Alcatraz: Secure Remote Computation via Sequestered
Encryption in Minimally Trusted Hardware

Albert Lu'?
' Phillips Exeter Academy, Exeter, NH, USA
2MIT PRIMES, Cambridge, MA, USA

Instructors: Sacha Servan-Schreiber (MIT)*, Jules Drean (MIT)*

* Current affiliation: Tinfoil, Inc. (https://tinfoil.sh)

Declaration of Academic Integrity

The participating team declares that the paper submitted is comprised of original research and
results obtained under the guidance of the instructor. To the team’s best knowledge, the paper
does not contain research results, published or not, from a person who is not a team member,
except for the content listed in the references and the acknowledgment. If there is any
misinformation, we are willing to take all the related responsibilities.

Names of team members: Albert Lu

Signatures of team members: Mi

Name of the instructor Sgcha Servan-Schreiber, Jules Drean

Signature of the instructor —

Date August 24th, 2025

Alcatraz: Secure Remote Computation via
Sequestered Encryption in Minimally Trusted
Hardware

Albert Lu

MIT PRIMES

August 24, 2025

Abstract

This paper introduces “Alcatraz,” a new architecture that enables se-
cure remote computation with minimal trust in the hardware. In Alcatraz,
sensitive data is always encrypted, except when it is inside a small, trusted
circuit, which is composed of an Arithmetic Logic Unit (ALU) gated by
a decryption and encryption engine. By design, the internal states of the
trusted circuit is inaccessible from any software, and unencrypted data is
never exposed outside the trusted circuit. Thus it is extremely difficult
for any attacker to gain information about the sensitive data by observing
or attacking other parts of the processor and computer (e.g., registers or
caches), or by exploiting any microarchitectural side channels.

We implemented Alcatraz on a field-programmable gate array (FPGA),
and verified with a formal proof that the circuit is secure at the wire-level,
which is stronger than the register-transfer-level (RTL) security proved
previously. Wire-level verification has the benefit that it’s much closer to
the physical reality, i.e., the timing and level of signals on the wire, that
may be observed by attackers.

We apply Alcatraz to single-server private information retrieval and
estimate based on benchmark that Alcatraz achieves 7x to 21x speedup
when compared with the current state-of-the-art approach for private in-

formation retrieval.

1 Introduction

With the rapid development of cloud computing, increasingly large amounts of
information is being exchanged and processed on remote computers. However,

this trend has also brought about its own risks. Because cloud computing is
a shared resource, processing sensitive information in the cloud means that it
may be stolen by malicious attackers [6]. Any vulnerability in the hardware or
software can undermine the confidentiality of sensitive data.

Microarchitectural side channels are routes via which sensitive informa-
tion may leak. These “channels” exist because the hardware states below the
instruction-set architecture may become data dependent (e.g., timing differences
due to cache miss). Attackers can exploit these channels to learn about sen-
sitive information they otherwise do not have access to, or potentially obtain
the secrets outright. Microarchitectural side channel attacks pose threats to all
computing environments, and have been shown to compromise RSA private keys
[5]. There are even more attacks that take advantage of side-channels inside the
processor itself, such as cross-privilege data gathering [50] and speculative data
gathering [39].

A specific but common family of microarchitectural side channel attacks ex-
ploits timing differences in runtime. Numerous timing-based attacks are able
to exploit these minute differences to infer secret data [57, 34]. These tech-
niques can also be combined with other attacking techniques, such as transient
execution [29].

One approach to address these hardware vulnerabilities is to reduce the
attack surface and keep sensitive data within a small, trusted chip (a Trusted
Execution Environment). This technique has been applied to cryptography,
such as the use of TPMs (Trusted Platform Modules) [46]. Although Trusted
Execution Environments offer improvement in security by isolating sensitive
operations within a secure enclave, they still require trusting a software and
hardware stack, which may be susceptible to exploitation. Indeed, it has been
demonstrated that TPMs still suffer from side-channel attacks [40].

Another approach to address these hardware vulnerabilities is Fully Ho-
momorphic Encryption (FHE) [22]. Fully Homomorphic Encryption allows a
computer to do direct computation on the ciphertext without ever decrypting
it. As a result, any potential leakage would still be encrypted, and thus not a
problem. However, FHE is too slow to be practical [1].

FHE TEE Alcatraz
Security Cryptographic Full hardware trust Minimal hardware trust
Vulnerable to side channels
Efficiency Slow Fast Fast
Expressivity Can only compute Can run arbitrary programs Can only compute
logical circuits logical circuits

Table 1: Comparison of approaches to secure remote computation.

TEE Untrusted Untrusted Untrusted
Trusted Apps Apps
Trusted OS (e
Al Al
CPU [P % pps
(o) oS
Main CPU : Main CPU

! ! ! !

Shared Resources (e.g. Cache) Shared Resources (e.g. Cache)

bl
(=

ESTII

apodap
o |

Figure 1: Left: A Trusted Execution Environment (TEE) requires trusting a soft-
ware and hardware stack. Data residing in the untrusted hardware components (shown
in orange) are encrypted. They may become decrypted in the trusted hardware com-
ponents (shown in blue). Right: In contrast, our approach only requires trusting a
small circuit within the CPU execution pipeline stage. As a result, our approach has
much smaller attack surface than TEE.

In this work, we develop Alcatraz, which is inspired by both Trusted Ex-
ecution Environments and FHE, as a solution to secure remote computation.
Alcatraz is a new architecture, where we address microarchitectural side channel
attacks by restricting all non-encrypted sensitive data to a special Arithmetic
Logic Unit (ALU) gated by encryption engines. Any sensitive data outside this
ALU is always encrypted (Figure 1, Right). This means that as long as the
adversary' does not have access to the internal states of the ALU, they will not
be able to infer any sensitive information.

Furthermore, we provide a formally verified proof that the special ALU is
secure against timing-based side channel attacks at the wire level. Our proof
rests on the fact that the behavior of the encrypted ALU’s input/output wires
completely captures any possible timing side-channels at a clock-cycle accurate
level.

Using the Knox framework [8], we verify that the behavior of the circuit’s
input/output wires doesn’t leak more information than what is described in the
specification, and thus is free of any timing leakage (see Sections 3.3 and 4.4.3
for more details).

Compared to the register-transfer-level proof by Tan et al. [55] for Sequestered
Encryption (SE), gate-level abstraction is closer to the circuit’s actual physi-
cal layout. This creates significantly larger expressions representing the circuit,
meaning that significant speedups are required to create a complete formal proof
of security (see sections 4.1 and 2.7 for more details).

IFor details on our threat model, see Section 3.1.

1.1 Owur contributions

We build Alcatraz, a new architecture for secure computation, which is based
on sequestered encryption (SE) [12]. The idea of sequestered encryption is to
remove all sensitive plaintext values from architectural and microarchitectural
states that could be potentially accessed by an attacker.

The central piece of our new architecture is a hardware module that can
perform arithmetic or logical operations on encrypted data. We provide a full
Verilog implementation of the hardware module.

Along with that, we also provide a proof of the hardware’s correctness and
security properties (i.e., free of timing side channels) at the wire-level. Our
proof is based on the concept of information-preserving refinement (IPR) and
the Knox framework of Athalye et al. [8]. We crafted efficient proofs for the
correctness and security of our implementation.

We integrated Alcatraz with a RISC-V core [21] and a vector coprocessor
[47], and applied it to a private information retrieval [14, 30] task. We achieved
7x to 21x speedup against state-of-the-art FHE implementations [38].

2 Background

In this section, we cover some basic background knowledge for this paper.

2.1 Symmetric-key Encryption and Authenticated Key Ex-
change

In Alcatraz, we use symmetric-key encryption to protect sensitive data. In this
scheme, the same key is used for both encryption and decryption. It’s much
faster than asymmetric-key encryption scheme, but the challenge is that the
key needs to be known by both parties. To solve the problem, we look at an
authenticated key exchange, which allows two parties to agree on a common
key.

The Diffie-Hellman key exchange is a of establishing a shared secret between
two parties without revealing it. However, Kara et al. [25] notes that the Diffie—
Hellman key exchange is vulnerable to man-in-the-middle (MitM) attacks. To
combat these attacks, both parties have to send additional information to con-
firm that the original information has not been tampered with. This is called
authenticated key exchange [20, 31], which requires a public-key digital signa-
ture scheme, such as ECDSA [13].

2.2 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays, or FPGAs, are circuits that can be repro-
grammed. They consist of programmable logic blocks connected by a commu-
nal grid, meaning they are very versatile. To achieve that versatility, FPGAs
sacrifice performance and thus may not be the best choice if a circuit’s design is
fixed and needs to run many times repeatedly [48]. For Alcatraz, we use FPGAs
as a prototyping platform (see Section 4.4).

2.3 Microarchitectural Side Channels

A microarchitectural side channel is a type of side channel where information
leaks through a hardware feature in the computer, especially through the micro-
architecture. For example, cache timing attacks take advantage of the significant
time difference between accessing a piece of data located in the cache versus
located in the main memory. Execution time, power supply/consumption, and
timing of memory accesses are all examples of microarchitectural side channels
(see also surveys in [54, 35]). The existence of side channels is usually due to the
existence of microarchitectural mechanisms that were created for performance
optimization (branch predictors, memory hierarchies, etc.)

Side channel attacks Side-channel attacks utilize these microarchitectural
side channels to get information. For example, if a program’s execution dura-
tion depends on the number of 1-bits in the secret key, then an adversary can
learn that information through measuring the program’s duration. Adversaries
can do similar things with power consumption attacks and electromagnetic side
channels [53].

These information leakages can give an attacker substantial information
which can aid them in recovering sensitive data such as a private key. For ex-
ample, Karimi et al. [26] show that timing-based side channel attacks can steal
encryption keys. In our work, we will mitigate all timing-based side channel
attacks.

2.4 Homomorphic Encryption

Homomorphic encryption is an encryption function E(x) with the special prop-
erty that allows for E(f(z,y)) to be computed based on E(z) and E(y), where
f is an arbitrary simple function of x and y. E must also follow the normal
properties of an encryption function, hiding the message from computationally-
bounded adversaries that do not have access to the secret key.

In homomorphic encryption, it is shown that the two fundamental oper-
ations, homomorphic addition and homomorphic multiplication, correspond to
XOR and AND operations in Boolean logic. Implementing these two operations
is sufficient to support fully homomorphic encryption [22].

Fully homomorphic encryption is sometimes considered the holy grail of
cryptography, as it could enable countless secure applications. Indeed, compu-
tation can be delegated to untrusted parties as sensitive data is never exposed
and always encrypted under the private key. As long as the private key is kept
safe, the data can never be stolen or extracted.

Feasibility Fully homomorphic encryption suffices in an ideal world. How-
ever, in the real world, implementations are often too slow to be practical [42].
As such, many variants, (e.g., partially homomorphic encryption [41]) are de-
veloped, which are limited by the amount of multiplications they can perform.

2.5 Formal Verification

When cryptographic schemes are devised, there is usually a mathematical proof
that the scheme itself is secure. However, in the process of implementing the
scheme into actual code, there may be bugs that introduce side-channels, or
even errors in the implementation that could lead to security breaches.

In order to combat this, “formal verification” tools can be used. Formal ver-
ification tools make it possible to prove or disprove the correctness of a system’s
implementation, with respect to a previously-defined specification, using formal
methods and automated mathematical reasoning [28]. It proves that the code
correctly implement the system according to the specification. Furthermore, it
can be extended to show not only correctness but also security, and even resis-
tance against some side-channel attacks, like timing. In our work, we use the
Knox framework by Athalye et al. [8] to complete our formal verification.

2.6 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) analyzes the satisfiability of some formu-
las, given a background theory. This background theory fixes the meaning of
predicates and function symbols, such as <, +,®. A satisfiability modulo theory
solver (e.g., Z3 by Microsoft [19]) contains many specialized solving algorithms
for specific background theories, which can be combined to determine the satis-
fiability of a Boolean formula [10]. When trying to verify a property in formal
verification, tools will often show it is equivalent to verifying the satisfiability
of an SMT formula. An SMT solver can then be used to verify the property
automatically.

2.7 Sequestered Encryption

Biernacki et al. [12] introduces the hardware technique called Sequestered En-
cryption. They assume an adversary that has complete software access, being
able to launch software attacks and compromise the operating system. However,
the adversary cannot launch physical attacks, like differential power analysis or
the “electron-microscope attack”.

This technique isolates the sensitive plaintext data into a small trusted hard-
ware unit, and also ensures no sensitive plaintext values exist in any software-
accessible architectural state, significantly reducing the attack surface an adver-
sary can reach. This trusted hardware unit is known as the “SE unit”.

Tan et al. [55] provides two implementations. First, they introduce a “state-
less atomic implementation”, which always sandwiches an operation with a de-
crypt and encrypt operation. However, the problem with that is that there
are many extraneous encrypt-decrypt pairs, which are not necessary and in-
crease the latency of operations. To combat this problem, Tan et al. introduces
SE-OPT, which is the stateful optimized implementation. To get rid of the ex-
traneous encrypt-decrypt pairs, they extend the SE unit to include a decryption
cache, which stores ciphertext-plaintext pairs. Specifically, when an instruction
is given to the SE unit, the ciphertext value is used to index the decryption
cache, which returns the corresponding decrypted plaintext (if it is present in
said decryption cache). If the ciphertext is not present, it is decrypted (as usual).
This design introduces short-term memory of recent decryption operations. No-
tice that decryption cache latency is dependent on the whether the ciphertext
is present or not, which is not a secret. That also upholds their security goals
related to timing-based side channels.

3 Overview

We develop “Alcatraz”, an architecture for secure remote computation with
minimal trust in the hardware. Within Alcatraz, the basic Arithmetic Logic
Unit (ALU) is a simple decrypt-operation-encrypt sandwich. We adopt the
Advanced Encryption Standard (AES), a symmetric key encryption algorithm
for our encryption and decryption.

3.1 Our Threat Model

In this section, we describe and discuss our threat model. We first present our
security goals. Then, we list the capabilities that our adversary has. Finally,
we describe the root of trust, which specifies the components that we assume

to be trusted.

Security Goals In our work, we will formally verify that our Alcatraz imple-
mentation is resistant to timing-based side channel attacks (i.e., does not leak
sensitive information through timing-based side channels). More specifically,

e It should not leak sensitive data through architectural states and/or timing-
based microarchitectural side channels.

e Any secure instruction should not leak sensitive data through microarchi-
tectural states and/or I/O signals.

Attacker Capabilities In this work, our adversary aims to gain information
about sensitive information (plaintexts) in polynomial time. We assume that
our adversary possesses the following capabilities:

e The attacker can observe and/or change digital signals outside Alcatraz,
including signals in the Alcatraz’s wire-level I/0O.

e The attacker can run any program (including malformed ones) on Alca-
traz.

e The attacker can measure and analyze program execution time via precise
timers [17].

At the same time, we also assume that our adversary does not have the
following capabilities:

e The attacker cannot read and/or change the intermediate states in
Alcatraz (i.e., states within Alcatraz that are not part of the I/0), as well
as the physical characteristics of the chip.

e The attacker cannot use physical side channels such as electromagnetic
radiation [2], temperature [24], or power [37].

Root of Trust Our work assumes that the hardware manufacturer and Al-
catraz’s ALU can be trusted. This means we assume the initial private key is
secure and the circuit is correctly made. Everything else (e.g., software) could
potentially be compromised.

3.2 Utilizing Secure Enclaves

The blueprint of Alcatraz is based off secure enclaves like the Trusted Platform
Module (TPM). Currently, many solutions using TPMs have been developed to
combat microarchitectural side channel attacks. Designated TPM coprocessors
are used to store the corresponding private keys.

These TPMs have the basic cryptographic actions such as encryption, signa-
tures, hashing (this is known as lightweight cryptography), as well as a hardware
random number generator that is used for key generation. It can also generate
a report of its hardware and software, bind information, and “seal” information,
giving TPM its attestation abilities.

In return for a wide variety of usage, however, TPMs require a relatively
large trusted area. As it turns out, they are still vulnerable to side-channel
timing attacks [40] and man-in-the-middle attacks [46, 16].

To enhance security, we adopt the recently developed sequestered encryption
(SE) method [55], which has been shown to be much more efficient than Fully
Homomorphic Encryption (FHE) [44].

The objective of homomorphic encryption is to enable operation on cipher-
texts in untrusted environments. Although FHE can directly operate on sensi-
tive data without ever decrypting them, it is not computationally efficient given
the current implementations [4]. An FHE add operation can take thousands of
clock cycles to complete [3]. In contrast, with Alcatraz, operations are done on
plaintexts in a trusted circuit.

3.3 Proving Security

To fully prove wire-level security against our adversary, we utilize a new frame-
work, Knox. Introduced by Athalye et al. [8], it can be used on Hardware
Security Modules (HSMs). Given an HSM’s circuit and specification, Knox can
verify the functional correctness of the circuit, as well as formally verify that
it has no timing-based leakage. They consider a powerful adversary that has
direct access to the wire-level input/output of the HSM, with the ability to set
logic levels on the input wires and read logic levels on the output wires at every
clock cycle.

Gate-level abstraction and wire-level security In Knox, we abstract cir-
cuits to the gate-level. Compared with the register transfer level (i.e. the level
where Hardware Description Languages such as Verilog operates in), the gate
level abstraction is closer to a circuit’s actual physical layout. Knox is capable
of proving an HSM is secure regardless of the wire-level input the HSM receives,

hence wire-level security.

Athalye et al. [8, 9] introduces the concept of Information-Preserving Refine-
ment (IPR), which is that a given HSM circuit implements its provided specifi-
cations and leaks no further information through wire-level behavior. The goal
of IPR is to establish an equivalence between the physical implementation and
specification through a driver (for the implementation) and an emulator (for the
specification).

To prove IPR, Knox models the specification and implementation as state
functions, relates the two state functions with a refinement relationship, and
proves three properties of the relationship: functional equivalence, physical
equivalence, and initialization.

Physical equivalence and timing side-channel in HSM For a hardware
security module, all it exposes to the host computer (and any potential attack-
ers) are its input/output wires. Thus the behavior of the HSM’s I/O wires
should capture any timing channel at a cycle-accurate level. Athalye et al. [§]
show that if the physical equivalence can be established between an HSM’s cir-
cuit and an emulator (on top of the specification), it implies the circuit doesn’t
have timing side-channels.

For the authenticated key exchange, we use the already-verified ECDSA
signature generator [9] and the authenticated exchange scheme from [45].

We create a specification of our circuit according to the NIST FIPS 197
standard of AES. Utilizing this specification and a Verilog description of our

circuit, we can use the Knox framework to formally verify wire-level security.

4 Our Solution: Alcatraz

Here, we look at the contributions our solution, Alcatraz, brings.

4.1 Security Properties at the Wire-Level

The original works on SE [12, 55] did its security verification at the register-
transfer level (RTL). Among the common hardware abstraction levels in digital
circuit design, RTL is often where the high level circuit design is done. On the
other hand, RTL is a leaky abstraction of the physical circuit, and there could
be side channels not captured by a RTL description of the hardware, and thus
can never be detected with a RTL security proof.

10

When developing a security proof for Alcatraz, we chose to use a recently
introduced framework, Knox [8] from section 3.3, which is built upon the no-
tion of “Information-Preserving Refinement” (IPR). The proof’s goal is to show
that, when observing its output or manipulating its input, the circuit’s behav-
ior doesn’t leak more information than indicated by its functional specification.
As a consequence, security proofs constructed in the Knox framework can ver-
ify at the wire-level that a circuit is correct and does not have any security

vulnerabilities such as the timing side channel.

Wire-level security Wire-level security proof shows that for a circuit, re-
gardless of what an adversary can do with I/O wires, no sensitive information
is leaked.

Advantages Wire-level security presents multiple advantages over RTL-level
security. Wire-level security can detect bugs present on the wire-level, such as
DFT (design for test) bugs in gate-level simulation (GLS). However, RTL-level
security proof cannot detect such problems because they happened below RTL’s

abstraction level.

4.2 Architecture

Local :emote \

Computer Computer Alcatraz
A Hardware Security Module for Sequestered
Encryption with Security Proven at the Wire Level

o) o) o o)
= =5 S] ° 20 = (o]
B AES E s _| AES B e B g Se
§ Encryption § § Decryption § 1 % 1 §g e §g

(]

4 2 2 %

||

Figure 2: Architecture of Alcatraz.

We implemented Alcatraz as an “encrypted” ALU attached to the “execute”
stage of the CPU pipeline on a computer. (Figure 2). When a user wishes

11

to use Alcatraz to perform secure computation remotely, they use a special
instruction that tells the CPU that there is sensitive information involved. The
CPU of the remote computer then re-directs that instruction to the encrypted
ALU. On the other hand, instructions that are considered non-sensitive can
be directed to the regular ALU. When the instruction is executed, ciphertext
will be sent into Alcatraz, along with an operation selector telling the HSM
which operation should be performed on the ciphertext. Once decrypted, the
plaintext is operated on, then the resulting plaintext will be encrypted before
exiting Alcatraz.

4.3 Key Provisioning

In our paper, we use AES, a symmetric key encryption algorithm, as our en-
cryption/decryption engines. This allows for faster encryption times than using
public/private key encryption, which is critical because every operation that
uses our ALU will have to go through a decryption and encryption operation.
This will help reduce the latency of operations in Alcatraz.

In order to perform AES, we require a common key that is known by both
parties. In order to obtain a common key without relying on a trusted out-of-
band communication channel, we use an authenticated key exchange protocol.
One suitable protocol is the signed Diffie-Hellman key exchange [27]. We use the
protocol designed by Pan et al. [45] (Figure 4), which has additionally proven
tight security of the scheme.

For the digital signature involved, we use elliptic curve cryptography (ECDSA),
whose security has been verified by Athalye et al. [9]. We combine ECDSA with
the authenticated Diffie-Hellman key exchange by Pan et al. [45] to securely
create a common secret key for AES. This allows us to securely bring a key into
Alcatraz without additional external sources of trust.

The shared value SV = (pkru, pkusm, X, Y, 0ru, ousm) is something that
can be evaluated by both parties on their own. If a third party has compromised
the communication in some section, the shared value SV will not match up, and
the common secret will not match up, which means the remote user and Alcatraz
will be unable to communicate and have to re-initiate the key exchange protocol.

x is randomly chosen from field F & F
x is assigned the value V <V
ECDSA Digital Signature ECDSA(pk, z)

Figure 3: Notations used in Figure 4.

12

Remote User Alcatraz

e EF X =" yEF Y =gv
(X,orU)
ORU ECDSA(S]{IRU, X) —
(Y,ousm

OHSM < ECDSA(SkHSM, (X, Y))
Sru = H(SV,Y?) Susm = H(SV, XV)

Figure 4: Scheme proposed by Pan et al. [45] using ECDSA.

To avoid sharing a secret every time Alcatraz is called, for every user, we
generate one shared secret and save it. This allows us to reuse the secret with
that one user, making authenticated key-exchange a one-time operation and
lowering computation costs.

4.4 Implementation

We implemented Alcatraz as a circuit on FPGA, using Verilog hardware descrip-
tion language. We also wrote a functional specification of Alcatraz in Racket.
We used Yosys’ SMT-LIBv2 backend [51] to compile Alcatraz’s circuit into an
SMT file, which was then converted by #lang yosys [7] into a Rosette model.
Along with that, we also wrote our own driver and emulator to run in Knox for
verification.

To implement AES, we based both the specification and hardware imple-
mentation on the NIST FIPS 197 standard of AES [43]. Our implementation
focuses on AES-128 (i.e. key length is equal to 128 bits). It is straightforward
to extend our implementation to other key lengths.

4.4.1 Hardware Circuit

AES-128 is based on three core subfunctions, which are Encipher, Decipher, and
KeyExpansion. At a high level, our implementation of the whole AES circuit
consists of three Verilog submodules, each corresponding to one of the subfunc-
tions. For the ease of exposition, we do not distinguish between the two terms
(submodule vs subfunction) when describing our implementation.

We implement each subfunction as a finite state machine (Figure 5) so that
we can create state-dependent hints to speed up proofs (see Section 4.4.4).
Specifically, we introduce two state variables, state and next_state, where
next_state tells the FSM what the next state is. We use the same idea for all
other variables we need to keep track of, like input/output and the result_ready

wire.

13

Round result Round result Round result
Enable ready ready ready
= False =False = False =False

Round result
ready
=True

Round result
ready
Final =True Result
- Round Ready

Figure 5: Finite State Machine of the AES encipher module.

Enable
=True

For example, in Encipher we always start the FSM from the IDLE state,
where the circuit’s output is reset to 0 (Figure 5). While in this state, we keep
checking the enable input wire at each clock cycle, and stay in the IDLE state
as long as enable is false. When enable is set to true, we will move the FSM
to “Round 17. In this state, we call a subfunction OneRound, whose inputs we
feed based on the round number and previous results.

Once OneRound updates the wire round_result_ready to true, we take the
result immediately and record it in a register. This is necessary because the
valid result is only kept on the output wire for one clock cycle. After that,
round result_ready is set to false and the result is erased by OneRound. In
Encipher, each round’s calculation is based on the result from the last round,
thus each round’s result must be saved for later use.

We repeat this for every state until we reach the final round (the 10-th
round for AES-128). Once we complete the final round, we set result_ready
(of Encipher) to true. Similar to OneRound, the wire result_ready is only set
to true for one clock cycle, and the valid result is only maintained for one cycle
before getting wiped. As such, Encipher must take the result and save it in a
register during the clock cycle so the result (the ciphertext) can be sent back to
the user.

Furthermore, rather than executing the three subfunctions in order, due
to the expensiveness of KeyExpansion, we can simply store the expanded key
along with the shared secret, and have both Encipher and Decipher use the
stored expanded key as shown in Figure 6. Furthermore, if the same key is
re-used multiple times (e.g., if a user uses Alcatraz multiple times), then the
KeyExpansion function does not need to be re-evaluated called multiple times;
instead we can directly look it up.

14

key Key Expansion
» Module

A b, 4

AES Decipher Computation AES Encipher
Module " Modute Module output
operands operation

Figure 6: Organization of Alcatraz Circuit. In addition to the inputs shown, all
modules have a clock and an enable input.

Pipelining To enhance performance, we pipeline both the Encipher and Decipher
module according the states in Figure 5, for a total of 20 stages.

4.4.2 Functional Specification

In our functional specification, we implemented the Galois Field multiplication
as lookup tables. This is because the polynomial division was too time costly,
so we precomputed the necessary multiplications and hard-coded them as ta-
bles. This is equivalent to doing the GF(256) multiplication, which does not
impact the validity of the specification. We then implemented the OneRound
and InvOneRound as recursive functions with a counter. When the counter hit
10, the number of rounds in AES-128, the function would then return the re-
sult to the parent function. All our specifications are tested with unit tests in
Racket.

4.4.3 Automated Verification of Correctness and Security

To verify the correctness of our hardware implementation, we created a small
program in Knox (the driver) that calls the hardware to perform operations
defined in the specification. Then we used Knox to verify that the output from
the driver (on top of the hardware) cannot be distinguished from the output
from the specification (“functional equivalence”).

To verify the security of our hardware implementation, we created another
small program in Knox (the emulator) that calls the specification to mimic wire-
level behavior of the hardware. Then we used Knox to prove that the output
from the emulator (on top of the specification) cannot be distinguished from
the output from the hardware (“physical equivalence”).

15

(ite* (- (bvea (bv #x00 8) (extract 23 16 k$cef..)) (bv #x63 8))
(- (pw\ggg (bv #x01 8) (extract 23 16 k$cef..)) (bv #x7c 8))
(- (bvea (bv #x02 8) (extract 23 16 k$cef..)) (bv #x77 8))
(+ (bvea (bv #x03 8) (extract 23 16 k$cef..)) (bv #x7b 8))

) o))

-ee Fee Fee Fee

bveqo.”bv#xesal |bveqln||bv#x7cﬁ| |bveqoo||bv#x778| |bveqoo||bv#x7b8|

| bv #x00 8 | |extract 23 16 kScef.. | | bv #x01 BI |extract 23 16 k$cef.. | | bv #x02 BI |extracl 23 16 k$cef.. I I bv #x03 Bl Iextract 23 16 k$cef.. |

Figure T7: (above) Symbolic term representing a register holding the value
sbox [key[23:16]1]. (below) the expression tree for the same symbolic term, where
four of the 256 subtrees are shown.

In either case, Knox will need to symbolically simulate the circuit and keep
track of its state over time. Based on the symbolic states, Knox formulates the
logical assertions for functional equivalence and phsyical equivalence, and then
invokes Rosette, which ultimately calls the Z3 SMT prover, to prove that the
assertions hold.

A circuit’s symbolic state can be thought of as the collection of current
contents of all its registers and wires, represented as symbolic terms. As an
example, Figure 7 shows the symbolic state of a register, where the symbolic
expression corresponds to sbox [key[23:16]], i.e. using the second byte of the
key as an index for the S-box.

In Figure 7 the free variable k$cef.. represents the content of the input
wire k (the key) at a specific clock cycle. The symbolic term for indexing into
the sbox array is

(ite* (F conditionl valuel) (F condition2 value2) ...)

which is similar to the switch statement in C++. When represented as an
expression tree, the ite* node will have 256 subtrees because k$cef.. may
take 1 of the 256 possible values (0x00 to 0xff). As another example, the
output of the key expansion module is represented as a symbolic term whose
free variables correspond to either the module’s inputs or some internal registers.

4.4.4 Speeding Up Proofs with Hints

When a circuit gets more complicated, so too does the symbolic terms capturing
its states. Consequently, the size of these terms may blow up, which makes it

16

increasingly slow to check assertions about these terms. This is especially true
in circuits whose registers depend on each other over many clock cycles.

As an example, the symbolic term for the key expansion module output
corresponds to a tree of more than 1 million nodes, where a node is either
ite* or some bit vector operation (e.g. extract for taking a subvector, or
bvxor for computing the bitwise xor of two vectors). Even with an automated
prover, it becomes very inefficient to directly compare expressions of such size
and verify the functional and phsyical equivalence. In fact, when running on a
Macbook Pro M2 computer, the Z3 prover cannot finish the correctness proof
after running for 4 hours due to the huge term size.

One way to improve the efficiency of the proofs is to utilize additional in-
formation about the symbolic terms’ structure and dependencies. In the Knox
framework, Athalye et al. [8] introduce a concept of “hints”, which help speed
up verification. Hints are designed to be untrusted, so at worst if a hint is
incorrect the automated prover will fail to complete the proof. If the hints are
correct but insufficient, the verification process may still take a long time. In
any case, adding hints will not lead to an incorrect proof.

Among the eight types of hints provided in Knox, we used the following six
in our proofs:

e CONCRETIZE is a hint suggesting a symbolic term may be proved to have
a concrete value. If successfully proved, the said term will be replaced
by a concrete value. Otherwise, for example when a term depends on
other symbolic terms whose values are unknown, then the term will stay
unchanged. This hint is helpful in concretizing values that are already
known by the prover, but still expressed as symbolic terms.

e CASE-SPLIT is a hint that separates a symbolic term into possible cases.
This allows for possible concretization of the symbolic term, which may
help reducing the term size. One example is we applied CASE-SPLIT on
the enabling wire to splits into two cases (en=0 or en=1), followed by a
CONCRETIZE hint on the same wire. As a result, we can eliminate en from
all subsequent states.

e REPLACE is a hint to replace a complicated term with a simplified term (if
the prover can prove they are equivalent).

e REMEMBER, SUBSTITUTE, and CLEAR allow us to temporarily abstract away
a register and later substitute back it’s original term.

Furthermore, we created proof “tactics” based on the state of the FSM of
the circuit. A tactic is a snippet of Knox code that invokes some hints and/or
updates auxiliary data structures used by hints.

17

When writing the tactics, the idea is to instruct Knox to abstract away the
registers (via REMEMBER) before each clock cycle (i.e. treating them as a black
box instead of a complicated term), so the prover only needs to focus on the
register operations happen within the cycle. Thus, the prover only has to prove
a simpler assertion. After a clock cycle is finished, the tactics will instruct Knox
to either restore the register’s symbolic term (via SUBSTITUTE), or replace it
with a simpler yet equivalent term (via REPLACE). We write our tactics to be
aware of the FSM state, because these hints rely on the FSM states to know
which register to replace or substitute.

Finally, we observed the prover can still be slow even after adding hints and
tactics, and it was due to the order of operations in our specification differing
too much from that in the circuit. Based on this finding, we carefully write our
specification so that the order of operations in the specification closely align
with that in the circuit.

With our optimizations, our final proof was able to complete under 1 minute,
a speed up of at least two orders of magnitude.

5 Evaluation

We evaluated the performance of Alcatraz in an important class of secure remote
computation problems, Private Information Retrieval.

5.1 Private Information Retrieval

A Private Information Retrival (PIR) protocol is a cryptographic protocol that
allows a user to retrieve a specific item from databases without revealing to the
server any information on which item is being retrieved, ensuring that the user’s
query remains private from the database server [14, 30]. PIR protocols are a
fundamental building block for larger privacy-ensuring schemes such as oblivious
transfer [23], secret sharing schemes [11], certificate transparency [36, 49], and
password-breach alerting [33, 56]. More recently, Colombo et al. [15] introduced
the first authenticated multi-server PIR scheme, ensuring the security of the
user as long as at least one server is honest. Corrigan-Gibbs and Kogan [18]
also devised a scheme to allow for sub-linear database lookups without sacrificing
server-side storage requirements.

For our project, we implemented a single-server PIR scheme using Alcatraz.

18

5.2 Evaluation Setup

We follow the common practice to represent PIR queries in one-hot encoding.
To perform retrieval, each bit in the query is multiplied with the corresponding
entry in the database (i.e. the first query bit is multiplied with the first entry,
etc), and the resulting products are all summed together to produce the final
answer. Note that we do not need to worry about overflow because only one of
the (decrypted) query bits is set to 1.

To ensure security, queries are encrypted by AES128 before leaving the client.
All the above-mentioned multiplication and summation operations are carried
out in an encrypted ALU on the server.

In our implementation, we integrated the encrypted ALU with an Ibex RISC-
V core [21] and a pipelining vector coprocessor (Vicuna) [47].

Parallel Processing To take advantage of data parallelism, we integrated
the encrypted ALU with Vicuna to utilize its support of vector registers, where
each register is set to the max supported width of 2048 bits.

We added two types of custom RISC-V instructions to perform encrypted
ALU computation:

e sumprod(k) vd, vi, v2
e sumall(k) vd, vi, v2

The main idea is to store 16 128-bit ciphertexts per register, which allows
us to perform sum-of-16-products in one instruction. It also allows us to add 32
ciphertexts in one instruction, giving us a massive improvement in performance.
The definitions for the custom instructions are given in Algorithms 1 and 2.

19

Input:
k: an integer (0 < k < 128), specifying which 16-bits of v1 to process
v1: the i-th, ..., (i +2047)-th bits of the query (encrypted in AES128)
v2: 16 blocks of 128-bit plaintext (the j-th, ..., (j + 15)-th entries of
the database), to be multiplied with the query bits
Output:
write encrypted sum of products to (k mod 16)-th 128-bit block in vd

m=k >> 3;
n =k & 0bl111 ;
p =k & 0b1111 ;

/* get the m-th ciphertext */

c =vim*128:mx* 128 + 127];

d = Decryptagsizs(c);

/* perform sum-of-product operation between 16 query bits and 16
entries */

8 e =d[n*16]*v2[0:127] 4+ ... + d[n* 16 + 15] * v2[1920 : 2047];

9 vd[p * 128 : p* 128 + 127] = Encryptagsizs(e);

B = R L A A

Algorithm 1: sumprod(k, v1, v2): calculate the sum of products be-
tween 16 bits of the encrypted query vector (v1) and the corresponding
16 database entries (v2). k specifies which 16 bits of the query to process,
and what location in vd to write the output. v1 and v2 are passed in
registers. k is encoded in funct7, a 7-bit field in the RISC-V instruction
format.

Input:
k: an integer (0 < k < 16), specifying the output location in vd
v1: 16 blocks of 128-bit data (encrypted in AES128)
v2: 16 blocks of 128-bit data (encrypted in AES128)
Output: encrypted sum of all 32 blocks to k-th 128-bit block in vd
1 for i =0...15do
2 d; = Decryptagsizs(vi[(i*128) : (i x 128) 4 127]);
5 | es = Decryptapsizs(v2(i +128) : (1 128) + 127]);
4 end
5 f=do+ ... +dis +eo+ ... + €5
6 vd[k x 128 : p x 128 + 127] = Encryptagsizs(f);

Algorithm 2: sumall(k, v1, v2): calculate the sum of 32 128-bit blocks
(16 from v1 and 16 from v2). Inputs are encrypted by AES128. k is
encoded by 4 bits in funct7, a field in the RISC-V instruction format.

20

Our PIR algorithm Using the new instructions, we can perform PIR by
computing sum of products between the query vector and the database entries,
and outputting the final (encrypted) sum, which is the retrieved entry.

We assume the database has k entries, where k is a multiple of 2048. (If
not, we can pad it by adding extra dummy entries.) For clarity, our algorithm
assumes each database entry is a 128-bit data block. For databases where each
entry has m 128-bit blocks, we perform the same algorithm m times, each time
outputting the i-th (0 < i < m) encrypted block of the final answer.

sumall

N

log,,(k)
levels
sumall sumall
32 ciphertexts M
sumprod sumprod sumprod
d, d, Gl an d,, dy, d1o o a
9 9, 95 96 947 931 Q16 | | Duers P

Figure 8: Computation tree for the PIR algorithm. qo, ..., gx—1 represents bits in the
query. do, ..., dx—1 represents the entries in the database, where each entry is a 128-bit
block.

Reducing pipeline stalling Our integration includes a modified instruction
decoder in the pipelining vector coprocessor, which dispatches the custom in-
structions to the encrypted ALU. Through experimentation, we identified two
default configuration settings that caused unnecessary pipeline stalling:

e The eXtension Interface between the main core (Ibex) and the coprocessor
(Vicuna) allowed only 8 outstanding instructions.

e Vicuna’s own instruction queue also allowed only 8 outstanding instruc-
tions.

We increased both settings from 8 to 16, and observed improved pipeline uti-
lization (cycle-per-instruction for encrypted instruction improved by 4.3%).

21

5.3 Benchmark

We compare our implementation to the state-of-the-art FHE implementations
for several PIR tasks[38]. We implemented PIR algorithm in C and inline
assembly, and ran the benchmark in the Verilator simulator [52]. We measured
the performance by taking advantage of Ibex’s built-in performance counter to
obtain the clock cycle counts. To estimate the actual time, we assumed our
hardware running at a clock frequency of 667 MHz, shown to be achievable for
AES on FPGA by Lee et al. [32].

Our benchmark includes three datasets whose sizes are the same as those
described in [38] (Table 2). Our results show that Alcatraz achieves up to 21.3x
speedup in computation time over the current state-of-the-art FHE-based PIR

protocol.
Database size | Entry size | Computation time (s) | Speedup
(entries) Spiral [38] | Alcatraz
Dataset 1 220 2568 0.85 0.040 21.3x
Dataset 2 2'8 30KB 8.99 1.174 7.66x
Dataset 3 21 100KB 2.38 0.245 9.71x

Table 2: Comparison of Alcatraz with SpiralStream [38] for Single-Server Private
Information Retrieval

6 Conclusion

Microarchitectural side-channel attacks enable an adversary to gain information
about sensitive data. These attacks have been shown to recover secrets such as
RSA private keys. Hardware bugs and vulnerabilities exploited in such attacks
are difficult to detect and prevent, yet they are increasing important because
more and more computing is happening remotely in the cloud.

In this paper, we assume a threat model where a powerful adversary has
all but physical access to a remote computer. Under this model, we introduce
Alcatraz as a solution to secure remote computation. The central piece is a
secure ALU which is sandwiched between a decryption step and an encryption
step. All sensitive data remain encrypted when they are outside the secure
ALU. When performing computations, sensitive data enter the secure ALU as
encrypted ciphertext, and the computation results are encrypted before leaving
the secure ALU.

We have verified that Alcatraz is secure at the wire-level. In particular, we
verified an AES implementation in Verilog, as well as our minimal arithmetic

22

logic unit. Furthermore, Alcatraz brings in the encryption key needed by AES
via an authenticated key exchange using ECDSA. The key provisioning process
reduces the need for trust in an outside channel for a shared secret. The secure
ALU, combined with key provisioning, allows us to create a chip that can add
secure remote computation capabilities to existing computers.

We implemented a single-server PIR task using Alcatraz. We utilize the full
2048-bit registers allowed in the Vicuna coprocessor to increase parallelization.
We managed to achieve a 7x to 21x speedup when compared to current state-
of-the-art FHE implementations.

7 Acknowledgements

This work was done in the MIT PRIMES research program. I want to thank
Slava Gerovitch and Srini Devadas for creating opportunities in the MIT PRIMES
CS program. I also thank my mentors, Sacha Servan-Schreiber and Jules Drean,
both from MIT CSAIL, for their guidance over the past three years.

I also would like to thank Anish Athalye for helping me with the details of the
Knox framework, Thomas Bourgeat for helping with my questions on computer
architecture, and Stella Lau for helping with my questions about power-based
side channels.

References

[1] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey
on homomorphic encryption schemes: Theory and implementation. ACM
Computing Surveys (Csur), 51(4):1-35, 2018.

[2] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Ro-
hatgi. The EM side-channel(s): Attacks and assessment methodologies. In
Cryptographic Hardware and Embedded Systems-CHES 2002: 4th Interna-
tional Workshop Redwood Shores, CA, USA, August 15-15, 2002 Revised
Papers 4, pages 29-45. Springer, 2003.

[3] Rashmi Agrawal, Lake Bu, Alan Ehret, and Michel A Kinsy. Fast arith-
metic hardware library for rlwe-based homomorphic encryption. arXiv
preprint arXiw:2007.01648, 2020.

[4] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan Xiao, Matsumura
Kazuaki, and Aung Khin Mi Mi. Multi-GPU design and performance eval-
uation of homomorphic encryption on GPU clusters. IEEE Transactions
on Parallel and Distributed Systems, 32(2):379-391, 2020.

23

[5]

Alejandro Cabrera Aldaya, Cesar Pereida Garcia, Luis Manuel Alvarez
Tapia, and Billy Bob Brumley. Cache-timing attacks on RSA key genera-
tion. Cryptology ePrint Archive, 2018. URL https://eprint.iacr.org/
2018/367.

Naseer Amara, Huang Zhiqui, and Awais Ali. Cloud computing security
threats and attacks with their mitigation techniques. In 2017 International
Conference on Cyber-Enabled Distributed Computing and Knowledge Dis-
covery (CyberC), pages 244-251. IEEE, 2017.

Anish Athalye, Adam Belay, M Frans Kaashoek, Robert Morris, and Nick-
olai Zeldovich. Notary: A device for secure transaction approval. In Pro-

ceedings of the 27th ACM Symposium on Operating Systems Principles,
pages 97-113, 2019.

Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich. Verifying hard-
ware security modules with Information-Preserving refinement. In 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22), pages 503-519, Carlsbad, CA, July 2022. USENIX Association.
ISBN 978-1-939133-28-1. URL https://www.usenix.org/conference/
osdi22/presentation/athalye.

Anish Athalye, Henry Corrigan-Gibbs, Frans Kaashoek, Joseph Tassarotti,
and Nickolai Zeldovich. Modular verification of non-leakage for hardware
security modules with parfait. In SOSP 202/, 2024. to appear.

Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Handbook
of model checking, pages 305343, 2018.

Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share conver-
sion and private information retrieval. In 2012 IEEE 27th Conference on
Computational Complexity, pages 258-268. IEEE, 2012.

Lauren Biernacki, Meron Zerihun Demissie, Kidus Birkayehu Workneh, Fit-
sum Assamnew Andargie, and Todd Austin. Sequestered encryption: A
hardware technique for comprehensive data privacy. In 2022 IEEE Inter-
national Symposium on Secure and Private Execution Environment Design
(SEED), pages 73-84, 2022. doi: 10.1109/SEED55351.2022.00014.

Joppe W Bos, J Alex Halderman, Nadia Heninger, Jonathan Moore,
Michael Naehrig, and Eric Wustrow. Elliptic curve cryptography in prac-
tice. In Financial Cryptography and Data Security: 18th International
Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised
Selected Papers 18, pages 157-175. Springer, 2014.

24

https://eprint.iacr.org/2018/367
https://eprint.iacr.org/2018/367
https://www.usenix.org/conference/osdi22/presentation/athalye
https://www.usenix.org/conference/osdi22/presentation/athalye

[14]

[15]

[16]

[18]

[22]

[23]

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private
information retrieval. Journal of the ACM (JACM), 45(6):965-981, 1998.

Simone Colombo, Kirill Nikitin, Henry Corrigan-Gibbs, David J Wu, and
Bryan Ford. Authenticated private information retrieval. In 32nd USENIX
security symposium (USENIX Security 23), pages 3835-3851, 2023.

Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the
middle attacks. IEEE communications surveys & tutorials, 18(3):2027-
2051, 2016.

Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sut-
ter. Practical mitigations for timing-based side-channel attacks on modern
x86 processors. In 2009 30th IEEE symposium on security and privacy,
pages 45-60. IEEE, 2009.

Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval
with sublinear online time. In Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, pages 44—75. Springer,
2020.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337-340. Springer, 2008.

Whitfield Diffie, Paul C Van Oorschot, and Michael J Wiener. Authentica-
tion and authenticated key exchanges. Designs, Codes and cryptography, 2
(2):107-125, 1992.

Islam Elsadek and Eslam Yahya Tawfik. RISC-V resource-constrained
cores: A survey and energy comparison. In 2021 19th IEEFE International
New Circuits and Systems Conference (NEWCAS), pages 1-5, 2021. doi:
10.1109/NEWCAS50681.2021.9462781.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing,
pages 169-178, 2009.

Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting
data privacy in private information retrieval schemes. In Proceedings of the
thirtieth annual ACM symposium on Theory of computing, pages 151-160,
1998.

25

[24]

[25]

[28]

[29]

[30]

Michael Hutter and Jorn-Marc Schmidt. The temperature side channel and
heating fault attacks. In Smart Card Research and Advanced Applications:
12th International Conference, CARDIS 2013, Berlin, Germany, Novem-
ber 27-29, 2013. Revised Selected Papers 12, pages 219-235. Springer, 2014.

Mostefa Kara, Abdelkader Laouid, Muath AlShaikh, Ahcéne Bounceur,
and Mohammad Hammoudeh. Secure key exchange against man-in-the-
middle attack: Modified Diffie-Hellman protocol. Jurnal Ilmiah Teknik
Elektro Komputer dan Informatika, 7(3):380-387, 2021.

Elmira Karimi, Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A timing
side-channel attack on a mobile GPU. In 2018 IEEE 36th International
Conference on Computer Design (ICCD), pages 67-74. IEEE, 2018.

Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy, Second Edition. Chapman & Hall/CRC, 2nd edition, 2014. ISBN
1466570261.

Christoph Kern and Mark R Greenstreet. Formal verification in hardware
design: a survey. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 4(2):123-193, 1999.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. Com-
munications of the ACM, 63(7):93-101, 2020.

Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Sin-
gle database, computationally-private information retrieval. In Proceedings
38th annual symposium on foundations of computer science, pages 364-373.
IEEE, 1997.

Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security
of authenticated key exchange. In International conference on provable
security, pages 1-16. Springer, 2007.

Useok Lee, Ho Keun Kim, Young Jun Lim, and Myung Hoon Sunwoo.
Resource-efficient fpga implementation of advanced encryption standard.
In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1165-1169. IEEE, 2022.

Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and
Thomas Ristenpart. Protocols for checking compromised credentials. In

26

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 1387-1403, 2019.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-
level cache side-channel attacks are practical. In 2015 IEEE symposium on
security and privacy, pages 605-622. IEEE, 2015.

Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yingian Zhang. A survey
of microarchitectural side-channel vulnerabilities, attacks, and defenses in
cryptography. ACM Comput. Surv., 54(6), jul 2021. ISSN 0360-0300. doi:
10.1145/3456629. URL https://doi.org/10.1145/3456629.

Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-client private
information retrieval. In International Conference on Financial Cryptogra-
phy and Data Security, pages 168-186. Springer, 2015.

Rita Mayer-Sommer. Smartly analyzing the simplicity and the power of
simple power analysis on smartcards. In International Workshop on Cryp-
tographic Hardware and Embedded Systems, pages 78-92. Springer, 2000.

Samir Jordan Menon and David J. Wu. SPIRAL: Fast, high-rate single-
server PIR via FHE composition. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 930-947, 2022. doi: 10.1109/SP46214.2022.9833700.

Daniel Moghimi. Downfall: Exploiting speculative data gathering. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 7179-7193,
Anaheim, CA, August 2023. USENIX Association. ISBN 978-1-939133-
37-3. URL https://www.usenix.org/conference/usenixsecurity23/

presentation/moghimi.

Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger.
TPM-FAIL: TPM meets timing and lattice attacks. In Proceedings of the
29th USENIX Security Symposium, 2020.

Ciara Moore, Mdire O’Neill, Elizabeth O’Sullivan, Yarkin Doréz, and Berk
Sunar. Practical homomorphic encryption: A survey. In 2014 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), pages 2792-2795.
IEEE, 2014.

Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homo-
morphic encryption be practical? In Proceedings of the 3rd ACM workshop
on Cloud computing security workshop, pages 113-124, 2011.

27

https://doi.org/10.1145/3456629
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi

[43]

[51]

[52]

National Institute of Standards and Technology (NIST). Advanced encryp-
tion standard (AES). Technical Report 197-updl, Department of Com-
merce, Washington, D.C.; 2001. URL https://doi.org/10.6028/NIST.
FIPS.197-updl.

Monique Ogburn, Claude Turner, and Pushkar Dahal. Homomorphic en-
cryption. Procedia Computer Science, 20:502-509, 2013.

Jiaxin Pan, Chen Qian, and Magnus Ringerud. Signed (group) Diffie-
Hellman key exchange with tight security. Journal of Cryptology, 35(4):26,
2022.

Bryan Parno. Bootstrapping trust in a “trusted” platform. In Proceedings
of the 3rd Conference on Hot Topics in Security, HOTSEC’08, USA, 2008.
USENIX Association.

Michael Platzer and Peter Puschner. Vicuna: A timing-predictable RISC-
V vector coprocessor for scalable parallel computation. In 33rd euromicro
conference on real-time systems (ECRTS 2021). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik, 2021.

Jonathan Rose, Abbas El Gamal, and Alberto Sangiovanni-Vincentelli. Ar-
chitecture of field-programmable gate arrays. Proceedings of the IEEE, 81
(7):1013-1029, 1993.

Mark D Ryan. Enhanced certificate transparency and end-to-end encrypted
mail. Cryptology ePrint Archive, 2013.

Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. Zombieload: Cross-
privilege-boundary data sampling. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS
19, page 753-768, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450367479. doi: 10.1145/3319535.3354252. URL
https://doi.org/10.1145/3319535.3354252.

David Shah, Eddie Hung, Clifford Wolf, Serge Bazanski, Dan Gisselquist,
and Miodrag Milanovi¢. Yosys+nextpnr: an open source framework from
verilog to bitstream for commercial FPGAs, 2019. URL https://arxiv.
org/abs/1903.10407.

Wilson Snyder. Verilator and systemperl. In North American SystemC
Users’ Group, Design Automation Conference, volume 79, pages 122-148,
2004.

28

https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.1145/3319535.3354252
https://arxiv.org/abs/1903.10407
https://arxiv.org/abs/1903.10407

[53]

[54]

[55]

[56]

[57]

Frangois-Xavier Standaert. Introduction to Side-Channel Attacks, pages
27-42. Springer US, Boston, MA, 2010. ISBN 978-0-387-71829-3. doi: 10.
1007/978-0-387-71829-3 2. URL https://doi.org/10.1007/978-0-387~
71829-3_2.

Jakub Szefer. Survey of microarchitectural side and covert channels, at-
tacks, and defenses. Journal of Hardware and Systems Security, 3(3):219-
234, 2019.

Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-
Baptiste Jeannin, Sharad Malik, and Todd Austin. Security verification
of low-trust architectures. In Proceedings of the 2028 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 945-959, 2023.

Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan,
Patrick Gage Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek,
Sarvar Patel, Dan Boneh, et al. Protecting accounts from credential stuff-
ing with password breach alerting. In 28th USENIX Security Symposium
(USENIX Security 19), pages 1556-1571, 2019.

Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a high resolution,
low noise, L3 cache side-channel attack. In Proceedings of the 23rd USENIX
Conference on Security Symposium, SEC’14, page 719-732, USA, 2014.
USENIX Association. ISBN 9781931971157.

29

https://doi.org/10.1007/978-0-387-71829-3_2
https://doi.org/10.1007/978-0-387-71829-3_2

	Introduction
	Our contributions

	Background
	Symmetric-key Encryption and Authenticated Key Exchange
	Field Programmable Gate Arrays (FPGAs)
	Microarchitectural Side Channels
	Homomorphic Encryption
	Formal Verification
	Satisfiability Modulo Theories
	Sequestered Encryption

	Overview
	Our Threat Model
	Utilizing Secure Enclaves
	Proving Security

	Our Solution: Alcatraz
	Security Properties at the Wire-Level
	Architecture
	Key Provisioning
	Implementation
	Hardware Circuit
	Functional Specification
	Automated Verification of Correctness and Security
	Speeding Up Proofs with Hints

	Evaluation
	Private Information Retrieval
	Evaluation Setup
	Benchmark

	Conclusion
	Acknowledgements

