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Abstract 

 
Recent studies have established the existence of widespread metabolic alteration in Alzheimer’s disease 

(AD). One way to further analyze possible metabolic mechanisms affecting AD severity is with patient 

subgroup identification. However, the inherent heterogeneity of the disease, along with the high-

throughput profiling of patient samples, makes identifying metabolites that will effectively stratify 

patients into subgroups difficult. To address this issue, we propose AutoSGI, a data driven algorithm 

that (1) finds metabolomics signatures carrying concentrated biological information and (2) uses these 

signatures to cluster AD patients into multi-scale subgroups with distinct disease severity. We test 

whether AutoSGI can effectively identify patient subgroups using metabolomics measurements from 

500 postmortem brain tissue samples. AutoSGI is able to identify subgroups with significant differences 

in neuropathological and cognitive outcomes defining disease stage. We demonstrate these subgroups 

display high stability and that in general, AutoSGI can outperform other baseline methods of 

identification. We also implicate multiple groups of metabolites contained in the identified signatures 

with advanced AD progression. Some groups are structurally similar like tryptophan, tyrosine, and 

phenylalanine, the aromatic acids. Other groups functionally interact, like phospholipid intermediates 

glycerophosphocholine and glycerophosphoethanolamine, as well as the neurotoxic guanidinoacetate 

and excitatory transmitter glutamate. Ultimately, our findings help elucidate metabolism's role in AD 

and can support treatment of patients affected by the disease in a more individualized manner. 
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1. Introduction 

As of 2019, dementia affects approximately 57 million people globally. This number is estimated to 

increase almost three-fold by 2050 (GBD 2019 Dementia Forecasting Collaborators, 2022). Alzheimer’s 

disease (AD) accounts for 60-80% of these cases, with around 6 million American cases alone (“2020 

Alzheimer’s Disease Facts and Figures,” 2020). Though there is a vested interest in finding a treatment 

for AD, it remains difficult to do so because of how it varies in its presentation across patients. For 

example, the rate of cognitive decline can be much faster for atypical AD patients. Further, while most 

AD patients do have a late age of onset, some develop it before turning 65, and there are differences in 

the exact onset generally. These interpatient complexities are also present when trying to understand the 

etiology of AD and what defines the disease (Avelar-Pereira et al., 2023; Kauppi et al., 2020; Rollo et 

al., 2016; Shade et al., 2024; Sirkis et al., 2022). 

 

One way to tackle the complex heterogeneity of AD is by identifying patient subgroups. Fundamentally, 

the motivation is that the manifestation of certain clinical phenotypes in patients are driven by their 

specific biomolecular changes. Therefore, by finding patients who are similar to each other biologically, 

we can consequently find subgroups with more clinical homogeneity. This can help guide treatment 

decisions on a more precise level but also provides insight into the biological mechanisms of AD. 

 

Many subgroup identification methods have been developed based on these ideas. One common unsu-

pervised approach is clustering the patients into a discrete number of subgroups. Consensus clustering 

has been used in this manner for patients with breast cancer, lung adenocarcinoma, hepatocellular car-

cinoma, and pulmonary fibrosis (Horr & Buechler, 2021; Jiang et al., 2024; M. Zhang et al., 2024; N. 

Zhang et al., 2021). Supervised algorithms have also been utilized, such as an XGBoost-based patient 

clustering in regards to COVID-19 status and a Bayesian framework to find network-based melanoma 

subgroups (Cooper et al., 2021; Qin et al., 2024). 

 

In this study, we focus on deriving AD patient subgroups that differ by current disease severity. We 

previously created a subgroup identification tool known as SGI, or SubGroup Identification 

https://paperpile.com/c/dcCXTd/gF6G
https://paperpile.com/c/dcCXTd/7zDw
https://paperpile.com/c/dcCXTd/7zDw
https://paperpile.com/c/dcCXTd/Dzko
https://paperpile.com/c/dcCXTd/k5Yj
https://paperpile.com/c/dcCXTd/GUN8
https://paperpile.com/c/dcCXTd/Dzko
https://paperpile.com/c/dcCXTd/Dzko
https://paperpile.com/c/dcCXTd/gBP7
https://paperpile.com/c/dcCXTd/AxpS
https://paperpile.com/c/dcCXTd/j9V9
https://paperpile.com/c/dcCXTd/kqGW
https://paperpile.com/c/dcCXTd/j9V9
https://paperpile.com/c/dcCXTd/tSXI
https://paperpile.com/c/dcCXTd/I5jd
https://paperpile.com/c/dcCXTd/I5jd
https://paperpile.com/c/dcCXTd/j9V9
https://paperpile.com/c/dcCXTd/1Wfx
https://paperpile.com/c/dcCXTd/mdgj
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(Buyukozkan et al., 2022). SGI first performs unsupervised hierarchical clustering using the biomolec-

ular measurements of given patient data. Each split point of the resulting hierarchy stratifies a subgroup 

of patients into two smaller ones. SGI then tests for disease stage differences (based on phenotypes) 

between the two smaller groups that form at every split point to find which stratifications are meaningful. 

Since stratification is conducted at every level of the hierarchy, SGI can find patients who are able to be 

characterized at a more granular level without sacrificing accuracy for others. This offers a distinct ad-

vantage over traditional approaches described above which place each patient in a single subgroup.  

 

One limitation of SGI for our objective is that it will assume all features equally dictate AD disease 

stage, since they are given the same weight when clustering. However, this is not necessarily the case; 

when analyzing heterogeneous diseases with high-throughput features, finding informative feature sub-

sets is often necessary. This has been observed in contexts like prediction (Qiang et al., 2024), single 

phenotype association (Batra et al., 2023), and most importantly with SGI, where using only acyl-

carnitines profiles of AD patients revealed cognitively distinct subgroups at multiple scales (Arnold et 

al., 2024).  

 

To this end, we developed AutoSGI, a tool for data-driven feature selection followed by multi-scale 

patient clustering (SGI). AutoSGI first groups features into feature sets at multiple scales. For each 

feature set, AutoSGI performs multi-scale subgroup identification on patient measurements restricted to 

those features. Using postmortem brain metabolic profiles of a large cohort with AD and aging brains, 

AutoSGI is able to identify feature sets that are biologically relevant in the context of disease progression. 

These features then stratify patients into distinct AD stage subgroups at multiple granularities, increasing 

clinical applicability compared to traditional methods.  

 

 

 

 

 

 

https://paperpile.com/c/dcCXTd/Y1AK
https://paperpile.com/c/dcCXTd/jWmO
https://paperpile.com/c/dcCXTd/2OW1
https://paperpile.com/c/dcCXTd/G5Zt
https://paperpile.com/c/dcCXTd/G5Zt


 

3 

 

2. Results & Discussion 

2.1 Cohort overview 

For this study, we analyzed metabolomics measurements of Alzhemer’s patients, collected from post-

mortem brain samples in the ROS/MAP cohort (Batra et al., 2023). These patients were enrolled in one 

of two studies conducted by the Rush Alzheimer's Disease Center, the Religious Order Study (ROS) or 

the Rush Memory and Aging Project (MAP). Metabolites were sampled from the dorsolateral prefrontal 

cortex and profiled with an untargeted metabolomics platform, Metabolon Inc. Preprocessing proce-

dures for the raw untargeted metabolomics measurements are described in the methodology section 

(Methods 3.1). Along with the metabolic profiles themselves, several clinical outcomes of the 

ROS/MAP patients were utilized, including potential confounding variables like age, sex, and APOE 

status, as well as disease stage indicators like severity of neurofibrillary tangle and neuritic plaque pa-

thology. The clinical outcomes used in this analysis are listed in Table 1. 

 

Table 1. Description of clinical variables used in this study, along with variable type and name. 

Clinical Variable Name Description 

anye4 APOE4 ε4 allele carrier 

age_death Age of death 

educ Years of education 

bmi Body-mass index 

msex Patient sex 

pmi Post-mortem interval until brain sample was collected 

braaksc Braak score; measure of neurofibrillary tangle severity 

ceradsc CERAD score; measure of neuritic plaque severity 

cogdx Cognitive diagnosis 

 

2.2 Metabolic alterations are a hallmark of AD and may associate with disease stage 

In this study, we identify ROS/MAP patient subgroups that differ by current disease severity solely 

based on their metabolic profiles in neurologically relevant regions. We utilize metabolic measurements 

because of evidence establishing the widespread metabolic alterations that occur in AD. A panel of 8-9 

https://paperpile.com/c/dcCXTd/2OW1
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plasma metabolites predicted the risk of AD and vascular AD onset (Qiang et al., 2024). 33 blood me-

tabolites of different sub-molecular classes were significantly dysregulated when comparing dementia 

patients to cognitively normal ones (Teruya et al., 2021). Most importantly, metabolites involved in 

cholesterol metabolism, osmoregulation, and glycolysis have been found to be significantly associated 

with AD traits in the ROS/MAP cohort (Batra et al., 2023). The analysis of metabolite and AD stage 

interplay in this study was limited. We aim to fill this knowledge gap with a comprehensive investigation 

using AutoSGI as a basis. 

 

2.3 Distinct feature sets of metabolites result in distinct patient subgroup hierarchies 

We first analyzed whether feature selection was needed to identify multi-scale subgroups in the context 

of AD. We find that the distribution of metabolite-metabolite correlations derived from ROS/MAP pa-

tient measurements has a mean of 0.0037 and a standard deviation of 0.21 (Fig 1a). Because the distri-

bution of correlations are closely bound near 0, the metabolites are generally independent of each other. 

This means there is high heterogeneity within the biomolecules being measured by ROS/MAP, and 

certain metabolites will not contribute information that is relevant for subgroup identification. Further, 

it is also likely that different metabolite sets will also have unique biological information that impacts 

clustering. We confirm this hypothesis by generating 1000 random metabolite sets. For each feature set, 

we cluster patients using only those features, in a similar fashion as SGI and AutoSGI. We thus produce 

1000 total patient hierarchies. As expected, when measuring their pairwise similarity with cophenetic 

correlation, there is only a moderate mean correlation of 0.41 and standard deviation of 0.081 (Fig 1b). 

Deliberate selection of clinically relevant feature sets to appropriately is therefore crucial for appropriate 

stratification of patients into subgroups. 

 

https://paperpile.com/c/dcCXTd/jWmO
https://paperpile.com/c/dcCXTd/KS3t
https://paperpile.com/c/dcCXTd/2OW1
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Figure 1: Clustering of heterogeneous metabolites sets results in unique patient hierarchies. a. Density plot 

of metabolite-metabolite correlations using ROS/MAP patient data. Range is -1 to 1, which is the Pearson corre-

lation range. b. Density plot of correlations between different multi-scale patient hierarchies identified with hier-

archical clustering of random metabolite feature sets. Range is 0 to 1, which is the normal cophenetic correlation 

range.  

 

2.4 Subgroups in distinct AD stages can be retrieved using AutoSGI 

We applied AutoSGI to the ROS/MAP cohort with the aim of finding multi-scale subgroups that are in 

different stages of AD. The full methodology of AutoSGI is important to understand the results, and is 

described in Methods 3.3. Essentially, AutoSGI finds different sets of metabolites to hierarchically 
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cluster the patients into several hierarchies. In a hierarchy driven by a specific feature set, at every branch 

point in that hierarchy, patients are stratified into two smaller subgroups. AutoSGI finds whether this 

split is clinically relevant by statistically testing the difference in disease state indicators between the 

two subgroups. The hierarchies that best split patients into subgroups in unique disease stages are ana-

lyzed to determine how they characterize AD severity.  

 

We use three common AD biomarkers to measure the disease state a patient is in. These clinical varia-

bles, occasionally referred to as outcomes, are cognitive diagnosis (cogdx), Braak score (braaksc), and 

CERAD score (ceradsc). We chose these outcomes as they capture both physical neuropathology 

(braaksc with tau, ceradsc with amyloid) and cognitive function (cogdx) of a patient. We also include 

all the covariates as outcomes in the analysis to see if it is the driving factor for the disease stage outcome 

differences.  

 

We found a total of 666 potentially relevant patient hierarchies, of which 87 had at least one subgroup 

pair which were significantly different (FDR corrected p-value < 0.05) for an outcome. We manually 

reviewed the remaining hierarchies and analyzed two of the most promising ones. 

 
Higher levels of aromatic amino acids are associated with advanced Alzheimer’s disease stages. 

The first hierarchy was clustered based on three metabolites, tryptophan, phenylalanine, and tyrosine. 

This hierarchy split patients at the top into two subgroups, labeled 2 and 3 (Figure 2a). These subgroups 

had significantly different levels of all three disease stage outcomes. In general, subgroup 3 contains 

healthier individuals in the earlier stages of AD. For example, utilizing the CERAD measure of neuritic 

plaques as a diagnostic measure, twice as many patients in subgroup 2 compared to subgroup 3 had a 

definite AD diagnosis (score of 4). Conversely, more than two times the patients in subgroup 3 had a 

definite “no AD” diagnosis (score of 1) than in subgroup 2 (Figure 2d). We observe similar results for 

Braak score and cognitive diagnosis (Figure 2b-c). Note we reverse CERAD scores in this analysis so 

higher scores indicate more AD progression.   

 
Plotting the metabolic profiles of the patients below the hierarchy, we then noticed higher levels of all 

three metabolites in subgroup 2 compared to subgroup 3. We performed two-sample t-tests on all the 
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metabolite levels and confirmed that the subgroup differences were in fact significant (p < 0.05). Exact 

p-values for these tests are recorded in Supplementary Table 3; boxplots of the metabolites separated 

by subgroup are displayed in Figures 2e-g. We subsequently looked for biological mechanisms these 

metabolites have been reported to be involved in, since our results point to their higher activity driving 

a progressed AD state. First of all, phenylalanine, tyrosine, and tryptophan were found to be the only 

members of the aromatic amino acid group and thus have closely related functions. Specifically, in the 

context of neurological dysregulation, phenylalanine and tryptophan have been upregulated in human 

and mouse brains with AD (Nilsen et al., 2014; Xu et al., 2016). It has also been suggested that trypto-

phan degradation is part of an alternative pathway that forms quinolinic acid, linked to neurodegenera-

tion or oxidative damage in AD patients (Griffin & Bradshaw, 2017). Both findings are supported by 

the fact that the three aromatic amino acids are able to find patient subgroups with differing disease 

stages. Moreover, tyrosine has been studied to a considerably smaller degree than the other two metab-

olites, yet remains informative here; thus, we implicate it as a potential focus for future investigations. 

https://paperpile.com/c/dcCXTd/nBHB
https://paperpile.com/c/dcCXTd/LDKV
https://paperpile.com/c/dcCXTd/nBHB
https://paperpile.com/c/dcCXTd/MEPq
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Figure 2: AutoSGI hierarchy 1 stratifies patients into two distinct subgroups in different stages of cognitive 

and neuropathological health. a. Hierarchy depicting patient subgroups (2 and 3). Split of patients into subgroups 

denoted by the red branch, where numbers on either side are the identification numbers of the subgroups. Outcomes 

marked at the branch split point have significant differences in patient subgroups on either side. Heatmap at bottom 

of plot represents the metabolomics measurements of the clustered patients. b-d. Boxplots of subgroups 2 and 3 

for each ordinal disease stage outcome measure (higher scores correspond to later AD stage characteristics). The 

left subgroup on the first branch split, subgroup 2, is thus less healthy than subgroup 3. e-g. Numeric boxplots 

plotting the metabolites used for clustering for the two subgroups, which also have significantly higher levels in 

subgroup 2. 
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Higher levels of neurotoxic guanidinoacetate and excitatory neurotransmitter glutamate are as-

sociated with advanced AD stages. The second hierarchy was clustered with a panel of seven metab-

olites identified by AutoSGI: N-acetylglycine, 2-aminoadipate, guanidinoacetate, glutamate, glycer-

ophosphoethanolamine, X-25020, and glycerophosphorylcholine. All patients were placed in subgroup 

2 or 3, which had significant differences in cognitive diagnosis (Fig 3a-b). Subgroup 2 in particular had 

lower proportions of late-stage AD signs. Around 75% of subgroup 2 patients had no cognitive impair-

ment (score of 1) or only mild cognitive impairment (score of 2-3). In contrast, the right subgroup in the 

hierarchy, subgroup 3, was generally less healthy with less than half of patients having cognitive diag-

nosis of 3 and lower. However, subgroup 3 was also stratified further into subgroup 4 and 5 shown by 

the blue branch split (Fig 3a). Notably, we observed that patients in subgroup 3 specifically could be 

stratified by outcomes both neuropathological (Braak score) and cognitive (cognitive diagnosis). 

Though subgroup 3 originally indicated it had unhealthier patients overall, at a more granular scale, 

AutoSGI was able to find it had comparatively healthier and unhealthier patients within it. In particular, 

subgroup 4 had more patients in earlier AD stages and subgroup 5 had more patients in later AD stages 

(Fig 3c-d).  

 

We then analyzed metabolic differences in a similar fashion as with hierarchy 1; all the seven metabo-

lites had significantly higher levels in subgroup 3 (Supplementary Table 4), indicating their presence 

may contribute to unhealthier neurological states. For brevity, we only show boxplots for glutamate and 

guanidinoacetate levels (Fig 3a-c, Fig 3e-f). The same observation made for the initial stratification 

holds for the second split of subgroup 3 into subgroup 4 and 5: extremely high metabolic levels were 

present in the unhealthier subgroup 4 and moderately high metabolic levels were present in the healthier 

subgroup 5 (Fig 3g-h). Interestingly, subgroup 5 is healthier than subgroup 4, but is comparatively less 

healthy compared to subgroup 2 at the top of the hierarchy. This means the continuous spectrum of low 

metabolic levels to high metabolic levels generally correspond to the most healthy to least healthy pa-

tients. With a single-level subgroup identification method, this would not have been identified, high-

lighting the unique ability of AutoSGI to successfully find patient stratifications at additional scales. 
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Lastly, we examined the feature set for this hierarchy consisting of the seven metabolites previously 

mentioned. These metabolites belong to several functional classes, including glycerophosphocholine 

and glycerophosphoethanolamine, which play a major role in phospholipid metabolism and had higher 

concentrations in AD brain regions up to 150% and 52%, respectively, corroborating our results (Bluszt-

ajn et al., 1990). Some were also previously determined to individually associate with AD; 2-amino-

adipate had significantly different levels in autosomal dominant AD and sporadic AD brain samples 

(Novotny et al., 2023). Finally, interactions between metabolites were discovered earlier. For example, 

the uptake of glutamate into astrocytes and other cells within the brain has been found to be reduced by 

guanidinoacetate (Marques et al., 2019). This may seem to contradict the high levels of both metabolites 

in ROS/MAP patients with progressed AD outcomes. However, this could be attributed to the bulk 

metabolomics used in our study which lacks cellular resolution. Astrocyte-specific glutamate levels may 

be lower but in this case are not captured as the signal from all the cells are measured together. Single-

cell metabolomics can be used in future studies to elucidate this relationship and the cell-type specific 

abundance of these metabolites. 

https://paperpile.com/c/dcCXTd/5aX8
https://paperpile.com/c/dcCXTd/5aX8
https://paperpile.com/c/dcCXTd/pEJf
https://paperpile.com/c/dcCXTd/3MPG
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Figure 3: AutoSGI hierarchy 2 stratifies patients into subgroups at different scales, each in unique stages 

of neuropathological and cognitive health. a. Hierarchy depicting patient subgroups at various scales. This in-

cludes subgroups 2, 3, 4, and 5, where the latter two originate from subgroup 3 (or more granularly stratified). 

Subgroup splits of patients denoted by the red and blue branches, with numbers on either side of the branches 

indicating the subgroup identification number. Clinical outcomes marked at the branch split point to significant 

differences in that outcome for the patient subgroups on either side.  

 
As discussed earlier in Methods 3.3, when statistically testing for differences between subgroups we do 

not correct for most covariates since they were not significantly correlated with any single metabolite. 

Only the post-mortem interval (pmi) till patient brain sample collection is regressed out of the metabo-

lomics data as it was significantly associated. Yet, none of the covariates were significantly different 

between the subgroup pairs with distinct AD disease stages. In fact, they were usually highly 
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insignificant. Taken together, AutoSGI is able to find feature subsets that utilize underlying metabolic 

information to directly differentiate subgroups by disease stage, rather than by indirect association. 

 

We list the FDR-corrected p-values calculated by the statistical tests between all analyzed subgroups 

and outcomes in Supplementary Tables 1-2.  

 

2.5 AutoSGI stratified patients into robust subgroups with clinical and biological rele-

vance 

The patient subgroups identified in hierarchies 1 and 2 by AutoSGI had potentially meaningful clinical 

differences, but the robustness of the results were not yet assessed. Most metabolites that were utilized 

for patient clustering were not measured in other large-scale AD studies like ADNI. Therefore, to esti-

mate robustness, we relied on calculating stability metrics within the ROS/MAP cohort itself. For each 

analyzed subgroup, the dataset used by AutoSGI to find it was altered 1000 times via resampling. The 

proportion of the original subgroup that was retained every iteration was computed with Jaccard simi-

larity (Hennig, 2007).  

 
In the first hierarchy, subgroups 2 and 3 had average stability scores of 0.79 and 0.7, respectively. 

Though subgroup 3 has a large standard deviation making it less stable, this means it is likely both 

subgroups are well defined (Hennig, 2007; Henning, 2008). Strikingly, the stability of the subgroups in 

the second hierarchy parallel the clinical homogeneity they contain (Fig 4a-b). Subgroup 2 has a mod-

erately high mean stability of 0.67, and we observe that at smaller scales there are no more relevant 

clinical differences between patients. Subgroup 3 on the other hand has a very low mean of 0.51, indi-

cating the metabolic profiles of its patients are poorly resolved against the other subgroup at the same 

scale, subgroup 2. Notably however, when an additional stratification on subgroup 3 is performed by 

AutoSGI, the stability of the new subgroups, 4 and 5, dramatically increase to 0.64 and 0.68 (Fig 4c-f); 

this same stratification also revealed new disease stage differences within subgroup 3. Consequently, 

these results support the argument for separating patients in a robust, biologically intrinsic manner to 

delineate phenotypic differences. 

https://paperpile.com/c/dcCXTd/Qw3y
https://paperpile.com/c/dcCXTd/Qw3y
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Figure 4: Both selected AutoSGI hierarchies able to stratify patients into stable clusters. a-b. Jaccard simi-

larity (stability metric) of patient subgroups 2 and 3 in AutoSGI hierarchy 1 across 1000 bootstraps and plotted as 

a histogram. Means are indicated with dashed red lines. c-f. Jaccard similarity of subgroups in AutoSGI hierarchy 

2, plotted in a similar fashion as a-b. Plots c-d focus on patient subgroups 2 and 3. Plots e-f similarly focus on 

patient subgroups 4 and 5, which are stratified from subgroup 3. 

 

2.6 AutoSGI identifies feature sets which are enriched at various pathway levels 

We also demonstrate that AutoSGI patient hierarchies are interpretable via the feature sets that define 

them. Specifically, we can examine what biological pathways are significantly enriched in these feature 

sets, which consequently allows for a mechanistic investigation of AD. We first determined enrichment 

of metabolite super-pathways and sub-pathways in the AutoSGI feature sets via Fisher’s exact test. We 

then compare the enrichment levels obtained to ones resulting from 3 random ways of sampling features 
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(Methods 3.4). We found that after correction, no feature sets identified by random sampling had en-

richment in sub-pathways. On the other hand, or the top 25% most overrepresented sub-pathways, Au-

toSGI had at least 5 feature sets enriched in those pathways (Fig 5a). AutoSGI also had superior bio-

logical alignment for super-pathways (Fig 5b). Moreover, we noticed that pathways which AutoSGI 

feature sets are enriched in have been found to be involved in important AD traits outside of ROS/MAP; 

this includes pathways like hexoslyceramides (Akyol et al., 2021; Dehghan et al., 2022) and long chain 

saturated fatty acids (Fan et al., 2023), which are the most highly enriched sub-pathways (Fig 5c).  

 

 

Figure 5: AutoSGI feature sets are significantly enriched in biological pathways at several scales. a-b. Num-

ber of feature sets enriched in each sub-pathway/super-pathway for each selection method, from least to greatest. 

The scatterplot was smoothed into a line using locally estimated scatterplot smoothing (LOESS). c-d. Sub-path-

ways and super-pathways most represented in AutoSGI feature sets (top 10 and top 9, respectively). 

 

2.6 AutoSGI outperforms baseline multi-scale clustering 

https://paperpile.com/c/dcCXTd/glo5
https://paperpile.com/c/dcCXTd/hdOU
https://paperpile.com/c/dcCXTd/6FgJ
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Finally, we measure the performance of AutoSGI against baseline approaches on a quantitative level. 

We propose a new metric to measure efficacy of an individual patient hierarchy across several outcomes 

inspired by similar scores for single outcome and single-scale subgroup identification (Rappoport & 

Shamir, 2019; Xie et al., 2024). Briefly, the score combines the strength of the clinical difference be-

tween each of the smaller two subgroups that are stratified in the patient hierarchy, across all stratifica-

tions (Methods 3.7). Therefore, since AutoSGI finds 666 hierarchies, the same number of scores will 

be calculated. We compare the top 25 scores of AutoSGI hierarchies with 3 baseline methods, which 

randomly select feature sets in different ways (Methods 3.7). AutoSGI significantly outperforms the 

baseline approaches numerically, with the highest average score.  

 
It is important to note that AutoSGI best performs in the first 15 hierarchies before the scores decline, 

whereas sampling from all possible feature sets (Random Sampling 3) had a relatively constant score 

for each hierarchy, eventually performing better in the last 10 hierarchies. This observation holds true 

statistically as well. The top 25 AutoSGI scores are significantly greater compared to the first and second 

random sampling method (p < 0.05, Mann-Whitney U test). Only the top 10 AutoSGI scores retain 

significance against the third random sampling method. This may be due to the similarity-based feature 

selection that AutoSGI conducts. Here, the best possible scale for biological information to arise is in-

terrogated at every level. Therefore, a minority of cases will have this natural separation where there is 

an improvement in patient clustering. However, this does not diminish from AutoSGI’s overall success, 

since the best performing hierarchies (and subgroups) are the ones important in a clinical setting. 

https://paperpile.com/c/dcCXTd/OCBE
https://paperpile.com/c/dcCXTd/1yhu
https://paperpile.com/c/dcCXTd/1yhu
https://paperpile.com/c/dcCXTd/OCBE
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Figure 6: AutoSGI outperforms other methods for stratifying patients in a clinically relevant manner. Top 

25 scores for all 4 methods (AutoSGI and 3 random approaches), sorted in reverse order and plotted as a line graph. 

 

2.7. Conclusion & Future Directions 

In this study, we developed AutoSGI, a novel subgroup identification tool that places 500 AD patients 

in the ROS/MAP cohort into subgroups with different disease stages. We evaluated the clinical utility 

and robustness of AutoSGI with several analyses. Here, we discuss evidence to support our argument 

that AutoSGI can effectively leverage metabolic levels of postmortem brain samples to identify sub-

groups at multiple scales.  

 

We analyzed two hierarchies produced by AutoSGI. The first hierarchy split patients into two subgroups, 

labeled 2 and 3. Subgroup 2 patients had significantly higher AD progression, with more severe neuro-

pathological and cognitive indicators. The second hierarchy split patients at several scales; there was an 

initial split of ROS/MAP patients into subgroups 2 and 3, along with an additional stratification of sub-

group 3 into subgroups 4 and 5. We observed that patients in subgroup 2 had significantly less AD 
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severity in this case. Although other clinical distinctions were unable to be made for these patients, 

subgroup 3 could be divided into unhealthier and unhealthier subgroups (subgroup 4 and 5, respectively). 

Given that subgroup 4 still exhibited more advanced phenotypes than subgroup 2, it can be inferred that 

AutoSGI identified low, intermediate, and high severity disease states within each subgroup. When an-

alyzing the stability of these three subgroups, it was also much higher compared to the two subgroups 

split at the first level of the hierarchy. This supports the idea that by splitting patients at every part of a 

hierarchy, we are able to find natural points of strong biological separation (or stability), ultimately 

leading to phenotypic separation as well.  

 

We found that metabolite feature selection via hierarchical clustering results in alignment with known 

biological pathways. In particular, many metabolites were enriched at a sub pathway level and a super 

pathway level. Pathways which were overrepresented included structurally defined groups, such as long 

chain saturated fatty acids and long chain polyunsaturated fatty acids, and functionally defined groups 

like metabolites involved in fructose, mannose, and galactose metabolism. The metabolites used for 

clustering in the 2 hierarchies followed this trend. The first hierarchy was structurally based as it used 

the three aromatic acids, tyrosine, phenylalanine, and tryptophan. These aromatic amino acids are asso-

ciated with advanced AD stages. On the other hand, the seven metabolites in the second pathway were 

more functionally defined, composed of several different metabolic pathways. Glycerophosphocholine 

and glycerophosphoethanolamine are two of these metabolites and are phospholipid catabolic interme-

diates (Blusztajn et al., 1990). Guanidinoacetate, which is neurotoxic and glutamate, an excitatory neu-

rotransmitter, interact and are associated with AD severity as well. However, there was still a presence 

of structural similarity; another two of the metabolites, glutamate and 2-aminoadipate, are homologs 

(Young & Ajami, 2000). Taken together, AutoSGI was able to select metabolites with more concen-

trated biological information compared to the heterogeneity we initially observed. This helped improve 

performance of the method in general, as seen by our comparison against baseline methods. 

 

There are several limitations of this study which we hope to address in future work. First, we only 

identify patient subgroups using brain metabolomics information. However, this may not provide a com-

plete picture of the complex biomolecular systems in AD. There is an increasing amount of evidence 

https://paperpile.com/c/dcCXTd/5aX8
https://paperpile.com/c/dcCXTd/Zmml
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that multi-omics analyses better characterize neurological mechanisms that lead to AD and affect its 

severity. For instance, a transcriptomics and proteomics based approach in human cortical samples de-

fined a potential timeline of “transcriptional, translational and post-translational alterations” relevant to 

neurofibrillary pathology (Marttinen et al., 2019). Similarly, a cohort of patients had multi-omic profil-

ing of their cerebrospinal fluid, or CSF (Clark et al., 2021). It was found that multiple lipids, proteins, 

and metabolites contributed to inter-patient variance, showing the importance of including all biological 

modalities. AutoSGI lends itself well to these kinds of studies since it can be extended to multi-omics 

datasets with integrative hierarchical clustering (Schweickart et al., 2024; X. Zhang et al., 2022) Apply-

ing AutoSGI to other omics modalities in the ROS/MAP cohort like proteomics, epigenetics, 

and transcriptomics, as well as metabolomics, would be one natural direction to explore. 

 

Second, the subgroups we found were part of a single-cohort study, albeit a large one. As a result, de-

termining if the feature sets used for clustering are effective on other cohorts would increase the gener-

alizability of our results. We did not conduct such an analysis in this paper because metabolites measured 

in ROS/MAP were usually not measured in other common AD cohorts like ADNI (St John-Williams et 

al., 2017). A recent set of 342 brain samples from the Mayo Clinic Brain Bank may allow for such an 

analysis since it measures a group of metabolites that overlap more with the ROS/MAP data. Alterna-

tively, we are currently testing the conversion of individual metabolite measurements in the ROS/MAP 

cohort to metabolic sub-pathway enrichment scores. Feature sets with this transformed data would the-

oretically consist of sets of pathways that interact or are similar. This approach is promising for three 

reasons. Crucially, sub-pathway annotations can be standardized across cohorts more easily compared 

to individual metabolite names. Pathway enrichment scores have also improved cohort transferability in 

other scenarios because of the use of multiple features to stabilize signals (Blum et al., 2022; Tang et 

al., 2022). Furthermore, the interpretability of the results could potentially increase since we use path-

way enrichment scores for features; any subgroups identified with phenotypic differences can then be 

explained by these pathways, which are constructed using prior biological knowledge.  

 

Finally, AutoSGI produced many potentially relevant hierarchies but required manual selection to iden-

tify the ones promising enough for analysis. We did create a metric to score random patient hierarchies 

https://paperpile.com/c/dcCXTd/gXDn
https://paperpile.com/c/dcCXTd/ikq8
https://paperpile.com/c/dcCXTd/Ttfp
https://paperpile.com/c/dcCXTd/1Bbw
https://paperpile.com/c/dcCXTd/G1bg
https://paperpile.com/c/dcCXTd/G1bg
https://paperpile.com/c/dcCXTd/6NxI
https://paperpile.com/c/dcCXTd/F0In
https://paperpile.com/c/dcCXTd/F0In
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against AutoSGI ones, but we found that it is useful for general comparison between sets of hierarchies, 

and not individual ones. Ranking hierarchies requires consolidation of many factors like the number of 

significant splits, the separability of metabolite levels between subgroups, and the levels of subgroup 

stratification, which is currently not feasible. We rely on an initial filtering like the one used in this study 

(leaving 87 hierarchies out of a total of 666) to reduce the number of hierarchies that need to be manually 

considered instead.   

 

In conclusion, we present the first metabolomics-guided investigation that stratifies AD patients into 

multiple levels of subgroups using data-driven feature selection. At the core of our analyses was the 

development of the AutoSGI framework. We demonstrated AutoSGI’s unique ability to  simultaneously 

(1) assess a patient’s disease state for clinical intervention and (2) find metabolic signatures that provide 

insight into AD mechanisms. Future work will focus on multi-omic and multi-cohort applications. Over-

all, this research will contribute to an evolving knowledge base regarding AD etiology, directing indi-

vidualized treatment in the future. 
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3. Methods 

3.1 Data Preprocessing 

ROS/MAP metabolomics data was collected as described in Results 2.1. We preprocessed the raw un-

targeted metabolomics measurements in a similar manner as Batra et al. in the original analysis of the 

data (Batra et al., 2023). Briefly, 667 metabolites with at least 75% values present (measured in 375 

patients or more) were kept. The metabolite variance was minimized using probabilistic quotient nor-

malization and transformed with a logarithmic scale. Outliers were then detected and a pipeline for 

imputation was performed. Finally, the distributions of metabolite values were brought to a comparable 

scale with standardization.  

 

3.2 Determining importance of feature sets for clustering 

We first measured the diversity of the metabolites measured in the ROS/MAP dataset by calculating all 

metabolite-metabolite correlations (with Pearson’s correlation coefficient). Smaller correlation magni-

tude as a whole would indicate that the metabolites were biologically heterogeneous. This would pre-

sumably also impact multi-scale patient clustering, the focus in this study. We thus assessed whether 

using a subset of metabolites to create patient hierarchies would change the multi-scale clusters produced. 

Accordingly, we randomly sampled the 667 ROS/MAP metabolites for 1000 repetitions, generating a 

new feature set each time. Then, we performed hierarchical clustering with Euclidean distance as a 

dissimilarity metric and Ward’s method as a linkage approach. Between each pair of these patient hier-

archies, we calculated the cophenetic correlation. This metric is a common quantitative measure of how 

similar two hierarchies are by comparing where each pair of patients are merged in either one. The 

distribution of cophenetic correlations across all pairs of metabolite set derived hierarchies would indi-

cate appropriate metabolite selection for patient clustering is important when the mean is far from 1 or 

the variance is large.  

 

3.3 AutoSGI  

Here, we describe the AutoSGI algorithm, which is the central contribution of this paper. An overview 

of the AutoSGI pipeline is displayed below (Fig 7). As mentioned previously, we extend SGI 

https://paperpile.com/c/dcCXTd/2OW1
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(Buyukozkan et al., 2022), our original approach for subgroup identification, to build the AutoSGI 

framework (Introduction). In particular, SGI would find patient subgroups in the ROS/MAP cohort 

using hierarchical clustering of all their feature measurements. But, this could lead to non-clinically 

relevant subgroups due to the presence of features which are not informative of the disease. AutoSGI 

addresses this problem by subsetting the features and testing each set to identify feature sets that inform 

AD severity. Specifically, we argue that features with similar measurements in the patient cohort will 

be biologically similar and are more likely to jointly influence related phenotypes. Multiple studies have 

observed this general idea (Schweickart et al., 2024; Qiu et al., 2023). With this motivation in mind, 

AutoSGI performs secondary hierarchical clustering on the 667 features themselves. The clusters that 

form are cut at every level, producing 666 feature sets.  

 
For each of these identified feature sets, AutoSGI applies a similar methodology as SGI for multi-scale 

subgroup identification. In brief, for a specific feature set, AutoSGI hierarchically clusters the patients 

with Euclidean distance and Ward linkage. We refer to the patient clusters altogether as a hierarchy. 

Patients in a larger subgroup in a hierarchy are split into two smaller ones at every branch point; these 

two smaller subgroups are called subgroup pairs. We test these subgroups for differences in Braak scores, 

CERAD scores and clinical diagnosis outcomes (disease stage indicators) using ordinal regression from 

the rms package. Since there are many statistical tests being conducted, we apply false discovery rate 

(FDR)-based multiple testing correction on the resulting p-values from each test across all the hierar-

chies. 

https://paperpile.com/c/dcCXTd/Y1AK
https://paperpile.com/c/dcCXTd/Ttfp
https://paperpile.com/c/dcCXTd/plAA
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Figure 7: Overview of the AutoSGI pipeline. AutoSGI follows the 4 major steps displayed in this figure to 

ultimately produce the ROS/MAP patient hierarchies. These hierarchies contain subgroup pairs at multiple scales 

that are tested for significant differences in disease stage biomarkers, prompting further analysis in some cases. 

 

3.4 Examining disease stage differences in subgroups identified by AutoSGI 

We used AutoSGI in the ROS/MAP cohort to find 666 distinct patient hierarchies each with multi-scale 

subgroups. We considered 87 hierarchies which split the patients at the first level of the tree into two 

subgroups with significant differences in any disease stage outcome, filtering out the rest. This was a 

stringent enough threshold to allow for evaluation of the remaining hierarchies within a reasonable 

amount of time. However, the rigor of the rule being used for filtering should be adjusted based on the 

number of biomolecular features being measured for each patient, since this will correspond with the 

number of hierarchies AutoSGI identifies.  

 

We selected 2 final hierarchies for downstream analysis. In each hierarchy, the outcome differences 

between all relevant subgroup pairs were plotted as an ordinal boxplot. The metabolomics measurements 

that drove that clustering were plotted as a numeric boxplot. 
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3.5 Evaluating stability of patient subgroups 

The stability of the subgroups identified by AutoSGI in the two hierarchies we chose was examined 

next. We define a subgroup S as more stable if it is resilient to perturbations in the ROS/MAP measure-

ments. That is, the overall subgroup structure should appear in a new hierarchy constructed from data 

without major changes. We utilize a previously proposed algorithm for this purpose as it is applicable 

for general cluster robustness scoring (Hennig, 2007; Hennig, 2008). The R package fpc implements 

this procedure (clusterboot) and was used in this analysis (R: Clusterwise Cluster Stability Assessment 

by Resampling, 2024.). Essentially, the score of S describing its stability is calculated by first resampling 

ROS/MAP metabolomics measurements without replacement for 1000 bootstrap replications. The hier-

archical clustering process that AutoSGI performs is conducted for each iteration. The score is then the 

maximum Jaccard index between the subgroups of the new tree at the same scale as S in the original 

tree, and S itself. We plot the stability scores over the bootstrapped replications for the subgroups 

deemed relevant (Methods 3.4) with a histogram and compute their individual means.  

 

3.6 Measuring biological alignment of AutoSGI feature sets  

AutoSGI performs dual hierarchical clustering for both features and patients as detailed in section 2.3. 

We wanted to see if the 666 candidate feature sets AutoSGI identifies in this way aligns with prior 

biological knowledge, specifically metabolic pathways. To this end, we collected available metabolite 

annotations at a super-pathway (9 total) and sub-pathway level (102 total). For every pathway, we per-

formed Fisher’s exact test on each feature set to determine if there was significant enrichment in that 

pathway. Bonferroni correction was used to account for multiple tests. Finally, to confirm that any en-

richment is not due to the size of the feature sets chosen but rather the similarity-based clustering itself, 

we compared the levels of pathway overrepresentation to 3 random selection methods. These methods 

also select 666 feature sets, either by (1) randomly sampling sizes from the distribution of AutoSGI 

feature set sizes, and then selecting feature sets with those fixed sizes; (2) sampling sizes in correspond-

ence (one to one) with the AutoSGI feature set sizes and then selecting feature sets with that those sizes; 

or (3) randomly selecting a feature set from all possible feature sets. 

 

https://paperpile.com/c/dcCXTd/xQ79
https://paperpile.com/c/dcCXTd/xQ79
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3.7 Quantitatively benchmarking AutoSGI 

To conclude the analyses, we developed a quantitative metric to benchmark the performance of AutoSGI 

in identifying clinically relevant subgroups. Previous scores have been developed for single-scale sub-

group identification for a single outcome using the p-value from a two-sample statistical test (Rappoport 

& Shamir, 2019; Xie et al., 2024). We extend this metric to scoring multi-scale subgroup identification 

over several outcomes by applying it across every subgroup pair and clinical outcome.  

 

Specifically, the score defined for a single multi-scale subgroup identification result follows: 

 
 

Here, the ps,c refers to the corrected p-value obtained from testing for a difference in clinical outcome c 

on subgroup pair s. Note that this score is not necessarily an accurate metric to rank individual hierar-

chies in terms of effective subgroup identification. This is because it is hard to explicitly capture the 

various choices a researcher is making in selecting the most promising hierarchies. Rather, it can meas-

ure the efficacy of AutoSGI compared to baseline approaches with a global fashion. 

 

These baseline approaches (3 in total) use the same subgroup identification scheme as AutoSGI, but 

with the feature sets as described in section 2.6. Thus, a total of 666 scores will be generated for each 

selection method. We compare the scores of the top 25 hierarchies from each approach.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://paperpile.com/c/dcCXTd/OCBE
https://paperpile.com/c/dcCXTd/1yhu
https://paperpile.com/c/dcCXTd/1yhu
https://paperpile.com/c/dcCXTd/OCBE
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4. Supplement 

4.1 Supplementary Table 1. Corrected p-values from statistical tests for outcome differences 

in hierarchy 1. Significant p-values less than 0.05 are highlighted in gray. 

Subgroup Pair Clinical Variable Name FDR corrected p-value 

2vs3 anye4 1.00000000000 

2vs3 cogdx 0.02648850202 

2vs3 age_death 0.97683522830 

2vs3 educ 1.00000000000 

2vs3 msex 0.11863005582 

2vs3 braaksc 0.00153476574 

2vs3 ceradsc 0.00007591131 

2vs3 pmi 1.00000000000 

2vs3 bmi 1.00000000000 
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4.2 Supplementary Table 2. Corrected p-values from statistical tests for outcome differences 

in hierarchy 2. Significant p-values less than 0.05 are highlighted in gray. 

Subgroup Pair Clinical Variable Name FDR corrected p-value 

2vs3 anye4 1.000000000  

2vs3 cogdx 0.001344414  

2vs3 age_death 0.972782985  

2vs3 educ 1.000000000  

2vs3 msex 1.000000000  

2vs3 braaksc 0.444417072  

2vs3 ceradsc 0.052884063  

2vs3 pmi 1.000000000  

2vs3 bmi 1.000000000  

4vs5 anye4 1.000000000 

4vs5 cogdx 0.04738144  

4vs5 age_death 0.94826898  

4vs5 educ 1.00000000  

4vs5 msex 0.87429648  

4vs5 braaksc 0.02310150  

4vs5 ceradsc 0.06850478  

4vs5 pmi 1.00000000  

4vs5 bmi 1.00000000 

 

 

 

 

 

 



 

27 

 

4.3 Supplementary Table 3. p-values from statistical tests for metabolite differences in sub-

groups analyzed from hierarchy 1. Significant p-values less than 0.05 are highlighted in gray. 

Subgroup Pair Metabolite Variable Name p-value 

2vs3 phenylalanine 6.708134e-74    

2vs3 tryptophan 1.643506e-66 

2vs3 tyrosine 2.359875e-76  

 

4.4 Supplementary Table 4. p-values from statistical tests for metabolite differences in sub-

groups analyzed from hierarchy 2. Significant p-values less than 0.05 are highlighted in gray. 

Subgroup Pair Metabolite Variable Name p-value 

2vs3 N-acetylglycine 1.806655e-16 

2vs3 2-aminoadipate  1.232717e-26 

2vs3 guanidinoacetate 1.194706e-19  

2vs3 glutamate 1.912826e-43 

2vs3 glycerophosphoethanolamine 1.327059e-29  

2vs3 X-25020 6.891636e-52 

2vs3 glycerophosphorylcholine 1.194620e-34 

4vs5 N-acetylglycine 3.942103e-21  

4vs5 2-aminoadipate 1.142067e-29 

4vs5 guanidinoacetate 3.626545e-31  

4vs5 glutamate 1.633228e-22 

4vs5 glycerophosphoethanolamine 8.668945e-20 

4vs5 X-25020 1.028341e-11 

4vs5 glycerophosphorylcholine 4.701493e-24  

 

 

4.5 Supplementary Code. Please find all code needed to replicate these analyses, as well as 

the general AutoSGI package code, attached as a zip file with this project submission. 
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