
 Alcatraz: Secure Remote Computation via Sequestered
 Encryption in Minimally Trusted Hardware

 Albert Lu 1,2

 1 Phillips Exeter Academy, Exeter, NH, USA

 2 MIT PRIMES, Cambridge, MA, USA

 Instructors: Sacha Servan-Schreiber (MIT)*, Jules Drean (MIT)*

 * Current affiliation: Tinfoil, Inc. (https://tinfoil.sh)

Declaration of Academic Integrity

The participating team declares that the paper submitted is comprised of original research and
results obtained under the guidance of the instructor. To the team’s best knowledge, the paper
does not contain research results, published or not, from a person who is not a team member,
except for the content listed in the references and the acknowledgment. If there is any
misinformation, we are willing to take all the related responsibilities.

Names of team members:

Signatures of team members:

Name of the instructor

Signature of the instructor

Date

Albert Lu

August 24th, 2025

Sacha Servan-Schreiber, Jules Drean

Alcatraz: Secure Remote Computation via

Sequestered Encryption in Minimally Trusted

Hardware

Albert Lu

MIT PRIMES

August 24, 2025

Abstract

This paper introduces “Alcatraz,” a new architecture that enables se-

cure remote computation with minimal trust in the hardware. In Alcatraz,

sensitive data is always encrypted, except when it is inside a small, trusted

circuit, which is composed of an Arithmetic Logic Unit (ALU) gated by

a decryption and encryption engine. By design, the internal states of the

trusted circuit is inaccessible from any software, and unencrypted data is

never exposed outside the trusted circuit. Thus it is extremely di!cult

for any attacker to gain information about the sensitive data by observing

or attacking other parts of the processor and computer (e.g., registers or

caches), or by exploiting any microarchitectural side channels.

We implemented Alcatraz on a field-programmable gate array (FPGA),

and verified with a formal proof that the circuit is secure at the wire-level,

which is stronger than the register-transfer-level (RTL) security proved

previously. Wire-level verification has the benefit that it’s much closer to

the physical reality, i.e., the timing and level of signals on the wire, that

may be observed by attackers.

We apply Alcatraz to single-server private information retrieval and

estimate based on benchmark that Alcatraz achieves 7→ to 21→ speedup

when compared with the current state-of-the-art approach for private in-

formation retrieval.

1 Introduction

With the rapid development of cloud computing, increasingly large amounts of

information is being exchanged and processed on remote computers. However,

1

this trend has also brought about its own risks. Because cloud computing is

a shared resource, processing sensitive information in the cloud means that it

may be stolen by malicious attackers [6]. Any vulnerability in the hardware or

software can undermine the confidentiality of sensitive data.

Microarchitectural side channels are routes via which sensitive informa-

tion may leak. These “channels” exist because the hardware states below the

instruction-set architecture may become data dependent (e.g., timing di!erences

due to cache miss). Attackers can exploit these channels to learn about sen-

sitive information they otherwise do not have access to, or potentially obtain

the secrets outright. Microarchitectural side channel attacks pose threats to all

computing environments, and have been shown to compromise RSA private keys

[5]. There are even more attacks that take advantage of side-channels inside the

processor itself, such as cross-privilege data gathering [50] and speculative data

gathering [39].

A specific but common family of microarchitectural side channel attacks ex-

ploits timing di!erences in runtime. Numerous timing-based attacks are able

to exploit these minute di!erences to infer secret data [57, 34]. These tech-

niques can also be combined with other attacking techniques, such as transient

execution [29].

One approach to address these hardware vulnerabilities is to reduce the

attack surface and keep sensitive data within a small, trusted chip (a Trusted

Execution Environment). This technique has been applied to cryptography,

such as the use of TPMs (Trusted Platform Modules) [46]. Although Trusted

Execution Environments o!er improvement in security by isolating sensitive

operations within a secure enclave, they still require trusting a software and

hardware stack, which may be susceptible to exploitation. Indeed, it has been

demonstrated that TPMs still su!er from side-channel attacks [40].

Another approach to address these hardware vulnerabilities is Fully Ho-

momorphic Encryption (FHE) [22]. Fully Homomorphic Encryption allows a

computer to do direct computation on the ciphertext without ever decrypting

it. As a result, any potential leakage would still be encrypted, and thus not a

problem. However, FHE is too slow to be practical [1].

FHE TEE Alcatraz

Security Cryptographic Full hardware trust Minimal hardware trust

Vulnerable to side channels

E”ciency Slow Fast Fast

Expressivity Can only compute Can run arbitrary programs Can only compute

logical circuits logical circuits

Table 1: Comparison of approaches to secure remote computation.

2

Figure 1: Left: A Trusted Execution Environment (TEE) requires trusting a soft-

ware and hardware stack. Data residing in the untrusted hardware components (shown

in orange) are encrypted. They may become decrypted in the trusted hardware com-

ponents (shown in blue). Right: In contrast, our approach only requires trusting a

small circuit within the CPU execution pipeline stage. As a result, our approach has

much smaller attack surface than TEE.

In this work, we develop Alcatraz, which is inspired by both Trusted Ex-

ecution Environments and FHE, as a solution to secure remote computation.

Alcatraz is a new architecture, where we address microarchitectural side channel

attacks by restricting all non-encrypted sensitive data to a special Arithmetic

Logic Unit (ALU) gated by encryption engines. Any sensitive data outside this

ALU is always encrypted (Figure 1, Right). This means that as long as the

adversary1 does not have access to the internal states of the ALU, they will not

be able to infer any sensitive information.

Furthermore, we provide a formally verified proof that the special ALU is

secure against timing-based side channel attacks at the wire level. Our proof

rests on the fact that the behavior of the encrypted ALU’s input/output wires

completely captures any possible timing side-channels at a clock-cycle accurate

level.

Using the Knox framework [8], we verify that the behavior of the circuit’s

input/output wires doesn’t leak more information than what is described in the

specification, and thus is free of any timing leakage (see Sections 3.3 and 4.4.3

for more details).

Compared to the register-transfer-level proof by Tan et al. [55] for Sequestered

Encryption (SE), gate-level abstraction is closer to the circuit’s actual physi-

cal layout. This creates significantly larger expressions representing the circuit,

meaning that significant speedups are required to create a complete formal proof

of security (see sections 4.1 and 2.7 for more details).

1For details on our threat model, see Section 3.1.

3

1.1 Our contributions

We build Alcatraz, a new architecture for secure computation, which is based

on sequestered encryption (SE) [12]. The idea of sequestered encryption is to

remove all sensitive plaintext values from architectural and microarchitectural

states that could be potentially accessed by an attacker.

The central piece of our new architecture is a hardware module that can

perform arithmetic or logical operations on encrypted data. We provide a full

Verilog implementation of the hardware module.

Along with that, we also provide a proof of the hardware’s correctness and

security properties (i.e., free of timing side channels) at the wire-level. Our

proof is based on the concept of information-preserving refinement (IPR) and

the Knox framework of Athalye et al. [8]. We crafted e”cient proofs for the

correctness and security of our implementation.

We integrated Alcatraz with a RISC-V core [21] and a vector coprocessor

[47], and applied it to a private information retrieval [14, 30] task. We achieved

7→ to 21→ speedup against state-of-the-art FHE implementations [38].

2 Background

In this section, we cover some basic background knowledge for this paper.

2.1 Symmetric-key Encryption and Authenticated Key Ex-

change

In Alcatraz, we use symmetric-key encryption to protect sensitive data. In this

scheme, the same key is used for both encryption and decryption. It’s much

faster than asymmetric-key encryption scheme, but the challenge is that the

key needs to be known by both parties. To solve the problem, we look at an

authenticated key exchange, which allows two parties to agree on a common

key.

The Di”e–Hellman key exchange is a of establishing a shared secret between

two parties without revealing it. However, Kara et al. [25] notes that the Di”e–

Hellman key exchange is vulnerable to man-in-the-middle (MitM) attacks. To

combat these attacks, both parties have to send additional information to con-

firm that the original information has not been tampered with. This is called

authenticated key exchange [20, 31], which requires a public-key digital signa-

ture scheme, such as ECDSA [13].

4

2.2 Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays, or FPGAs, are circuits that can be repro-

grammed. They consist of programmable logic blocks connected by a commu-

nal grid, meaning they are very versatile. To achieve that versatility, FPGAs

sacrifice performance and thus may not be the best choice if a circuit’s design is

fixed and needs to run many times repeatedly [48]. For Alcatraz, we use FPGAs

as a prototyping platform (see Section 4.4).

2.3 Microarchitectural Side Channels

A microarchitectural side channel is a type of side channel where information

leaks through a hardware feature in the computer, especially through the micro-

architecture. For example, cache timing attacks take advantage of the significant

time di!erence between accessing a piece of data located in the cache versus

located in the main memory. Execution time, power supply/consumption, and

timing of memory accesses are all examples of microarchitectural side channels

(see also surveys in [54, 35]). The existence of side channels is usually due to the

existence of microarchitectural mechanisms that were created for performance

optimization (branch predictors, memory hierarchies, etc.)

Side channel attacks Side-channel attacks utilize these microarchitectural

side channels to get information. For example, if a program’s execution dura-

tion depends on the number of 1-bits in the secret key, then an adversary can

learn that information through measuring the program’s duration. Adversaries

can do similar things with power consumption attacks and electromagnetic side

channels [53].

These information leakages can give an attacker substantial information

which can aid them in recovering sensitive data such as a private key. For ex-

ample, Karimi et al. [26] show that timing-based side channel attacks can steal

encryption keys. In our work, we will mitigate all timing-based side channel

attacks.

2.4 Homomorphic Encryption

Homomorphic encryption is an encryption function E(x) with the special prop-

erty that allows for E(f(x, y)) to be computed based on E(x) and E(y), where

f is an arbitrary simple function of x and y. E must also follow the normal

properties of an encryption function, hiding the message from computationally-

bounded adversaries that do not have access to the secret key.

5

In homomorphic encryption, it is shown that the two fundamental oper-

ations, homomorphic addition and homomorphic multiplication, correspond to

XOR and AND operations in Boolean logic. Implementing these two operations

is su”cient to support fully homomorphic encryption [22].

Fully homomorphic encryption is sometimes considered the holy grail of

cryptography, as it could enable countless secure applications. Indeed, compu-

tation can be delegated to untrusted parties as sensitive data is never exposed

and always encrypted under the private key. As long as the private key is kept

safe, the data can never be stolen or extracted.

Feasibility Fully homomorphic encryption su”ces in an ideal world. How-

ever, in the real world, implementations are often too slow to be practical [42].

As such, many variants, (e.g., partially homomorphic encryption [41]) are de-

veloped, which are limited by the amount of multiplications they can perform.

2.5 Formal Verification

When cryptographic schemes are devised, there is usually a mathematical proof

that the scheme itself is secure. However, in the process of implementing the

scheme into actual code, there may be bugs that introduce side-channels, or

even errors in the implementation that could lead to security breaches.

In order to combat this, “formal verification” tools can be used. Formal ver-

ification tools make it possible to prove or disprove the correctness of a system’s

implementation, with respect to a previously-defined specification, using formal

methods and automated mathematical reasoning [28]. It proves that the code

correctly implement the system according to the specification. Furthermore, it

can be extended to show not only correctness but also security, and even resis-

tance against some side-channel attacks, like timing. In our work, we use the

Knox framework by Athalye et al. [8] to complete our formal verification.

2.6 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) analyzes the satisfiability of some formu-

las, given a background theory. This background theory fixes the meaning of

predicates and function symbols, such as <,+,↑. A satisfiability modulo theory

solver (e.g., Z3 by Microsoft [19]) contains many specialized solving algorithms

for specific background theories, which can be combined to determine the satis-

fiability of a Boolean formula [10]. When trying to verify a property in formal

verification, tools will often show it is equivalent to verifying the satisfiability

of an SMT formula. An SMT solver can then be used to verify the property

automatically.

6

2.7 Sequestered Encryption

Biernacki et al. [12] introduces the hardware technique called Sequestered En-

cryption. They assume an adversary that has complete software access, being

able to launch software attacks and compromise the operating system. However,

the adversary cannot launch physical attacks, like di!erential power analysis or

the “electron-microscope attack”.

This technique isolates the sensitive plaintext data into a small trusted hard-

ware unit, and also ensures no sensitive plaintext values exist in any software-

accessible architectural state, significantly reducing the attack surface an adver-

sary can reach. This trusted hardware unit is known as the “SE unit”.

Tan et al. [55] provides two implementations. First, they introduce a “state-

less atomic implementation”, which always sandwiches an operation with a de-

crypt and encrypt operation. However, the problem with that is that there

are many extraneous encrypt-decrypt pairs, which are not necessary and in-

crease the latency of operations. To combat this problem, Tan et al. introduces

SE-OPT, which is the stateful optimized implementation. To get rid of the ex-

traneous encrypt-decrypt pairs, they extend the SE unit to include a decryption

cache, which stores ciphertext-plaintext pairs. Specifically, when an instruction

is given to the SE unit, the ciphertext value is used to index the decryption

cache, which returns the corresponding decrypted plaintext (if it is present in

said decryption cache). If the ciphertext is not present, it is decrypted (as usual).

This design introduces short-term memory of recent decryption operations. No-

tice that decryption cache latency is dependent on the whether the ciphertext

is present or not, which is not a secret. That also upholds their security goals

related to timing-based side channels.

3 Overview

We develop “Alcatraz”, an architecture for secure remote computation with

minimal trust in the hardware. Within Alcatraz, the basic Arithmetic Logic

Unit (ALU) is a simple decrypt-operation-encrypt sandwich. We adopt the

Advanced Encryption Standard (AES), a symmetric key encryption algorithm

for our encryption and decryption.

3.1 Our Threat Model

In this section, we describe and discuss our threat model. We first present our

security goals. Then, we list the capabilities that our adversary has. Finally,

we describe the root of trust, which specifies the components that we assume

7

to be trusted.

Security Goals In our work, we will formally verify that our Alcatraz imple-

mentation is resistant to timing-based side channel attacks (i.e., does not leak

sensitive information through timing-based side channels). More specifically,

• It should not leak sensitive data through architectural states and/or timing-

based microarchitectural side channels.

• Any secure instruction should not leak sensitive data through microarchi-

tectural states and/or I/O signals.

Attacker Capabilities In this work, our adversary aims to gain information

about sensitive information (plaintexts) in polynomial time. We assume that

our adversary possesses the following capabilities:

• The attacker can observe and/or change digital signals outside Alcatraz,

including signals in the Alcatraz’s wire-level I/O.

• The attacker can run any program (including malformed ones) on Alca-

traz.

• The attacker can measure and analyze program execution time via precise

timers [17].

At the same time, we also assume that our adversary does not have the

following capabilities:

• The attacker cannot read and/or change the intermediate states in

Alcatraz (i.e., states within Alcatraz that are not part of the I/O), as well

as the physical characteristics of the chip.

• The attacker cannot use physical side channels such as electromagnetic

radiation [2], temperature [24], or power [37].

Root of Trust Our work assumes that the hardware manufacturer and Al-

catraz’s ALU can be trusted. This means we assume the initial private key is

secure and the circuit is correctly made. Everything else (e.g., software) could

potentially be compromised.

8

3.2 Utilizing Secure Enclaves

The blueprint of Alcatraz is based o! secure enclaves like the Trusted Platform

Module (TPM). Currently, many solutions using TPMs have been developed to

combat microarchitectural side channel attacks. Designated TPM coprocessors

are used to store the corresponding private keys.

These TPMs have the basic cryptographic actions such as encryption, signa-

tures, hashing (this is known as lightweight cryptography), as well as a hardware

random number generator that is used for key generation. It can also generate

a report of its hardware and software, bind information, and “seal” information,

giving TPM its attestation abilities.

In return for a wide variety of usage, however, TPMs require a relatively

large trusted area. As it turns out, they are still vulnerable to side-channel

timing attacks [40] and man-in-the-middle attacks [46, 16].

To enhance security, we adopt the recently developed sequestered encryption

(SE) method [55], which has been shown to be much more e”cient than Fully

Homomorphic Encryption (FHE) [44].

The objective of homomorphic encryption is to enable operation on cipher-

texts in untrusted environments. Although FHE can directly operate on sensi-

tive data without ever decrypting them, it is not computationally e”cient given

the current implementations [4]. An FHE add operation can take thousands of

clock cycles to complete [3]. In contrast, with Alcatraz, operations are done on

plaintexts in a trusted circuit.

3.3 Proving Security

To fully prove wire-level security against our adversary, we utilize a new frame-

work, Knox. Introduced by Athalye et al. [8], it can be used on Hardware

Security Modules (HSMs). Given an HSM’s circuit and specification, Knox can

verify the functional correctness of the circuit, as well as formally verify that

it has no timing-based leakage. They consider a powerful adversary that has

direct access to the wire-level input/output of the HSM, with the ability to set

logic levels on the input wires and read logic levels on the output wires at every

clock cycle.

Gate-level abstraction and wire-level security In Knox, we abstract cir-

cuits to the gate-level. Compared with the register transfer level (i.e. the level

where Hardware Description Languages such as Verilog operates in), the gate

level abstraction is closer to a circuit’s actual physical layout. Knox is capable

of proving an HSM is secure regardless of the wire-level input the HSM receives,

9

hence wire-level security.

Athalye et al. [8, 9] introduces the concept of Information-Preserving Refine-

ment (IPR), which is that a given HSM circuit implements its provided specifi-

cations and leaks no further information through wire-level behavior. The goal

of IPR is to establish an equivalence between the physical implementation and

specification through a driver (for the implementation) and an emulator (for the

specification).

To prove IPR, Knox models the specification and implementation as state

functions, relates the two state functions with a refinement relationship, and

proves three properties of the relationship: functional equivalence, physical

equivalence, and initialization.

Physical equivalence and timing side-channel in HSM For a hardware

security module, all it exposes to the host computer (and any potential attack-

ers) are its input/output wires. Thus the behavior of the HSM’s I/O wires

should capture any timing channel at a cycle-accurate level. Athalye et al. [8]

show that if the physical equivalence can be established between an HSM’s cir-

cuit and an emulator (on top of the specification), it implies the circuit doesn’t

have timing side-channels.

For the authenticated key exchange, we use the already-verified ECDSA

signature generator [9] and the authenticated exchange scheme from [45].

We create a specification of our circuit according to the NIST FIPS 197

standard of AES. Utilizing this specification and a Verilog description of our

circuit, we can use the Knox framework to formally verify wire-level security.

4 Our Solution: Alcatraz

Here, we look at the contributions our solution, Alcatraz, brings.

4.1 Security Properties at the Wire-Level

The original works on SE [12, 55] did its security verification at the register-

transfer level (RTL). Among the common hardware abstraction levels in digital

circuit design, RTL is often where the high level circuit design is done. On the

other hand, RTL is a leaky abstraction of the physical circuit, and there could

be side channels not captured by a RTL description of the hardware, and thus

can never be detected with a RTL security proof.

10

When developing a security proof for Alcatraz, we chose to use a recently

introduced framework, Knox [8] from section 3.3, which is built upon the no-

tion of “Information-Preserving Refinement” (IPR). The proof’s goal is to show

that, when observing its output or manipulating its input, the circuit’s behav-

ior doesn’t leak more information than indicated by its functional specification.

As a consequence, security proofs constructed in the Knox framework can ver-

ify at the wire-level that a circuit is correct and does not have any security

vulnerabilities such as the timing side channel.

Wire-level security Wire-level security proof shows that for a circuit, re-

gardless of what an adversary can do with I/O wires, no sensitive information

is leaked.

Advantages Wire-level security presents multiple advantages over RTL-level

security. Wire-level security can detect bugs present on the wire-level, such as

DFT (design for test) bugs in gate-level simulation (GLS). However, RTL-level

security proof cannot detect such problems because they happened below RTL’s

abstraction level.

4.2 Architecture

Figure 2: Architecture of Alcatraz.

We implemented Alcatraz as an “encrypted” ALU attached to the “execute”

stage of the CPU pipeline on a computer. (Figure 2). When a user wishes

11

to use Alcatraz to perform secure computation remotely, they use a special

instruction that tells the CPU that there is sensitive information involved. The

CPU of the remote computer then re-directs that instruction to the encrypted

ALU. On the other hand, instructions that are considered non-sensitive can

be directed to the regular ALU. When the instruction is executed, ciphertext

will be sent into Alcatraz, along with an operation selector telling the HSM

which operation should be performed on the ciphertext. Once decrypted, the

plaintext is operated on, then the resulting plaintext will be encrypted before

exiting Alcatraz.

4.3 Key Provisioning

In our paper, we use AES, a symmetric key encryption algorithm, as our en-

cryption/decryption engines. This allows for faster encryption times than using

public/private key encryption, which is critical because every operation that

uses our ALU will have to go through a decryption and encryption operation.

This will help reduce the latency of operations in Alcatraz.

In order to perform AES, we require a common key that is known by both

parties. In order to obtain a common key without relying on a trusted out-of-

band communication channel, we use an authenticated key exchange protocol.

One suitable protocol is the signed Di”e–Hellman key exchange [27]. We use the

protocol designed by Pan et al. [45] (Figure 4), which has additionally proven

tight security of the scheme.

For the digital signature involved, we use elliptic curve cryptography (ECDSA),

whose security has been verified by Athalye et al. [9]. We combine ECDSA with

the authenticated Di”e–Hellman key exchange by Pan et al. [45] to securely

create a common secret key for AES. This allows us to securely bring a key into

Alcatraz without additional external sources of trust.

The shared value SV = (pkRU, pkHSM, X, Y,ωRU,ωHSM) is something that

can be evaluated by both parties on their own. If a third party has compromised

the communication in some section, the shared value SV will not match up, and

the common secret will not match up, which means the remote user and Alcatraz

will be unable to communicate and have to re-initiate the key exchange protocol.

x is randomly chosen from field F x
$↓ F

x is assigned the value V x ↓ V

ECDSA Digital Signature ECDSA(pk, x)

Figure 3: Notations used in Figure 4.

12

Remote User Alcatraz

x
$↓ F, X = gx y

$↓ F, Y = gy

ωRU ↓ ECDSA(skRU, X)
(X,ωRU)↔↗
(Y,ωHSM)↓↔ ωHSM ↓ ECDSA(skHSM, (X,Y))

SRU = H(SV, Y x) SHSM = H(SV, Xy)

Figure 4: Scheme proposed by Pan et al. [45] using ECDSA.

To avoid sharing a secret every time Alcatraz is called, for every user, we

generate one shared secret and save it. This allows us to reuse the secret with

that one user, making authenticated key-exchange a one-time operation and

lowering computation costs.

4.4 Implementation

We implemented Alcatraz as a circuit on FPGA, using Verilog hardware descrip-

tion language. We also wrote a functional specification of Alcatraz in Racket.

We used Yosys’ SMT-LIBv2 backend [51] to compile Alcatraz’s circuit into an

SMT file, which was then converted by #lang yosys [7] into a Rosette model.

Along with that, we also wrote our own driver and emulator to run in Knox for

verification.

To implement AES, we based both the specification and hardware imple-

mentation on the NIST FIPS 197 standard of AES [43]. Our implementation

focuses on AES-128 (i.e. key length is equal to 128 bits). It is straightforward

to extend our implementation to other key lengths.

4.4.1 Hardware Circuit

AES-128 is based on three core subfunctions, which are Encipher, Decipher, and

KeyExpansion. At a high level, our implementation of the whole AES circuit

consists of three Verilog submodules, each corresponding to one of the subfunc-

tions. For the ease of exposition, we do not distinguish between the two terms

(submodule vs subfunction) when describing our implementation.

We implement each subfunction as a finite state machine (Figure 5) so that

we can create state-dependent hints to speed up proofs (see Section 4.4.4).

Specifically, we introduce two state variables, state and next state, where

next state tells the FSM what the next state is. We use the same idea for all

other variables we need to keep track of, like input/output and the result ready

wire.

13

Figure 5: Finite State Machine of the AES encipher module.

For example, in Encipher we always start the FSM from the IDLE state,

where the circuit’s output is reset to 0 (Figure 5). While in this state, we keep

checking the enable input wire at each clock cycle, and stay in the IDLE state

as long as enable is false. When enable is set to true, we will move the FSM

to “Round 1”. In this state, we call a subfunction OneRound, whose inputs we

feed based on the round number and previous results.

Once OneRound updates the wire round result ready to true, we take the

result immediately and record it in a register. This is necessary because the

valid result is only kept on the output wire for one clock cycle. After that,

round result ready is set to false and the result is erased by OneRound. In

Encipher, each round’s calculation is based on the result from the last round,

thus each round’s result must be saved for later use.

We repeat this for every state until we reach the final round (the 10-th

round for AES-128). Once we complete the final round, we set result ready

(of Encipher) to true. Similar to OneRound, the wire result ready is only set

to true for one clock cycle, and the valid result is only maintained for one cycle

before getting wiped. As such, Encipher must take the result and save it in a

register during the clock cycle so the result (the ciphertext) can be sent back to

the user.

Furthermore, rather than executing the three subfunctions in order, due

to the expensiveness of KeyExpansion, we can simply store the expanded key

along with the shared secret, and have both Encipher and Decipher use the

stored expanded key as shown in Figure 6. Furthermore, if the same key is

re-used multiple times (e.g., if a user uses Alcatraz multiple times), then the

KeyExpansion function does not need to be re-evaluated called multiple times;

instead we can directly look it up.

14

Figure 6: Organization of Alcatraz Circuit. In addition to the inputs shown, all

modules have a clock and an enable input.

Pipelining To enhance performance, we pipeline both the Encipher and Decipher

module according the states in Figure 5, for a total of 20 stages.

4.4.2 Functional Specification

In our functional specification, we implemented the Galois Field multiplication

as lookup tables. This is because the polynomial division was too time costly,

so we precomputed the necessary multiplications and hard-coded them as ta-

bles. This is equivalent to doing the GF(256) multiplication, which does not

impact the validity of the specification. We then implemented the OneRound

and InvOneRound as recursive functions with a counter. When the counter hit

10, the number of rounds in AES-128, the function would then return the re-

sult to the parent function. All our specifications are tested with unit tests in

Racket.

4.4.3 Automated Verification of Correctness and Security

To verify the correctness of our hardware implementation, we created a small

program in Knox (the driver) that calls the hardware to perform operations

defined in the specification. Then we used Knox to verify that the output from

the driver (on top of the hardware) cannot be distinguished from the output

from the specification (“functional equivalence”).

To verify the security of our hardware implementation, we created another

small program in Knox (the emulator) that calls the specification to mimic wire-

level behavior of the hardware. Then we used Knox to prove that the output

from the emulator (on top of the specification) cannot be distinguished from

the output from the hardware (“physical equivalence”).

15

Figure 7: (above) Symbolic term representing a register holding the value

sbox[key[23:16]]. (below) the expression tree for the same symbolic term, where

four of the 256 subtrees are shown.

In either case, Knox will need to symbolically simulate the circuit and keep

track of its state over time. Based on the symbolic states, Knox formulates the

logical assertions for functional equivalence and phsyical equivalence, and then

invokes Rosette, which ultimately calls the Z3 SMT prover, to prove that the

assertions hold.

A circuit’s symbolic state can be thought of as the collection of current

contents of all its registers and wires, represented as symbolic terms. As an

example, Figure 7 shows the symbolic state of a register, where the symbolic

expression corresponds to sbox[key[23:16]], i.e. using the second byte of the

key as an index for the S-box.

In Figure 7 the free variable k$cef.. represents the content of the input

wire k (the key) at a specific clock cycle. The symbolic term for indexing into

the sbox array is

(ite* (↘ condition1 value1) (↘ condition2 value2) . . .)

which is similar to the switch statement in C++. When represented as an

expression tree, the ite* node will have 256 subtrees because k$cef.. may

take 1 of the 256 possible values (0x00 to 0xff). As another example, the

output of the key expansion module is represented as a symbolic term whose

free variables correspond to either the module’s inputs or some internal registers.

4.4.4 Speeding Up Proofs with Hints

When a circuit gets more complicated, so too does the symbolic terms capturing

its states. Consequently, the size of these terms may blow up, which makes it

16

increasingly slow to check assertions about these terms. This is especially true

in circuits whose registers depend on each other over many clock cycles.

As an example, the symbolic term for the key expansion module output

corresponds to a tree of more than 1 million nodes, where a node is either

ite* or some bit vector operation (e.g. extract for taking a subvector, or

bvxor for computing the bitwise xor of two vectors). Even with an automated

prover, it becomes very ine”cient to directly compare expressions of such size

and verify the functional and phsyical equivalence. In fact, when running on a

Macbook Pro M2 computer, the Z3 prover cannot finish the correctness proof

after running for 4 hours due to the huge term size.

One way to improve the e”ciency of the proofs is to utilize additional in-

formation about the symbolic terms’ structure and dependencies. In the Knox

framework, Athalye et al. [8] introduce a concept of “hints”, which help speed

up verification. Hints are designed to be untrusted, so at worst if a hint is

incorrect the automated prover will fail to complete the proof. If the hints are

correct but insu”cient, the verification process may still take a long time. In

any case, adding hints will not lead to an incorrect proof.

Among the eight types of hints provided in Knox, we used the following six

in our proofs:

• CONCRETIZE is a hint suggesting a symbolic term may be proved to have

a concrete value. If successfully proved, the said term will be replaced

by a concrete value. Otherwise, for example when a term depends on

other symbolic terms whose values are unknown, then the term will stay

unchanged. This hint is helpful in concretizing values that are already

known by the prover, but still expressed as symbolic terms.

• CASE-SPLIT is a hint that separates a symbolic term into possible cases.

This allows for possible concretization of the symbolic term, which may

help reducing the term size. One example is we applied CASE-SPLIT on

the enabling wire to splits into two cases (en=0 or en=1), followed by a

CONCRETIZE hint on the same wire. As a result, we can eliminate en from

all subsequent states.

• REPLACE is a hint to replace a complicated term with a simplified term (if

the prover can prove they are equivalent).

• REMEMBER, SUBSTITUTE, and CLEAR allow us to temporarily abstract away

a register and later substitute back it’s original term.

Furthermore, we created proof “tactics” based on the state of the FSM of

the circuit. A tactic is a snippet of Knox code that invokes some hints and/or

updates auxiliary data structures used by hints.

17

When writing the tactics, the idea is to instruct Knox to abstract away the

registers (via REMEMBER) before each clock cycle (i.e. treating them as a black

box instead of a complicated term), so the prover only needs to focus on the

register operations happen within the cycle. Thus, the prover only has to prove

a simpler assertion. After a clock cycle is finished, the tactics will instruct Knox

to either restore the register’s symbolic term (via SUBSTITUTE), or replace it

with a simpler yet equivalent term (via REPLACE). We write our tactics to be

aware of the FSM state, because these hints rely on the FSM states to know

which register to replace or substitute.

Finally, we observed the prover can still be slow even after adding hints and

tactics, and it was due to the order of operations in our specification di!ering

too much from that in the circuit. Based on this finding, we carefully write our

specification so that the order of operations in the specification closely align

with that in the circuit.

With our optimizations, our final proof was able to complete under 1 minute,

a speed up of at least two orders of magnitude.

5 Evaluation

We evaluated the performance of Alcatraz in an important class of secure remote

computation problems, Private Information Retrieval.

5.1 Private Information Retrieval

A Private Information Retrival (PIR) protocol is a cryptographic protocol that

allows a user to retrieve a specific item from databases without revealing to the

server any information on which item is being retrieved, ensuring that the user’s

query remains private from the database server [14, 30]. PIR protocols are a

fundamental building block for larger privacy-ensuring schemes such as oblivious

transfer [23], secret sharing schemes [11], certificate transparency [36, 49], and

password-breach alerting [33, 56]. More recently, Colombo et al. [15] introduced

the first authenticated multi-server PIR scheme, ensuring the security of the

user as long as at least one server is honest. Corrigan-Gibbs and Kogan [18]

also devised a scheme to allow for sub-linear database lookups without sacrificing

server-side storage requirements.

For our project, we implemented a single-server PIR scheme using Alcatraz.

18

5.2 Evaluation Setup

We follow the common practice to represent PIR queries in one-hot encoding.

To perform retrieval, each bit in the query is multiplied with the corresponding

entry in the database (i.e. the first query bit is multiplied with the first entry,

etc), and the resulting products are all summed together to produce the final

answer. Note that we do not need to worry about overflow because only one of

the (decrypted) query bits is set to 1.

To ensure security, queries are encrypted by AES128 before leaving the client.

All the above-mentioned multiplication and summation operations are carried

out in an encrypted ALU on the server.

In our implementation, we integrated the encrypted ALU with an Ibex RISC-

V core [21] and a pipelining vector coprocessor (Vicuna) [47].

Parallel Processing To take advantage of data parallelism, we integrated

the encrypted ALU with Vicuna to utilize its support of vector registers, where

each register is set to the max supported width of 2048 bits.

We added two types of custom RISC-V instructions to perform encrypted

ALU computation:

• sumprod(k) vd, v1, v2

• sumall(k) vd, v1, v2

The main idea is to store 16 128-bit ciphertexts per register, which allows

us to perform sum-of-16-products in one instruction. It also allows us to add 32

ciphertexts in one instruction, giving us a massive improvement in performance.

The definitions for the custom instructions are given in Algorithms 1 and 2.

19

Input:

k: an integer (0 ≃ k < 128), specifying which 16-bits of v1 to process

v1: the i-th, ..., (i+ 2047)-th bits of the query (encrypted in AES128)

v2: 16 blocks of 128-bit plaintext (the j-th, ..., (j + 15)-th entries of

the database), to be multiplied with the query bits

Output:

write encrypted sum of products to (k mod 16)-th 128-bit block in vd

1 m = k >> 3;

2 n = k & 0b111 ;

3 p = k & 0b1111 ;

4 /* get the m-th ciphertext */

5 c = v1[m ⇐ 128 : m ⇐ 128+ 127];

6 d = DecryptAES128(c);

7 /* perform sum-of-product operation between 16 query bits and 16

entries */

8 e = d[n ⇐ 16] ⇐ v2[0 : 127] + ... + d[n ⇐ 16+ 15] ⇐ v2[1920 : 2047];

9 vd[p ⇐ 128 : p ⇐ 128+ 127] = EncryptAES128(e);

Algorithm 1: sumprod(k, v1, v2): calculate the sum of products be-

tween 16 bits of the encrypted query vector (v1) and the corresponding

16 database entries (v2). k specifies which 16 bits of the query to process,

and what location in vd to write the output. v1 and v2 are passed in

registers. k is encoded in funct7, a 7-bit field in the RISC-V instruction

format.

Input:

k: an integer (0 ≃ k < 16), specifying the output location in vd

v1: 16 blocks of 128-bit data (encrypted in AES128)

v2: 16 blocks of 128-bit data (encrypted in AES128)

Output: encrypted sum of all 32 blocks to k-th 128-bit block in vd

1 for i = 0...15 do

2 di = DecryptAES128(v1[(i ⇐ 128) : (i ⇐ 128) + 127]);

3 ei = DecryptAES128(v2[(i ⇐ 128) : (i ⇐ 128) + 127]);

4 end

5 f = d0 + ... + d15 + e0 + ... + e15;

6 vd[k ⇐ 128 : p ⇐ 128+ 127] = EncryptAES128(f);

Algorithm 2: sumall(k, v1, v2): calculate the sum of 32 128-bit blocks

(16 from v1 and 16 from v2). Inputs are encrypted by AES128. k is

encoded by 4 bits in funct7, a field in the RISC-V instruction format.

20

Our PIR algorithm Using the new instructions, we can perform PIR by

computing sum of products between the query vector and the database entries,

and outputting the final (encrypted) sum, which is the retrieved entry.

We assume the database has k entries, where k is a multiple of 2048. (If

not, we can pad it by adding extra dummy entries.) For clarity, our algorithm

assumes each database entry is a 128-bit data block. For databases where each

entry has m 128-bit blocks, we perform the same algorithm m times, each time

outputting the i-th (0 ≃ i < m) encrypted block of the final answer.

Figure 8: Computation tree for the PIR algorithm. q0, ..., qk→1 represents bits in the

query. d0, ..., dk→1 represents the entries in the database, where each entry is a 128-bit

block.

Reducing pipeline stalling Our integration includes a modified instruction

decoder in the pipelining vector coprocessor, which dispatches the custom in-

structions to the encrypted ALU. Through experimentation, we identified two

default configuration settings that caused unnecessary pipeline stalling:

• The eXtension Interface between the main core (Ibex) and the coprocessor

(Vicuna) allowed only 8 outstanding instructions.

• Vicuna’s own instruction queue also allowed only 8 outstanding instruc-

tions.

We increased both settings from 8 to 16, and observed improved pipeline uti-

lization (cycle-per-instruction for encrypted instruction improved by 4.3%).

21

5.3 Benchmark

We compare our implementation to the state-of-the-art FHE implementations

for several PIR tasks[38]. We implemented PIR algorithm in C and inline

assembly, and ran the benchmark in the Verilator simulator [52]. We measured

the performance by taking advantage of Ibex’s built-in performance counter to

obtain the clock cycle counts. To estimate the actual time, we assumed our

hardware running at a clock frequency of 667 MHz, shown to be achievable for

AES on FPGA by Lee et al. [32].

Our benchmark includes three datasets whose sizes are the same as those

described in [38] (Table 2). Our results show that Alcatraz achieves up to 21.3→
speedup in computation time over the current state-of-the-art FHE-based PIR

protocol.

Database size Entry size Computation time (s) Speedup

(entries) Spiral [38] Alcatraz

Dataset 1 2
20

256B 0.85 0.040 21.3→
Dataset 2 2

18
30KB 8.99 1.174 7.66→

Dataset 3 2
14

100KB 2.38 0.245 9.71→

Table 2: Comparison of Alcatraz with SpiralStream [38] for Single-Server Private

Information Retrieval

6 Conclusion

Microarchitectural side-channel attacks enable an adversary to gain information

about sensitive data. These attacks have been shown to recover secrets such as

RSA private keys. Hardware bugs and vulnerabilities exploited in such attacks

are di”cult to detect and prevent, yet they are increasing important because

more and more computing is happening remotely in the cloud.

In this paper, we assume a threat model where a powerful adversary has

all but physical access to a remote computer. Under this model, we introduce

Alcatraz as a solution to secure remote computation. The central piece is a

secure ALU which is sandwiched between a decryption step and an encryption

step. All sensitive data remain encrypted when they are outside the secure

ALU. When performing computations, sensitive data enter the secure ALU as

encrypted ciphertext, and the computation results are encrypted before leaving

the secure ALU.

We have verified that Alcatraz is secure at the wire-level. In particular, we

verified an AES implementation in Verilog, as well as our minimal arithmetic

22

logic unit. Furthermore, Alcatraz brings in the encryption key needed by AES

via an authenticated key exchange using ECDSA. The key provisioning process

reduces the need for trust in an outside channel for a shared secret. The secure

ALU, combined with key provisioning, allows us to create a chip that can add

secure remote computation capabilities to existing computers.

We implemented a single-server PIR task using Alcatraz. We utilize the full

2048-bit registers allowed in the Vicuna coprocessor to increase parallelization.

We managed to achieve a 7→ to 21→ speedup when compared to current state-

of-the-art FHE implementations.

7 Acknowledgements

This work was done in the MIT PRIMES research program. I want to thank

Slava Gerovitch and Srini Devadas for creating opportunities in the MIT PRIMES

CS program. I also thank my mentors, Sacha Servan-Schreiber and Jules Drean,

both from MIT CSAIL, for their guidance over the past three years.

I also would like to thank Anish Athalye for helping me with the details of the

Knox framework, Thomas Bourgeat for helping with my questions on computer

architecture, and Stella Lau for helping with my questions about power-based

side channels.

References

[1] Abbas Acar, Hidayet Aksu, A Selcuk Uluagac, and Mauro Conti. A survey

on homomorphic encryption schemes: Theory and implementation. ACM

Computing Surveys (Csur), 51(4):1–35, 2018.

[2] Dakshi Agrawal, Bruce Archambeault, Josyula R Rao, and Pankaj Ro-

hatgi. The EM side-channel(s): Attacks and assessment methodologies. In

Cryptographic Hardware and Embedded Systems-CHES 2002: 4th Interna-

tional Workshop Redwood Shores, CA, USA, August 13–15, 2002 Revised

Papers 4, pages 29–45. Springer, 2003.

[3] Rashmi Agrawal, Lake Bu, Alan Ehret, and Michel A Kinsy. Fast arith-

metic hardware library for rlwe-based homomorphic encryption. arXiv

preprint arXiv:2007.01648, 2020.

[4] Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan Xiao, Matsumura

Kazuaki, and Aung Khin Mi Mi. Multi-GPU design and performance eval-

uation of homomorphic encryption on GPU clusters. IEEE Transactions

on Parallel and Distributed Systems, 32(2):379–391, 2020.

23

[5] Alejandro Cabrera Aldaya, Cesar Pereida Garćıa, Luis Manuel Alvarez

Tapia, and Billy Bob Brumley. Cache-timing attacks on RSA key genera-

tion. Cryptology ePrint Archive, 2018. URL https://eprint.iacr.org/

2018/367.

[6] Naseer Amara, Huang Zhiqui, and Awais Ali. Cloud computing security

threats and attacks with their mitigation techniques. In 2017 International

Conference on Cyber-Enabled Distributed Computing and Knowledge Dis-

covery (CyberC), pages 244–251. IEEE, 2017.

[7] Anish Athalye, Adam Belay, M Frans Kaashoek, Robert Morris, and Nick-

olai Zeldovich. Notary: A device for secure transaction approval. In Pro-

ceedings of the 27th ACM Symposium on Operating Systems Principles,

pages 97–113, 2019.

[8] Anish Athalye, M. Frans Kaashoek, and Nickolai Zeldovich. Verifying hard-

ware security modules with Information-Preserving refinement. In 16th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 22), pages 503–519, Carlsbad, CA, July 2022. USENIX Association.

ISBN 978-1-939133-28-1. URL https://www.usenix.org/conference/

osdi22/presentation/athalye.

[9] Anish Athalye, Henry Corrigan-Gibbs, Frans Kaashoek, Joseph Tassarotti,

and Nickolai Zeldovich. Modular verification of non-leakage for hardware

security modules with parfait. In SOSP 2024, 2024. to appear.

[10] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. Handbook

of model checking, pages 305–343, 2018.

[11] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share conver-

sion and private information retrieval. In 2012 IEEE 27th Conference on

Computational Complexity, pages 258–268. IEEE, 2012.

[12] Lauren Biernacki, Meron Zerihun Demissie, Kidus Birkayehu Workneh, Fit-

sum Assamnew Andargie, and Todd Austin. Sequestered encryption: A

hardware technique for comprehensive data privacy. In 2022 IEEE Inter-

national Symposium on Secure and Private Execution Environment Design

(SEED), pages 73–84, 2022. doi: 10.1109/SEED55351.2022.00014.

[13] Joppe W Bos, J Alex Halderman, Nadia Heninger, Jonathan Moore,

Michael Naehrig, and Eric Wustrow. Elliptic curve cryptography in prac-

tice. In Financial Cryptography and Data Security: 18th International

Conference, FC 2014, Christ Church, Barbados, March 3-7, 2014, Revised

Selected Papers 18, pages 157–175. Springer, 2014.

24

https://eprint.iacr.org/2018/367
https://eprint.iacr.org/2018/367
https://www.usenix.org/conference/osdi22/presentation/athalye
https://www.usenix.org/conference/osdi22/presentation/athalye

[14] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private

information retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

[15] Simone Colombo, Kirill Nikitin, Henry Corrigan-Gibbs, David J Wu, and

Bryan Ford. Authenticated private information retrieval. In 32nd USENIX

security symposium (USENIX Security 23), pages 3835–3851, 2023.

[16] Mauro Conti, Nicola Dragoni, and Viktor Lesyk. A survey of man in the

middle attacks. IEEE communications surveys & tutorials, 18(3):2027–

2051, 2016.

[17] Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sut-

ter. Practical mitigations for timing-based side-channel attacks on modern

x86 processors. In 2009 30th IEEE symposium on security and privacy,

pages 45–60. IEEE, 2009.

[18] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval

with sublinear online time. In Annual International Conference on the The-

ory and Applications of Cryptographic Techniques, pages 44–75. Springer,

2020.

[19] Leonardo De Moura and Nikolaj Bjørner. Z3: An e”cient SMT solver. In

International conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 337–340. Springer, 2008.

[20] Whitfield Di”e, Paul C Van Oorschot, and Michael J Wiener. Authentica-

tion and authenticated key exchanges. Designs, Codes and cryptography, 2

(2):107–125, 1992.

[21] Islam Elsadek and Eslam Yahya Tawfik. RISC-V resource-constrained

cores: A survey and energy comparison. In 2021 19th IEEE International

New Circuits and Systems Conference (NEWCAS), pages 1–5, 2021. doi:

10.1109/NEWCAS50681.2021.9462781.

[22] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-

ceedings of the forty-first annual ACM symposium on Theory of computing,

pages 169–178, 2009.

[23] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting

data privacy in private information retrieval schemes. In Proceedings of the

thirtieth annual ACM symposium on Theory of computing, pages 151–160,

1998.

25

[24] Michael Hutter and Jörn-Marc Schmidt. The temperature side channel and

heating fault attacks. In Smart Card Research and Advanced Applications:

12th International Conference, CARDIS 2013, Berlin, Germany, Novem-

ber 27-29, 2013. Revised Selected Papers 12, pages 219–235. Springer, 2014.

[25] Mostefa Kara, Abdelkader Laouid, Muath AlShaikh, Ahcène Bounceur,

and Mohammad Hammoudeh. Secure key exchange against man-in-the-

middle attack: Modified Di”e–Hellman protocol. Jurnal Ilmiah Teknik

Elektro Komputer dan Informatika, 7(3):380–387, 2021.

[26] Elmira Karimi, Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A timing

side-channel attack on a mobile GPU. In 2018 IEEE 36th International

Conference on Computer Design (ICCD), pages 67–74. IEEE, 2018.

[27] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-

phy, Second Edition. Chapman & Hall/CRC, 2nd edition, 2014. ISBN

1466570261.

[28] Christoph Kern and Mark R Greenstreet. Formal verification in hardware

design: a survey. ACM Transactions on Design Automation of Electronic

Systems (TODAES), 4(2):123–193, 1999.

[29] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,

Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas

Prescher, et al. Spectre attacks: Exploiting speculative execution. Com-

munications of the ACM, 63(7):93–101, 2020.

[30] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Sin-

gle database, computationally-private information retrieval. In Proceedings

38th annual symposium on foundations of computer science, pages 364–373.

IEEE, 1997.

[31] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security

of authenticated key exchange. In International conference on provable

security, pages 1–16. Springer, 2007.

[32] Useok Lee, Ho Keun Kim, Young Jun Lim, and Myung Hoon Sunwoo.

Resource-e”cient fpga implementation of advanced encryption standard.

In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),

pages 1165–1169. IEEE, 2022.

[33] Lucy Li, Bijeeta Pal, Junade Ali, Nick Sullivan, Rahul Chatterjee, and

Thomas Ristenpart. Protocols for checking compromised credentials. In

26

Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-

munications Security, pages 1387–1403, 2019.

[34] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-

level cache side-channel attacks are practical. In 2015 IEEE symposium on

security and privacy, pages 605–622. IEEE, 2015.

[35] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. A survey

of microarchitectural side-channel vulnerabilities, attacks, and defenses in

cryptography. ACM Comput. Surv., 54(6), jul 2021. ISSN 0360-0300. doi:

10.1145/3456629. URL https://doi.org/10.1145/3456629.

[36] Wouter Lueks and Ian Goldberg. Sublinear scaling for multi-client private

information retrieval. In International Conference on Financial Cryptogra-

phy and Data Security, pages 168–186. Springer, 2015.

[37] Rita Mayer-Sommer. Smartly analyzing the simplicity and the power of

simple power analysis on smartcards. In International Workshop on Cryp-

tographic Hardware and Embedded Systems, pages 78–92. Springer, 2000.

[38] Samir Jordan Menon and David J. Wu. SPIRAL: Fast, high-rate single-

server PIR via FHE composition. In 2022 IEEE Symposium on Security and

Privacy (SP), pages 930–947, 2022. doi: 10.1109/SP46214.2022.9833700.

[39] Daniel Moghimi. Downfall: Exploiting speculative data gathering. In 32nd

USENIX Security Symposium (USENIX Security 23), pages 7179–7193,

Anaheim, CA, August 2023. USENIX Association. ISBN 978-1-939133-

37-3. URL https://www.usenix.org/conference/usenixsecurity23/

presentation/moghimi.

[40] Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger.

TPM-FAIL: TPM meets timing and lattice attacks. In Proceedings of the

29th USENIX Security Symposium, 2020.

[41] Ciara Moore, Máire O’Neill, Elizabeth O’Sullivan, Yarkın Doröz, and Berk

Sunar. Practical homomorphic encryption: A survey. In 2014 IEEE Inter-

national Symposium on Circuits and Systems (ISCAS), pages 2792–2795.

IEEE, 2014.

[42] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homo-

morphic encryption be practical? In Proceedings of the 3rd ACM workshop

on Cloud computing security workshop, pages 113–124, 2011.

27

https://doi.org/10.1145/3456629
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi

[43] National Institute of Standards and Technology (NIST). Advanced encryp-

tion standard (AES). Technical Report 197-upd1, Department of Com-

merce, Washington, D.C., 2001. URL https://doi.org/10.6028/NIST.

FIPS.197-upd1.

[44] Monique Ogburn, Claude Turner, and Pushkar Dahal. Homomorphic en-

cryption. Procedia Computer Science, 20:502–509, 2013.

[45] Jiaxin Pan, Chen Qian, and Magnus Ringerud. Signed (group) Di”e–

Hellman key exchange with tight security. Journal of Cryptology, 35(4):26,

2022.

[46] Bryan Parno. Bootstrapping trust in a “trusted” platform. In Proceedings

of the 3rd Conference on Hot Topics in Security, HOTSEC’08, USA, 2008.

USENIX Association.

[47] Michael Platzer and Peter Puschner. Vicuna: A timing-predictable RISC-

V vector coprocessor for scalable parallel computation. In 33rd euromicro

conference on real-time systems (ECRTS 2021). Schloss Dagstuhl-Leibniz-

Zentrum für Informatik, 2021.

[48] Jonathan Rose, Abbas El Gamal, and Alberto Sangiovanni-Vincentelli. Ar-

chitecture of field-programmable gate arrays. Proceedings of the IEEE, 81

(7):1013–1029, 1993.

[49] Mark D Ryan. Enhanced certificate transparency and end-to-end encrypted

mail. Cryptology ePrint Archive, 2013.

[50] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian

Stecklina, Thomas Prescher, and Daniel Gruss. Zombieload: Cross-

privilege-boundary data sampling. In Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security, CCS

’19, page 753–768, New York, NY, USA, 2019. Association for Comput-

ing Machinery. ISBN 9781450367479. doi: 10.1145/3319535.3354252. URL

https://doi.org/10.1145/3319535.3354252.

[51] David Shah, Eddie Hung, Cli!ord Wolf, Serge Bazanski, Dan Gisselquist,

and Miodrag Milanović. Yosys+nextpnr: an open source framework from

verilog to bitstream for commercial FPGAs, 2019. URL https://arxiv.

org/abs/1903.10407.

[52] Wilson Snyder. Verilator and systemperl. In North American SystemC

Users’ Group, Design Automation Conference, volume 79, pages 122–148,

2004.

28

https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.1145/3319535.3354252
https://arxiv.org/abs/1903.10407
https://arxiv.org/abs/1903.10407

[53] François-Xavier Standaert. Introduction to Side-Channel Attacks, pages

27–42. Springer US, Boston, MA, 2010. ISBN 978-0-387-71829-3. doi: 10.

1007/978-0-387-71829-3 2. URL https://doi.org/10.1007/978-0-387-

71829-3_2.

[54] Jakub Szefer. Survey of microarchitectural side and covert channels, at-

tacks, and defenses. Journal of Hardware and Systems Security, 3(3):219–

234, 2019.

[55] Qinhan Tan, Yonathan Fisseha, Shibo Chen, Lauren Biernacki, Jean-

Baptiste Jeannin, Sharad Malik, and Todd Austin. Security verification

of low-trust architectures. In Proceedings of the 2023 ACM SIGSAC Con-

ference on Computer and Communications Security, pages 945–959, 2023.

[56] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan,

Patrick Gage Kelley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek,

Sarvar Patel, Dan Boneh, et al. Protecting accounts from credential stu!-

ing with password breach alerting. In 28th USENIX Security Symposium

(USENIX Security 19), pages 1556–1571, 2019.

[57] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: a high resolution,

low noise, L3 cache side-channel attack. In Proceedings of the 23rd USENIX

Conference on Security Symposium, SEC’14, page 719–732, USA, 2014.

USENIX Association. ISBN 9781931971157.

29

https://doi.org/10.1007/978-0-387-71829-3_2
https://doi.org/10.1007/978-0-387-71829-3_2

	Introduction
	Our contributions

	Background
	Symmetric-key Encryption and Authenticated Key Exchange
	Field Programmable Gate Arrays (FPGAs)
	Microarchitectural Side Channels
	Homomorphic Encryption
	Formal Verification
	Satisfiability Modulo Theories
	Sequestered Encryption

	Overview
	Our Threat Model
	Utilizing Secure Enclaves
	Proving Security

	Our Solution: Alcatraz
	Security Properties at the Wire-Level
	Architecture
	Key Provisioning
	Implementation
	Hardware Circuit
	Functional Specification
	Automated Verification of Correctness and Security
	Speeding Up Proofs with Hints

	Evaluation
	Private Information Retrieval
	Evaluation Setup
	Benchmark

	Conclusion
	Acknowledgements

