Neural Information Processing Systems, 2019.

[25] J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. Dvornek, X. Papademetris, and J. Duncan. Adabelief
optimizer: Adapting stepsizes by the belief in observed gradients. In Advances in Neural Information
Processing Systems, 2020.

A Algorithmic Details and Hyperparameters

This section records the specific implementation of HEGA used in our study, along with its variants
and the hyperparameters that control its behavior. The goal is to ensure full reproducibility. The
definitions remain consistent with the notation introduced earlier, particularly the momentum and
second moment EMAs, the alignment statistic Ct, the path curvature surrogate Vpath,t, and the
effective diagonal preconditioner Peff,t.

Algorithmic Variants

The primary algorithm evaluated in the main experiments, which we refer to simply as HEGA,
uses the AMSGrad style monotone accumulator v̂t for the coordinate wise preconditioner. This
is the version analyzed in our regret and PL convergence results. For diagnostic purposes and to
understand the contribution of individual components, we also considered several variants. A key
variant replaces the AMSGrad accumulator with the standard Adam second moment vt, which
allows us to isolate the impact of the monotonicity condition on stability. Another more specialized
variant HEGA-N, uses a directional Newton-style scalar branch, Ppath,t = (Vpath,t + ϵpath)−1, to
explore faster local convergence when gradient alignment is high.

Hyperparameters and Practical Tuning

The hyperparameter settings used for HEGA and all baselines in the experimental suite are detailed
in Table 4. We maintained a single configuration across all functions and dimensions, with only
the base learning rate adjusted via a scaling rule. This policy was chosen to ensure a fair and
reproducible comparison.

18

Table 4: Hyperparameter settings for HEGA used in the main experimental suite.

Hyperparameter Description Default Value Typical Range

β1 First moment (momentum) decay 0.9 0.8 to 0.95

β2 Second moment (variance) decay 0.999 0.99 to 0.9995

γ Geometry EMA decay for Ct and Vpath,t 0.9 0.9 to 0.99

α LR modulation base in αCt 2.0 1.0 to 4.0

λp Interpolation exponent in 1− |Ct|λp 2.0 1.0 to 4.0

ϵc, ϵq, ϵp Denominator stabilizers 10−8 –

δ0 Curvature estimate floor 10−12 –

Our practical tuning protocol was designed to be minimal. We first selected a base learning rate
η(5) at dimension d = 5 from a small logarithmic grid, holding all other hyperparameters at their
default values from Table 4. For any task specific adjustments, we found it effective to first tune α
in small increments before revisiting the base learning rate. The algorithm was initialized with zero
for all moments and accumulators. No weight decay or gradient clipping was used for the reported
benchmarks.

B Proofs of Theoretical Results

This appendix gives complete proofs for all results in Section 5. Throughout, ∥ · ∥2 is the Euclidean
norm, ⟨·, ·⟩ is the Euclidean inner product, and for any diagonal positive definite matrix H we write
∥x∥2H := ⟨Hx, x⟩. We recall

Dt := diag(Peff,t) and At := diag(1/Peff,t) = D−1
t ,

and the anchor metric Āt := diag(
√
v̂t + ϵp1), which is coordinatewise nondecreasing in t because

v̂t is a max buffer.

A. Proofs for stability and boundedness

Proof of Proposition 7. By Cauchy–Schwarz, |⟨g̃t, g̃t−1⟩| ≤ ∥g̃t∥2∥g̃t−1∥2. Since ϵc > 0, the raw

alignment ct = ⟨g̃t,g̃t−1⟩
∥g̃t∥2∥g̃t−1∥2+ϵc

satisfies |ct| ≤ 1. The initialization gives C0 = 0. The smoothed

alignment Ct = γCt−1 + (1− γ)ct is a convex combination of terms in [−1, 1], hence Ct ∈ [−1, 1] for
all t. Monotonicity of z 7→ αz gives Mt = αCt ∈ [α−1, α]. Since |Ct| ∈ [0, 1] and λp > 0, one has
λt = 1− |Ct|λp ∈ [0, 1].

Lemma 18. For ϵq > 0 and a ≥ 0, the function ϕ(a) = a
a2+ϵq

attains its maximum 1/(2
√
ϵq) at

a =
√
ϵq.

Proof. Compute ϕ′(a) =
ϵq−a2

(a2+ϵq)2
. The unique critical point on [0,∞) is a =

√
ϵq. The sign change

of ϕ′ shows a maximum and ϕ(
√
ϵq) = 1/(2

√
ϵq).

Proof of Proposition 8. The lower bound holds by inspection since Vpath,0 = δ0 and the update
Vpath,t = γVpath,t−1 + (1− γ) max{Hest,t, δ0} is a convex combination of values at least δ0. For the

19

upper bound write st = xt−1 − xt−2 and

yt = ∇ft(xt−1)−∇ft−1(xt−2) = ∇ft(xt−1)−∇ft(xt−2)︸ ︷︷ ︸
I

+∇ft(xt−2)−∇ft−1(xt−2)︸ ︷︷ ︸
II

.

Assumption 3 gives ⟨I, st⟩ ≤ L∥st∥22. Assumption 6 gives ∥II∥2 ≤ ∆, hence ⟨II, st⟩ ≤ ∆∥st∥2.
Therefore

Hest,t =
⟨yt, st⟩
∥st∥22 + ϵq

≤ L+ ∆
∥st∥2

∥st∥22 + ϵq
≤ L+

∆

2
√
ϵq
,

using Lemma 18. The clipped exponential average then satisfies Vpath,t ≤ max{δ0, L+∆/(2
√
ϵq)} =:

Vmax for all t. When ∆ = 0, Vmax = max{δ0, L}.

Proof of Proposition 9. Assumption 2 gives |g̃t,i| ≤ G∞ almost surely, so vt,i ≤ G2
∞ by induction

and v̂t,i ≤ G2
∞ by the max rule. Hence

(G∞ + ϵp)
−1 ≤ PL2,t,i =

1√
v̂t,i + ϵp

≤ ϵ−1
p .

Proposition 8 gives δ0 ≤ Vpath,t ≤ Vmax, hence

(
√
Vmax + ϵp)

−1 ≤ Ppath,t =
1√

Vpath,t + ϵp
≤ (

√
δ0 + ϵp)

−1.

The effective term is a convex combination Peff,t,i = λtPL2,t,i + (1− λt)Ppath,t. Taking the minimum
of the lower endpoints and the maximum of the upper endpoints over the two ranges yields the
claimed constants Pmin and Pmax.

Proof of Lemma 10. Fix t and i, write A := PL2,t,i and B := Ppath,t. Then Peff,t,i = λtA+ (1−λt)B.
For the lower bound,

inf
λ∈[0,1]

λA+ (1− λ)B

A
= min

{
1,
B

A

}
≥ Bmin

Amax
=

(
√
Vmax + ϵp)

−1

ϵ−1
p

=
ϵp√

Vmax + ϵp
= cmin.

For the upper bound,

sup
λ∈[0,1]

λA+ (1− λ)B

A
= max

{
1,
B

A

}
≤ Bmax

Amin
=

(
√
δ0 + ϵp)

−1

(G∞ + ϵp)−1
=
G∞ + ϵp√
δ0 + ϵp

= cmax.

Therefore cminA ≤ Peff,t,i ≤ cmaxA and, equivalently, cmin Ā
−1
t ⪯ Dt ⪯ cmax Ā

−1
t .

B. A weighted telescoping inequality for varying anchor metrics

We state the weighted telescoping tool used in the regret proof. It keeps the anchor metric and the
time-varying step together.

Lemma 19 (Weighted telescoping with increasing diagonal anchors). Let {Āt}t≥1 be diagonal
positive definite matrices with Āt+1 ⪰ Āt for all t. Let at > 0 be nondecreasing. For any sequence
{zt}t≥0 ⊂ X and any {z̃t}t≥1 ⊂ X ,

T∑
t=1

at
(
∥zt−1 − x∗∥2Āt

− ∥z̃t − x∗∥2Āt

)
≤ aT ∥zT − x∗∥2ĀT

+ a1∥z0 − x∗∥2Ā1
.

20

Proof. Write Vt(u) := ∥u− x∗∥2
Āt

. Then

at
(
Vt(zt−1)− Vt(z̃t)

)
=

(
atVt(zt−1)− at+1Vt+1(zt)

)
+
(
at+1Vt+1(zt)− atVt(z̃t)

)
.

Summing over t = 1, . . . , T gives

T∑
t=1

at
(
Vt(zt−1)− Vt(z̃t)

)
= a1V1(z0)− aTVT (zT)︸ ︷︷ ︸

I

+
T−1∑
t=1

(
at+1Vt+1(zt)− atVt(z̃t)

)︸ ︷︷ ︸
IIt

.

For IIt, monotonicity of Āt+1 and of at gives at+1Vt+1(zt) ≥ atVt(zt). Since z̃t ∈ X is arbitrary here,
Vt(zt)− Vt(z̃t) ≥ −Vt(z̃t). Hence IIt ≥ −atVt(z̃t). Dropping these nonpositive terms yields

T∑
t=1

at
(
Vt(zt−1)− Vt(z̃t)

)
≤ a1V1(z0) + aTVT (zT),

which proves the claim.

C. A weighted AMSGrad sum

The regret proof multiplies the AMSGrad branch by st = η αCt/
√
t. The useful inequality is

therefore weighted by 1/
√
t.

Lemma 20 (Weighted AMSGrad bound). For each coordinate i,

T∑
t=1

1√
t

m̂2
t,i√

v̂t,i + ϵp
≤ 2G2

∞
(1− β1)2 ϵp

√
T .

Consequently,
∑T

t=1
1√
t

∑d
i=1

m̂2
t,i√

v̂t,i+ϵp
≤ 2dG2

∞
(1−β1)2 ϵp

√
T .

Proof. By Assumption 2, |g̃t,i| ≤ G∞ almost surely. The bias-corrected momentum is a convex
combination of past stochastic gradients, so |m̂t,i| ≤ (1− β1)−1G∞. Also

√
v̂t,i + ϵp ≥ ϵp. Hence

1√
t

m̂2
t,i√

v̂t,i + ϵp
≤ 1√

t

G2
∞

(1− β1)2 ϵp
.

Summing over t and using
∑T

t=1 t
−1/2 ≤ 2

√
T proves the claim.

D. Proof of the regret bound

We prove Theorem 12 without any mixing assumption. The argument uses the ghost iterate in the
anchor metric, the monotone envelopes

st :=
η

α
√
t
≤ st := η αCt/

√
t ≤ st :=

η α√
t
,

and the weighted telescoping Lemma 19 with the nondecreasing weights at := 1/st = (α/η)
√
t.

Lemma 21 (Mirror one step bound in the anchor metric). Let x̃t = Proj
(Āt)
X

(
xt−1 − st Ā−1

t m̂t

)
with st = ηtα

Ct. Then

⟨m̂t,xt−1 − x∗⟩ ≤
∥xt−1 − x∗∥2

Āt
− ∥x̃t − x∗∥2

Āt

2st
+
st
2
∥m̂t∥2Ā−1

t
.

21

Proof. Let ψt(x) = 1
2∥x∥

2
Āt

. The optimality condition for x̃t says that for all u ∈ X , ⟨Āt(x̃t−yt), u−
x̃t⟩ ≥ 0 with yt = xt−1−st Ā−1

t m̂t. Choosing u = x∗ gives ⟨m̂t, x̃t−x∗⟩ ≤ 1
st
⟨Āt(xt−1−x̃t), x̃t−x∗⟩.

The three-point identity for the quadratic Bregman divergence yields

2⟨Āt(xt−1 − x̃t), x̃t − x∗⟩ = ∥xt−1 − x∗∥2Āt
− ∥x̃t − x∗∥2Āt

− ∥xt−1 − x̃t∥2Āt
.

Hence

⟨m̂t, x̃t − x∗⟩ ≤
∥xt−1 − x∗∥2

Āt
− ∥x̃t − x∗∥2

Āt

2st
−
∥xt−1 − x̃t∥2Āt

2st
.

Adding ⟨m̂t,xt−1 − x̃t⟩ to both sides and applying Cauchy–Schwarz in the Āt inner product gives

⟨m̂t,xt−1 − x̃t⟩ ≤ st
2 ∥m̂t∥2Ā−1

t

+
∥xt−1−x̃t∥2Āt

2st
. This cancels the last negative term and proves the

claim.

Proof of Theorem 12. By convexity, R(T) =
∑T

t=1 ft(xt−1)− ft(x∗) ≤
∑T

t=1⟨∇ft(xt−1),xt−1 − x∗⟩.
We work directly with g̃t since E[g̃t | Ft−1] = ∇ft(xt−1). Taking total expectation and conditioning
on Ft−1,

ER(T) ≤
T∑
t=1

E
[
⟨g̃t,xt−1−x∗⟩

]
=

T∑
t=1

E
[
⟨m̂t,xt−1−x∗⟩

]
+

T∑
t=1

E
[
⟨g̃t−m̂t,xt−1−x∗⟩

]
=: ES1+ES2.

Step 1: bound S1 via the ghost inequality and the envelopes. Apply Lemma 21 and then replace
1/st by 1/st and st by st:

⟨m̂t,xt−1 − x∗⟩ ≤
∥xt−1 − x∗∥2

Āt
− ∥x̃t − x∗∥2

Āt

2 st
+
st
2
∥m̂t∥2Ā−1

t
.

Summing and using Lemma 19 with at = 1/st yields

T∑
t=1

∥xt−1 − x∗∥2
Āt
− ∥x̃t − x∗∥2

Āt

2 st
≤ aT

2
∥xT − x∗∥2ĀT

+
a1
2
∥x0 − x∗∥2Ā1

.

Since ∥z∥2
Āt
≤ (G∞ + ϵp)∥z∥22 ≤ (G∞ + ϵp)D

2 and aT = (α/η)
√
T , this part is O(

√
T). For the

quadratic term, comparability gives ∥m̂t∥2Ā−1
t

≤ cmax⟨Dtm̂t, m̂t⟩. Split Peff,t,i = λtPL2,t,i + (1 −
λt)Ppath,t and use st ≤ (ηα)/

√
t:

T∑
t=1

st
2
∥m̂t∥2Ā−1

t
≤ cmax

2

[
ηα

T∑
t=1

1√
t

d∑
i=1

m̂2
t,i√

v̂t,i + ϵp︸ ︷︷ ︸
=:Q1

+
T∑
t=1

ηα√
t
Ppath,t ∥m̂t∥22︸ ︷︷ ︸
=:Q2

]
.

By Lemma 20, Q1 = O(
√
T). For Q2, Ppath,t ≤ (

√
δ0 + ϵp)

−1 and ∥m̂t∥2 ≤
√
dG∞/(1− β1), thus

Q2 = O(
√
T). Altogether ES1 = O(

√
T).

Step 2: bound S2 (difference term). By Cauchy–Schwarz in the Āt inner product and Young,

⟨g̃t − m̂t,xt−1 − x∗⟩ ≤
∥xt−1 − x∗∥2

Āt

2 st
+
st
2
∥g̃t − m̂t∥2Ā−1

t
.

The first term is O(
√
T) by the same envelope-telescoping bound as in Step 1. For the second term,

∥g̃t − m̂t∥2Ā−1
t

≤ 2∥g̃t∥2Ā−1
t

+ 2∥m̂t∥2Ā−1
t

, and Ā−1
t ⪯ cmaxDt. The two pieces are then controlled

22

exactly as Q1 and Q2 above (with g̃t in place of m̂t), giving O(
√
T). Taking expectations preserves

all bounds since the right-hand sides are deterministic upper envelopes. Therefore ES2 = O(
√
T).

Combining Steps 1–2 proves ER(T) = O(
√
T). In the deterministic case g̃t = ∇ft(xt−1), the

same argument gives the pointwise bound R(T) = O(
√
T).

E. Proof of local linear convergence

We prove Theorem 15. The argument is deterministic with constant step st = ηαCt , uses As-
sumption 14 to ensure the projection is nonexpansive in a neighborhood of x∗, and combines the
preconditioner bounds with a quantitative tracking of the EMA.

Lemma 22 (EMA tracking). Assume f is L smooth. Then

∥m̂t −∇f(xt−1)∥2 ≤
β1

1− β1
L

∞∑
j=1

β j−1
1 ∥xt−j − xt−j−1∥2.

Proof. Write m̂t = 1
1−βt

1

∑t
k=1(1− β1)β

t−k
1 ∇f(xk−1). Add and subtract ∇f(xt−1) inside the sum,

use the triangle inequality, and apply L-smoothness,

∥m̂t −∇f(xt−1)∥2 ≤
1

1− βt1

t∑
k=1

(1− β1)βt−k
1 L ∥xk−1 − xt−1∥2.

Expand the telescoping difference ∥xk−1 − xt−1∥2 ≤
∑t−1

r=k ∥xr − xr−1∥2. Swap sums and use∑r
k=1(1− β1)β

t−k
1 ≤ βt−r

1 /(1− β1). Let j = t− r to obtain the claimed bound.

Proof of Theorem 15. Assume f is L smooth and µ strongly convex. Let et = xt − x∗. In the
neighborhood specified by Assumption 14, the projection is inactive (or nonexpansive along the
iterates), so et = et−1 − stDtm̂t. Therefore

∥et∥22 = ∥et−1∥22 − 2st⟨Dtm̂t, et−1⟩+ s2t ∥Dtm̂t∥22.

Decompose m̂t = ∇f(xt−1) + δt with δt := m̂t −∇f(xt−1). Using Pmin ≤ Peff,t,i ≤ Pmax, strong
convexity, and Cauchy–Schwarz,

⟨Dtm̂t, et−1⟩ ≥ Pmin⟨∇f(xt−1), et−1⟩ − Pmax∥δt∥2∥et−1∥2 ≥ Pminµ∥et−1∥22 − Pmax∥δt∥2∥et−1∥2.

Also ∥Dtm̂t∥22 ≤ 2P 2
max

(
∥∇f(xt−1)∥22 + ∥δt∥22

)
≤ 2P 2

max(L2∥et−1∥22 + ∥δt∥22). Hence

∥et∥22 ≤
(

1− 2stPminµ+ 2s2tP
2
maxL

2
)
∥et−1∥22 + 2stPmax∥δt∥2∥et−1∥2 + 2s2tP

2
max∥δt∥22.

By Lemma 22, ∥δt∥2 ≤ Cδ
∑

j≥1 β
j−1
1 ∥xt−j−xt−j−1∥2 with Cδ = β1

1−β1
L. Since xk−xk−1 = sk Dkm̂k,

one has ∥xk − xk−1∥2 ≤ skPmax∥m̂k∥2. Near x∗, ∥m̂k∥2 ≤ cg∥∇f(xk−1)∥2 ≤ cgL∥ek−1∥2 for a

constant cg that depends only on β1. With sk ≡ s ∈ [ηα−1, ηα] and
∑

j≥1 β
j−1
1 = 1/(1− β1), one

gets ∥δt∥2 ≤ c̄ ∥et−1∥2 for a constant c̄ that can be made as small as desired by taking η small.
Substituting and absorbing the mixed term by ab ≤ 1

2εa
2 + 1

2εb
2 yields

∥et∥22 ≤
(

1− 2sPminµ+ 2s2P 2
maxL

2 + c̃ s
)
∥et−1∥22,

with c̃ that can be made arbitrarily small by decreasing η. Choose η > 0 so that 2sPminµ −
2s2P 2

maxL
2 − c̃ s ≥ κ0 > 0. This gives ∥et∥22 ≤ (1 − κ)∥et−1∥22 for some κ ∈ (0, 1), hence ∥et∥2 ≤

ρ∥et−1∥2 with ρ =
√

1− κ ∈ (0, 1). If the projection activates, Euclidean projection is nonexpansive
and the bound still holds.

23

F. Proofs under the PL condition

We now prove Theorem 16 and Corollary 17. The argument uses the descent lemma, the precondi-
tioner bounds, and the EMA tracking bound.

Proof of Theorem 16. Let st = ηαCt ∈ [ηα−1, ηα] with η > 0 constant. Using L-smoothness of f
and the update,

f(xt) ≤ f(xt−1)− ⟨∇f(xt−1), stDtm̂t⟩+
Ls2t
2
∥Dtm̂t∥22.

Write m̂t = ∇f(xt−1) + δt. With Pmin ≤ Peff,t,i ≤ Pmax,

⟨∇f,Dtm̂t⟩ ≥ Pmin∥∇f∥22 − Pmax∥∇f∥2∥δt∥2, ∥Dtm̂t∥22 ≤ P 2
max(∥∇f∥2 + ∥δt∥2)2,

where all norms are at xt−1. By Lemma 22 and the small-step choice, ∥δt∥2 ≤ ρ′∥∇f(xt−1)∥2 with
ρ′ ∈ (0, 1/2). Substituting and shrinking η if necessary yields

f(xt) ≤ f(xt−1)−
st
2
Pmin∥∇f(xt−1)∥22.

The PL condition gives 1
2∥∇f(x)∥22 ≥ µPL

(
f(x)− f∗

)
on the relevant sublevel set. Therefore

f(xt)− f∗ ≤
(
1− stPminµPL

)(
f(xt−1)− f∗

)
≤

(
1− η µPL α−1Pmin

)(
f(xt−1)− f∗

)
,

which proves linear decay with contraction κ = η µPL α
−1Pmin ∈ (0, 1).

Proof of Corollary 17. Let g̃t = ∇f(xt−1) + ξt with E[ξt | Ft−1] = 0 and E[∥ξt∥22 | Ft−1] ≤ σ2.
Apply the descent lemma conditionally,

Et−1

[
f(xt)

]
≤ f(xt−1)− st Et−1

[
⟨∇f(xt−1),Dtm̂t⟩

]
+
Ls2t
2

Et−1

[
∥Dtm̂t∥22

]
.

Cross terms with ξt vanish by zero mean. Using the same bounds as in the deterministic case and
P 2
max Et−1[∥m̂t∥22] ≤ c4∥∇f(xt−1)∥22 + c5σ

2 gives

Et−1

[
f(xt)− f∗

]
≤

(
1− η µPL α−1Pmin

)(
f(xt−1)− f∗

)
+ c6η

2σ2,

for constants c4, c5, c6 depending only on L,Pmin, Pmax, α. Taking total expectation yields linear
convergence to a noise-dominated neighborhood. With st = η0/t, the Robbins–Siegmund lemma
gives E[f(xt)− f∗] = O(1/t).

C Benchmark Definitions and Domains

Table 5 summarizes the twenty objectives used in our study. For each function we record qualitative
properties, the canonical domain used for all dimensions, and the global minimizer/value. Exact
algebraic forms appear in Table 6. All methods use Euclidean projection ΠX onto the stated domain.

24

T
a
b

le
5
:

S
et

o
f

tw
en

ty
b

en
ch

m
a
rk

s
u

se
d

in
o
u

r
co

d
e.

M
o
d

.=
m

o
d

a
li

ty
;

S
ep

.=
se

p
a
ra

b
il

it
y
;

C
v
x
.=

co
n
v
ex

it
y
;

C
o
n

d
.=

ty
p

ic
a
l

co
n

d
it

io
n

in
g
.

C
a
n

o
n

ic
al

d
o
m

ai
n

s
fo

ll
ow

st
an

d
ar

d
p

ra
ct

ic
e

or
ou

r
co

d
e

d
ef

au
lt

s.

N
a
m
e

M
o
d
.

S
ep

.
C
v
x
.

C
o
n
d
.

C
a
n
o
n
ic
a
l
d
o
m
a
in

X
G
lo
b
a
l
m
in
im

iz
er

x
⋆
a
n
d
v
a
lu
e
f
⋆

S
p
h
er
e

U
n
i

Y
es

Y
es

L
o
w

[−
5
.1
2
,
5
.1
2
]d

x
⋆
=

0
,
f
⋆
=

0

R
o
se
n
b
ro
ck

U
n
i

N
o

N
o

H
ig
h

[−
2
.0
4
8
,
2
.0
4
8
]d

x
⋆
=

1
,
f
⋆
=

0

R
a
st
ri
g
in

M
u
lt
i
(h

ig
h
)

Y
es

N
o

M
o
d
.

[−
5
.1
2
,
5
.1
2
]d

x
⋆
=

0
,
f
⋆
=

0

A
ck

le
y

M
u
lt
i

Y
es

N
o

M
o
d
.

[−
3
2
.7
6
8
,
3
2
.7
6
8
]d

x
⋆
=

0
,
f
⋆
=

0

G
ri
ew

a
n
k

M
u
lt
i

P
a
rt
ia
l

N
o

M
o
d
.

[−
6
0
0
,
6
0
0
]d

x
⋆
=

0
,
f
⋆
=

0

S
ch

w
ef
el

2
.2
6

M
u
lt
i

Y
es

N
o

M
o
d
.

[−
5
0
0
,
5
0
0
]d

x
⋆
=

4
2
0
.9
6
8
7
4
6
..
.
1
,
f
⋆
=

0

L
év

y
(N

.1
3
)

M
u
lt
i

Y
es

N
o

M
o
d
.

[−
1
0
,
1
0
]d

x
⋆
=

1
,
f
⋆
=

0

S
ty
b
li
n
sk
i–
T
a
n
g

M
u
lt
i

Y
es

N
o

M
o
d
.

[−
5
,
5
]d

x
⋆
≈

−
2
.9
0
3
5
3
4
1
,
f
⋆
≈

−
3
9
.1
6
6
d

Z
a
k
h
a
ro
v

U
n
i

N
o

Y
es

M
o
d
.

[−
5
,
1
0
]d

x
⋆
=

0
,
f
⋆
=

0

D
ix
o
n
–
P
ri
ce

M
u
lt
i

N
o

N
o

M
o
d
./
H
ig
h

[−
1
0
,
1
0
]d

x
⋆ 1
=

1
,

x
⋆ i
=

2
−

2
i
−

2

2
i

(i
≥

2
);

f
⋆
=

0

P
o
w
el
l
S
u
m

†
U
n
i

Y
es

Y
es

M
o
d
.

[−
1
,
1
]d

x
⋆
=

0
,
f
⋆
=

0

T
ri
d

U
n
i

N
o

N
o

M
o
d
.

[−
d
2
,
d
2
]d

x
⋆ i
=

i(
d
+

1
−

i)
;
f
⋆
=

−
d
(d

+
4
)(
d
−
1
)

6

S
u
m

o
f
D
iff
er
en

t
P
o
w
er
s†

U
n
i

Y
es

Y
es

M
o
d
.

[−
1
,
1
]d

x
⋆
=

0
,
f
⋆
=

0

Q
in
g

M
u
lt
i

Y
es

N
o

M
o
d
.

[−
5
0
0
,
5
0
0
]d

x
⋆ i
=

±
√
i;

f
⋆
=

0

S
a
lo
m
o
n

M
u
lt
i

N
o

N
o

M
o
d
.

[−
1
0
0
,
1
0
0
]d

x
⋆
=

0
,
f
⋆
=

0

A
lp
in
e
1

M
u
lt
i

Y
es

N
o

M
o
d
.

[−
1
0
,
1
0
]d

x
⋆
=

0
,
f
⋆
=

0

E
x
p
o
n
en

ti
a
l

U
n
i

N
o

N
o

L
o
w

[−
1
,
1
]d

x
⋆
=

0
,
f
⋆
=

−
1

S
ch

a
ff
er

N
.2

(g
en

.)
M
u
lt
i

N
o

N
o

M
o
d
.

[−
1
0
0
,
1
0
0
]d

x
⋆
=

0
,
f
⋆
=

0

Q
u
a
rt
ic

(w
ei
g
h
te
d
)

U
n
i

Y
es

Y
es

M
o
d
.

[−
1
.2
8
,
1
.2
8
]d

x
⋆
=

0
,
f
⋆
=

0

S
u
m
S
q
u
a
re
s
(w

ei
g
h
te
d
)

U
n
i

Y
es

Y
es

M
o
d
./
H
ig
h

[−
1
0
,
1
0
]d

x
⋆
=

0
,
f
⋆
=

0

25

T
a
b

le
6:

C
lo

se
d

fo
rm

d
efi

n
it

io
n

s
u

se
d

in
ou

r
co

d
e.

L
et

x
=

(x
1
,.
..
,x

d
)⊤

an
d
r

=
√ ∑

d i=
1
x
2 i
.

N
a
m

e
D
e
fi
n
it
io
n

f
(x

)

S
p
h
er
e

d ∑ i=
1

x
2 i

R
o
se
n
b
ro
ck

d
−
1 ∑ i=
1

(1
0
0
(x

i+
1
−

x
2 i
)2

+
(1

−
x
i
)2
)

R
a
st
ri
g
in

1
0
d
+

d ∑ i=
1

(x
2 i
−

1
0
co

s(
2
π
x
i
))

A
ck

le
y

−
2
0
ex

p
(−

0
.2

√ √ √ √1 d

d ∑ i=
1

x
2 i

) −
ex

p
(1 d

d ∑ i=
1

co
s(
2
π
x
i
)) +

2
0
+

e

G
ri
ew

a
n
k

1
+

1

4
0
0
0

d ∑ i=
1

x
2 i

−
d ∏ i=
1

co
s(x i √ i

)
S
ch

w
ef
el

2
.2
6

4
1
8
.9
8
2
9
d

−
d ∑ i=
1

x
i
si
n
(√ |x

i
|)

L
év

y
(N

.1
3
)

L
et

w
i
=

1
+

x
i
−
1

4
.
T
h
en

si
n
2
(π

w
1
)
+

d
−
1 ∑ i=
1

(w
i
−

1
)2
[1

+
1
0
si
n
2
(π

w
i
+

1
)] +

(w
d
−

1
)2
[1

+
si
n
2
(2
π
w

d
)]

S
ty
b
li
n
sk
i–
T
a
n
g

1 2

d ∑ i=
1

(x
4 i
−

1
6
x
2 i
+

5
x
i

)
Z
a
k
h
a
ro
v

d ∑ i=
1

x
2 i

+
(d ∑ i=

1

i 2
x
i

) 2 +
(d ∑ i=

1

i 2
x
i

) 4
D
ix
o
n
–
P
ri
ce

(x
1
−

1
)2

+
d ∑ i=
2

i
(2

x
2 i
−

x
i−

1

) 2
P
o
w
el
l
S
u
m

†
d ∑ i=
1

|x
i
|i

+
1

T
ri
d

d ∑ i=
1

(x
i
−

1
)2

−
d ∑ i=
2

x
i
x
i−

1

S
u
m

o
f
D
iff
er
en

t
P
o
w
er
s†

d ∑ i=
1

|x
i
|i

+
1

Q
in
g

d ∑ i=
1

(x
2 i
−

i) 2
S
a
lo
m
o
n

1
−

co
s(
2
π
r
)

+
0
.1

r

A
lp
in
e
1

d ∑ i=
1

∣ ∣ x is
in

x
i
+

0
.1

x
i

∣ ∣
E
x
p
o
n
en

ti
a
l

−
ex

p
(−

1 2

d ∑ i=
1

x
2 i

)
S
ch

a
ff
er

N
.2

(g
en

.)

d
−
1 ∑ i=
1

{ 0
.5

+
si
n
2
(x

2 i
−

x
2 i+

1
)
−

0
.5

(1
+

0
.0
0
1
(x

2 i
+

x
2 i+

1
)) 2}

Q
u
a
rt
ic

(w
ei
g
h
te
d
)

d ∑ i=
1

i
x
4 i

S
u
m
S
q
u
a
re
s
(w

ei
g
h
te
d
)

d ∑ i=
1

i
x
2 i

26

	Introduction
	Related Work
	Preliminaries and Notation
	Problem Setting and Assumptions
	Algorithmic Quantities

	The HEGA Optimizer
	Theoretical Results
	Stability and Boundedness of Geometric Components
	Regret Bound for Online Convex Optimization
	Convergence for Stationary Objectives

	Implementation Details
	Experiments
	Evaluation Metrics and Protocol
	Main Benchmark Results (Dimensions 5 – 1000)
	High-Dimensional Stress Test (Dimensions 2000 – 10000)

	Discussion and Future Work
	Algorithmic Details and Hyperparameters
	Proofs of Theoretical Results
	Benchmark Definitions and Domains

