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Beyond Additivity: Sparse Isotonic Shapley Regression
toward Nonlinear Explainability

Jialai She

Abstract

Modern economic and financial analysis increasingly relies on complex models to

capture nonlinear, high-dimensional, and sequential patterns in macroeconomic and

market data. This complexity has outpaced existing explainability tools, creating a

pressing need for robust, interpretable methods that can identify the true drivers of

economic outcomes and inform policy or investment decisions. Shapley values, a widely

used standard for feature attribution in explainable AI, face two key limitations in this

context. First, the canonical Shapley framework assumes an additive worth function,

yet real-world payoff structures—shaped by non-Gaussian distributions, heavy tails,

feature dependence, or domain-specific loss scales—often violate this assumption, re-

sulting in distorted attributions. Second, achieving sparsity by computing dense Shap-

ley values and then applying ad hoc thresholding often leads to inconsistent results

and is computationally demanding.

We propose Sparse Isotonic Shapley Regression (SISR), a unified framework for

nonlinear, sparse model interpretation. SISR simultaneously learns a monotonic trans-

formation to restore the additivity required by Shapley theory, without requiring a

specified functional form, and enforces exact sparsity through L0 regularization. SISR’s

optimization leverages Pool-Adjacent-Violators for efficient isotonic regression and it-

erative normalized hard-thresholding for support selection, with theoretical guarantees

for global convergence.

Empirical studies show that SISR accurately recovers both the true transformation

and support, even in noisy settings. Notably, our results reveal for the first time that

correlated or irrelevant features can induce substantial deviations from linearity in the

payoff—a phenomenon common in economic applications. Across regression, classifi-

cation, neural networks, and tree ensembles, SISR stabilizes attributions across payoff

schemes and reliably filters out irrelevant features, while standard Shapley values often

suffer severe rank and sign distortions. By jointly estimating nonlinear transformations

and enforcing sparsity, SISR provides a theoretically grounded and practical approach

to interpretable machine learning in economics.

Keywords: Shapley value, machine learning explainability, isotonic regression, sparsity
pursuit
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1 Introduction and Motivation

Let F = {1, 2, . . . , p} denote the set of p features, and let ν : 2F → R be the
characteristic function or payoff function, with ν(A) representing the contribution or
worth generated by a subset A ⊆ F of features working together (often referred to as
a coalition in game theory). A central question in economics and cooperative game
theory is how to fairly allocate the value of a coalition to its individual members. The
Shapley value (Shapley, 1953), a concept from Nobel laureate Lloyd Shapley, offers
a theoretically grounded solution by assigning payoffs according to each member’s
average marginal contribution across all possible subsets.

In this paper, we denote the Shapley value for feature j by βj for 1 ≤ j ≤ p,
quantifying the fair share or importance of feature j; for a subset A ⊆ F we define βA

as the vector [βj]j∈A ∈ R|A|. For brevity, we also write νA as shorthand for ν(A) for
any subset A ⊆ F . Shapley values establish a connection between the payoff function
ν(A) and the underlying model parameters βA. To make this dependence explicit, we
introduce a function V (β1, . . . , βp;A), also denoted by VA({βj}j∈A), characterizing
the deterministic, noise-free contribution associated with subset A:

νA ∼ VA({βj}j∈A), (1)

where ∼ denotes approximate equality up to noise, a convention adopted throughout
the paper.

In recent years, Shapley values have attracted substantial attention in machine
learning, particularly in the field of Explainable AI (XAI) (Ancona et al., 2019).
While assessing variable importance in simple regression is straightforward using
traditional tools like T -tests and p-values, this task becomes a formidable challenge
for the complex, “black-box” models now widely used to analyze sequential data in
economics and finance. For sophisticated models—ranging from tree-based ensembles
like random forests and boosted trees to deep neural networks like Long Short-Term
Memory (LSTM) networks—standard inference methods are no longer applicable,
making interpretation notoriously difficult.

Shapley values provide a model-agnostic framework for attributing predictive
performance to individual features by casting feature contributions as a cooperative
game. Specifically, for a prediction model f(x), where x ∈ Rp, researchers first design
a payoff function νA over subsets A ⊆ F to quantify the model’s performance when
using only the features in A. This reframes the explanation task as a “credit allo-
cation” problem, enabling the use of Shapley values to quantify feature importance,
and perhaps more importantly, to construct interpretable surrogate models based on
restricted feature sets.
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However, standard Shapley-based methods also face several limitations that re-
strict their practical utility in complex modeling scenarios.

(i) Moving beyond additive frameworks: Given a prediction model f , vari-
ous methods have been proposed to construct the payoff function νA for Shapley-value
analysis. (a) A fundamental approach involves retraining the model on every subset
of features A and defining νA based on the reduction in statistical accuracy (such
as R2 in regression) (Lipovetsky and Conklin, 2001; Covert et al., 2020). However,
this may be computationally prohibitive for modern AI models due to its expo-
nential cost. (b) To circumvent retraining, Lundberg and Lee (2017) approximates
νA by masking absent features in a fixed neural network and imputing them with
samples from a background (or baseline) distribution. (c) In tree ensembles, Tree-
SHAP efficiently marginalizes missing features by splitting the model’s output across
branches, weighted by training data proportions (Lundberg et al., 2018). (d) Many
more payoff constructions exist—for example, sampling guided by conditional and
marginal feature distributions (Covert et al., 2020) and derivative-based methods for
scalable computation (Duan and Okten, 2025). Notably, each surrogate method ap-
proximates risk reduction under specific assumptions, such as feature independence,
distributional priors, or model smoothness. Once νA is constructed, researchers often
mechanically apply the Shapley formula to compute feature attributions.

However, the theoretical justification for Shapley values relies on several founda-
tional “axioms’’—efficiency, symmetry, linearity, and nullity (Shapley, 1953)—which
are not easily testable and are rarely validated in practice. In particular, Shapley’s
framework implicitly assumes an additive structure (Lundberg and Lee, 2017):

νA ∼
∑
j∈A

βj or VA({βj}j∈A) =
∑
j∈A

βj. (2)

But the so-called additive feature attribution is not guaranteed to hold in real-world
constructions of coalition values. For example, we can reformulate the abstract Shap-
ley axioms and principles into a multivariate Gaussian assumption (cf. Section 2),
but many of the constructions mentioned previously are prone to violating this as-
sumption due to non-Gaussian characteristics such as bounded ranges, heavy tails,
and skewness. In particular, Fryer et al. (2021) recently proposed a realistic “taxi-
cab” payoff defined by a winner-takes-all dynamic that is in stark contrast to (2):

VA({βj}j∈A) = max
j∈A

βj, ∀A ⊆ 2F . (3)

Such nonlinear relations are prevalent in applications but fundamentally violate the
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additive model underpinning standard Shapley value estimation.

(ii) Embedding sparsity into value attribution: In many real-world ap-
plications with a large number of features, a substantial proportion contribute only
negligibly—or are effectively irrelevant—to the overall outcome, making them unnec-
essary to explain in practice (Strumbelj and Kononenko, 2014; Covert et al., 2020).
Exploiting the structural parsimony can enhance both statistical accuracy and inter-
pretability of Shapley values. In implementation, leveraging sparsity helps to reduce
iteration complexity, thanks to a substantially smaller effective model size, along
with mitigating communication costs and storage requirements in high-dimensional
settings.

However, most existing approaches adopt a greedy strategy by first comput-
ing dense Shapley values based on the full model, followed by post hoc ranking or
thresholding to achieve sparsity (Cohen et al., 2007; Jothi et al., 2021; Fryer et al.,
2021; Au et al., 2022). For large p, such multi-step procedures are not only ineffi-
cient but may also fail to provide faithful explanations or meaningful selection (see,
e.g., Covert et al. (2020); Slack et al. (2020); Ma and Tourani (2020)). To the best
of our knowledge, no widely adopted framework integrates sparsity as an intrin-
sic property into Shapley-value estimation, let alone in the context of an unknown
transformation. These challenges indicate the need for developing unified approaches
that simultaneously enforce sparsity and ensure coherent Shapley-based attributions.

This paper aims to develop a novel nonlinear explanation framework for applying
the Shapley mechanism in a way that simultaneously aligns individual feature con-
tributions with appropriately transformed worths across all subsets, and promotes
sparsity by eliminating irrelevant features to enhance both computational efficiency
and statistical accuracy. The contributions of our work are as follows:

� Our research is the first to demonstrate that common factors such as the pres-
ence of irrelevant features and inter-feature dependencies can induce a payoff
transformation that deviates substantially from linearity, even when using stan-
dard payoff constructions (e.g., R2-based worths). This finding underscores the
need for nonlinear explainability frameworks.

� We propose Sparse Isotonic Shapley Regression (SISR), the first framework to
jointly address nonlinearity and sparsity in Shapley attributions. By learning
a monotonic transformation and enforcing an ℓ0 constraint simultaneously, our
integrated approach overcomes the limitations of ad-hoc methods.
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� SISR learns the transformation of payoffs without requiring a predefined ana-
lytical form. This is achieved through efficiently leveraging the Pool-Adjacent-
Violators algorithm, allowing the model to adapt to diverse real-world payoff
structures.

� The optimization algorithm developed for SISR features simple, closed-form
updates and is accompanied by global convergence guarantees. The incorpo-
ration of sparsity improves computational efficiency

� Through extensive experiments across various datasets and payoff schemes,
we show that SISR significantly stabilizes feature attributions and correctly
identifies relevant features, mitigating the severe rank and sign distortions often
observed with standard Shapley value applications.

The rest of the paper is organized as follows. Section 2 proposes a novel Sparse
Isotonic Shapley Regression model to address challenges related to domain adapta-
tion and high dimensionality. In Section 3, an optimization-based algorithm is de-
veloped to address the functional challenge and the nonsmooth sparsification, with
established theoretical guarantees. Section 4 provides valuable data-driven insights
drawn from experiments in various scenarios. We conclude in Section 5.

In accordance with submission guidelines, the author has also submitted a sepa-
rate work titled, “Structured Modeling of Cancer Pharmacogenomic Outcomes under
Latent Confounding,” to the biology category.

2 Proposed Method

The Shapley axioms and principles have been interpreted by economists in various
ways (Algaba et al., 2019). Here, we recast the Shapley framework as a statistical
assumption on the data-generating process. To begin, let us revisit a motivating
weighted least squares formulation of Shapley value estimation as derived in Lundberg
and Lee (2017), echoing earlier developments in econometrics (Charnes et al., 1988):

min
β∈Rp,c∈R

∑
A⊆2F , A̸=∅, A̸=F

wSH(A)

(
νA −

∑
j∈A

βj − c

)2

subject to c = ν∅, c+

p∑
j=1

βj = νF ,

(4)
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where the Shapley weights are given by

wSH(A) =
p− 1(

p
|A|

)
|A|(p− |A|)

. (5)

Perhaps surprisingly, it can be shown that the optimal solution β̂ to (4) recovers
the exact Shapley values (Lundberg and Lee, 2017), which are traditionally derived
based on the concept of marginal contributions across all possible feature coalitions.

If we define

wSH(∅) = +∞, wSH(F ) = +∞ (6)

as an extension of (5), then (4) can be written as

min
β,c

∑
A⊆2F

wSH(A)(νA −
∑
j∈A

βj − c)2

where A can take any subset of the power set 2F . Note that when A = ∅,
∑

j∈A βj = 0
by convention and ĉ = ν∅. It is thus convenient to define the baseline-adjusted
coalition values:

νc
A = νA − ν∅, ∀A ⊆ 2F , (7)

which saves one parameter in the subsequent optimization:

min
β

∑
A⊆2F

wSH(A)

(
νc
A −

∑
j∈A

βj

)2

.

For notational simplicity, we will write ‘νc
A’ as just ‘νA’, assuming that all ν values

have been properly shifted according to (7) unless otherwise specified.
It is helpful to reinterpret the weighted least squares formulation of Shapley values

as a probabilistic model:

νA ∼ N (µA, σ
2
A)

µA =
∑
j∈A

β∗
j ,

σ2
A ∝

(
p

|A|

)
|A|(p− |A|) (∝ 1

wSH(A)
),

(8)
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and all νA’s are independent. Here, β∗
j denotes the true Shapley value for the jth

feature.
By reformulating the Shapley axioms and principles into assumption (8), we gain

insight into why numerous payoff functions may not meet the model criteria. Indeed,
due to issues such as range constraints, skewness, heavy tails, and heterogeneity, it
is natural to question the appropriateness of the multivariate Gaussianity across
different definitions of coalition values.

In our view, one viable solution is to apply a transformation that promote Gaus-
sianity. Let’s consider an alternative Shapley value model in a transformed domain:

T (νA) ∼ N (
∑
j∈A

T (β∗
j ), σ

2
A), (9)

where T (·) is an unknown transformation. Under this model,

E [T (νA)] =
∑
j∈A

T (β∗
j ), (10)

which defines a “T -additive” framework for nonlinear settings. To model this struc-
ture, we propose a new Shapley framework termed Functional Shapley Regression,
which jointly estimates β and T (·) by solving

min
β,T (·)

∑
A⊆2F

wSH(A)
{
T (νA)−

∑
j∈A

T (βj)
}2

subject to β ∈ C, T (·) ∈ T , (11)

where the objective minimizes the Shapley-weighted sum of squared differences be-
tween the transformed coalition values T (νA) and the transformed linear sum

∑
j∈A T (βj)

over all subsets A ⊆ 2F . Here ,we use C ⊆ Rp to denote the constraint set for β,
and T to denote the class of admissible transformation functions. By the notational
convention for A = ∅, (11) automatically enforces

T (0) = 0,

corresponding to T (ν∅) = 0 (recall all νA have been centered).
The remark below illustrates that our framework, in contrast to the common

additive model (see, e.g., Lundberg and Lee (2017)), accommodates a broader range
of multivariate structures in the payoff function, enabling nonlinear explainability.

Remark 1 (Univariate T -Mappings for Multivariate Structure). Introducing
a univariate transformation T (·) enables a remarkably rich class of models capable
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of capturing complex multivariate relationships between νA and {βj : j ∈ A}, well
beyond the standard additive form.

Specifically, under the T -transformed model (9), assuming the existence of the
inverse transformation T−1 and using the notation VA (cf. (1)) we have

VA({βj}j∈A) = T−1
(∑

j∈A

T (βj)
)

or νA ∼ T−1
(∑

j∈A

T (βj)
)
. (12)

If T is a nondegenerate linear map like the identity map, the model reduces to the
conventional additive Shapley game, where the coalition value νA in (12) is essentially
a simple sum of individual contributions. However, a general transformation allows
(12) to adapt to a broad range of application domains.

For instance, consider a monomial transformation T (x) = |x|d for some d > 0,
which induces a multivariate “d-norm” relationship:

VA({βj}j∈A) =
(∑

j∈A

|βj|d
)1/d

= ∥βA∥d.

Varying the degree d recovers a spectrum of geometric structures, e.g.,

(i) d = 1: the ℓ1-norm polytope, VA({βj}j∈A) =
∑

j∈A |βj|;

(ii) d = 2: the ℓ2-norm ball, VA({βj}j∈A) =
(∑

j∈A β2
j

)1/2
;

(iii) d→∞: the ℓ∞-norm cube, VA({βj}j∈A) = maxj∈A |βj|.

In particular, under nonnegativity constraints (νA ≥ 0, βj ≥ 0), the ℓ∞ case corre-
sponds to the winner-takes-all mechanism as first noted in Fryer et al. (2021), where
the coalition value is dominated by the largest individual contribution (practically,
monomial transformations with large degrees d can closely approximate such behav-
ior). This is motivating, as the examples here are highly nonlinear and incompatible
with a linear Shapley game. Yet, with a univariate transformation, they can be incor-
porated into the T -Shapley framework. Additional examples are the exponential form
T (x) = exp(x)− 1 and the odds form T (x) = Φ(x)/(1−Φ(x)) with Φ a distribution
function of a continuous random variable.

In sum, an appropriately chosen T (·) establishes a versatile nonlinear modeling
mechanism that enhances the additive expressiveness of Shapley values for XAI. An-
other advantage of the proposed approach is that it bypasses the need for a predefined
analytic transformation, instead learning it directly from the data (cf. Section 3).
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In this paper, we focus a specific instance of (11), referred to as the “Sparse
Isotonic Shapley Regression” (SISR):

min
β,T (·)

∑
A⊆2F

wSH(A)
{
T (νA)−

∑
j∈A

T (βj)
}2

subject to ∥β∥0 ≤ s, T ∈M,

p∑
j=1

(T (βj))
2 = 1,

(13)

where M denotes the class of strictly increasing functions and 1 ≤ s ≤ p specifies
the user-defined upper bound on the true model sparsity. (13) incorporates three
critical modeling considerations.

Monotonicity. We impose a monotonicity constraint on T (·) to preserve the rel-
ative ordering of feature importance values:

βi ≥ βj ⇒ T (βi) ≥ T (βj).

This ensures that the learned transformation respects the relative contribution lev-
els of individual features. The structure closely resembles isotonic regression
(Robertson et al., 1988), which seeks a weighted least squares fit under monotonicity
constraints and has widespread applications in psychometrics, epidemiology, yield
curve estimation, risk modeling and credit scoring studies. Compared with enforcing
smoothness in T , our monotonicity approach avoids any need for a basis expansion or
other parametric representation. Pursuing T reinterprets the data in a transformed
domain where feature contributions recover an additive Shapley structure.

Normalization. A normalization is imposed on the transformed feature contri-
butions,

∑p
j=1(T (βj))

2 = 1. This prevents degeneracy (e.g., trivial solutions such
as T ≡ 0) and anchors the scale of the model. An appealing feature of (13) is its
invariance to the overall scaling of {νA}, and the normalization constant is fixed at
1 without loss of generality. Moreover, Section 3 will show that imposing such a
spherical constraint yields computational benefits, enabling a closed-form solution
for the attribution-update and improving implementability.

Sparsity. (13) directly incorporates sparsity into the Shapley estimation process.
Rather than relying on multi-step methods that first estimate a dense Shapley vector
and then rank features (Slack et al., 2020), the formulation constrains the support
of β̂ while pursuing the transformation during the iterative optimization process (cf.
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Algorithm 1). This unified treatment ensures that sparsity, domain adaptation, and
Shapley coherence are achieved simultaneously, avoiding inconsistencies by post hoc
selection. Unlike the popular ℓ1-penalty λ

∑
|βj|, which requires cumbersome λ-

tuning and induces unwanted shrinkage, our ℓ0 regularization provides direct control
over the model’s sparsity level. This is advantageous in fields like bioinformatics,
where practitioners often require a pre-specified number of features. For cases where
s must be tuned, we find the RIC criterion (Foster and George, 1994) is an effective
selection method within our Shapley framework.

Before concluding this section, we introduce a reparameterization trick that proves
beneficial for both modeling and computation. Define

γj = T (βj). (14)

Since T is strictly increasing and T (0) = 0 (the loss would become infinite if T (0) ̸=
0), (13) can be rewritten as

min
γ,T (·)

∑
A⊆2F

wSH(A)(T (νA)−
∑
j∈A

γj)
2 s.t. ∥γ∥0 ≤ s, ∥γ∥2 = 1, T ∈M. (15)

The corresponding model assumption is thus T ∗(νA) ∼ N (
∑

j∈A γ∗
j , σ2

A) for all A ⊆
2F , where the genuine transformation function T ∗ is monotonic with T ∗(0) = 0, and
νA are assumed to be independent across different subsets A. The starred quantities
represent the underlying statistical truth of interest to estimate. Assume γ∗ ∈ Rp

satisfies ∥γ∗∥0 ≤ s∗ and ∥γ∗∥2 = 1 with 1 ≤ s∗ ≤ p and s is specified as an upper
bound on s∗. After estimating γ̂ and T̂ from (15), one can recover the β-scores by
applying the inverse transformation β̂j = T̂−1(γ̂j). This reconstructs the multivariate
relationship between νA and the set of feature contributions in the original scale,
yielding νA ≈ T̂−1(

∑
j∈A T̂ (β̂j)), to offer interpretable Shapley-based attributions.

3 Optimization Algorithm

The optimization of SISR involves two main challenges: (i) a functional estimation
component, and (ii) a combinatorial sparsity constraint coupled with a nonconvex
normalization constraint. We show that the functional challenge can be addressed
by a discretization technique, which, rather than introducing an approximation, pre-
serves full equivalence. To handle the two constraints on γ, we develop a surrogate
function framework. These efforts lead to an iterative procedure that combines the

9



pool-adjacent-violators with a normalized hard thresholding. Each step has imple-
mentation ease and the sparse structure ensures that the overall algorithm remains
efficient in high-dimensional settings.

First, since T (·) is only evaluated at the observed values νA in the objective
function, we “discretize” (15) by introducing the vector

t =
[
T (νA)

]
A⊆2F

∈ R2p .

In defining this vector, one should fix a specific order over subsets A ⊆ F ; we
follow the conventional lexicographic binary ordering to arrange the entries of t.
Correspondingly, we define

ν =
[
νA
]
A⊆2F

∈ R2p , δ =
[∑

j∈A

γj

]
A⊆2F

= Zγ ∈ R2p ,

where Z ∈ R2p×p is the “incidence matrix” indicating which features are active in
each subset A, aligned with the same ordering used for t. Henceforth, we also write
νi (and likewise δi) to denote the entry corresponding to the ith subset. Additionally,
introduce the diagonal weight matrix

W = diag{wSH(A)}A⊆2F . (16)

With this notation in place, we study the following optimization problem:

min
γ∈Rp, t∈R2p

1

2
(t− δ)⊤W (t− δ)

subject to δ = Zγ, ∥γ∥0 ≤ s, ∥γ∥2 = 1,

ti ≤ tj for all (i, j) ∈ E(ν) = {(i, j) : νi ≤ νj},

(17)

where E encodes the pairwise ordering constraints induced by ν, due to the mono-
tonicity of the transformation T . This formulation replaces strict monotonicity with
a non-decreasing constraint, a mild adjustment that facilitates numerical implemen-
tation. In the following of the section, we design a two-block alternating optimization
algorithm.

First, with δ fixed, the optimization over t corresponds to the (weighted) isotonic
regression

min
t∈R2p

1

2
(t− δ)⊤W (t− δ) subject to ti ≤ tj for all (i, j) ∈ E, (18)
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where the goal is to obtain a monotonic fit to δ under a weighted squared-error loss
defined by W . The problem can be solved using any standard Quadratic Program-
ming (QP) solver, but it is more efficiently handled by the Pool-Adjacent-Violators
Algorithm (PAVA)(de Leeuw et al., 2009), which leverages the structure of the
monotonicity constraints for improved computational performance.

Next, we focus on the γ-optimization.

Theorem 1. Let H(·; s) denote the hard-thresholding operator associated with car-
dinality s, defined as follows: for a vector y ∈ Rp, H(y; s) = z where zi = yi if |yi| is
among the s largest entries of |y1|, . . . , |yp|, and zi = 0 otherwise, and the normalized
hard-thresholding operator H◦(y; s) = H(y; s)/∥H(y; s)∥2 if ∥H(y; s)∥2 ̸= 0. Then,
for the optimization problem with y ̸= 0⃗, 1 ≤ s ≤ p,

min
β

1

2
∥y − β∥22 subject to ∥β∥0 ≤ s, ∥β∥2 = 1,

the vector obtained by normalized hard-thresholding,

β̂ = H◦(y; s) =
H(y; s)
∥H(y; s)∥2

is a global optimizer.

Proof. Let A ⊆ {1, . . . p} and assume βAc = 0 and ∥β∥2 = 1. Because

∥y − β∥22 =∥y∥22 + ∥β∥22 − 2⟨y, β⟩
=∥y∥22 + 1− 2⟨y, β⟩
=∥y∥22 + 1− 2⟨yA, βA⟩
≥∥y∥22 + 1− 2∥yA∥2∥βA∥2 = ∥y∥22 + 1− 2∥yA∥2,

where we used the Cauchy-Schwarz inequality and the equality is achieved at βA =
yA/∥yA∥2.

Therefore, minβ:βAc=0,∥β∥2=1 ∥y − β∥22 = ∥y∥22 + 1 − 2∥yA∥2 for any A : |A| =
s. Minimizing over A gives an index set corresponding to the s largest entries of
|y1|, . . . , |yp|, thereby the normalized hard thresholding operator H◦(y; s).

We are now ready to develop an iterative algorithm for updating γ with t held
fixed. Define the below objective function

l(γ) =
1

2
(Zγ − t)⊤W (Zγ − t).
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A straightforward calculation yields the gradient:

∇l(γ) = Z⊤W (Zγ − t).

To facilitate optimization, we construct a new “surrogate function”:

g(γ, γ−) = l(γ−) + ⟨∇l(γ−), γ − γ−⟩+ ρ

2
∥γ − γ−∥22.

where ρ > 0 should be properly large (cf. Theorem 2). Define an iterative scheme:

γ(k+1) = argmin
γ

g(γ, γ(k)) subject to ∥γ∥0 ≤ s, ∥γ∥2 = 1.

Using Theorem 1, the update step admits a closed-form expression:

γ(k+1) = H◦(y; s) =
H(y; s)
∥H(y; s)∥2

, with

y = γ(k) − 1

ρ
∇l(γ(k)) = γ(k) − 1

ρ
Z⊤W (Zγ(k) − t).

(19)

Theorem 2. Let ρ ≥ ∥Z⊤WZ∥2, where ∥ · ∥2 denotes the martrix spectral norm.
For any initial point γ(0) satisfying ∥γ(0)∥0 ≤ s and ∥γ(0)∥2 = 1, the sequence {γ(k)}
generated by (19) produces non-increasing (and thus convergent) function values:

l(γ(k+1)) ≤ l(γ(k)) for all k ≥ 0.

Furthermore, if ρ > ∥Z⊤WZ∥2, ∥γ(k+1))− γ(k)∥2 → 0 as k →∞.

Proof. First, simple algebra shows

g(γ, γ−)− l(γ) =
ρ

2
∥γ − γ−∥22 − (l(γ)− l(γ−)− ⟨∇l(γ−), γ − γ−⟩)

=
ρ

2
∥γ − γ−∥22 −

1

2
(γ − γ−)⊤H(ξ)(γ − γ−)

=
1

2
(γ − γ−)⊤(ρI −H(ξ))(γ − γ−),

where we applied the mean-value theorem, H(ξ) denotes the Hessian matrix of l at
ξ which is between γ and γ−. Thus under the choice of ρ, l(γ(k+1)) ≤ g(γ(k+1), γ(k))
for any k ≥ 0.

By the optimality of γ(k+1), g(γ(k+1), γ(k)) ≤ g(γ(k), γ(k)) = l(γ(k)) and the first
conclusion follows. Moreover, from the inequality: l(γ(k)) − l(γ(k+1)) ≥ 1

2
(γ(k+1) −

γ(k))⊤(ρI −H(ξ))(γ(k+1) − γ(k)) ≥ ρ−∥Z⊤WZ∥2
2

∥γ(k+1) − γ(k)∥22, we obtain the second
result.
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Algorithm 1 Sparse Isotonic Shapley Regression (SISR) Algorithm

Input: ν = [νA]A⊆2F ∈ R2p (baseline-adjusted, such that ν∅ = 0), sparsity level s,
design matrix Z ∈ R2p×p, diagonal weight matrix W (cf. (16)), and an initial vector
t(0) ∈ R2p (e.g., Cν with a large C if ∥ν∥∞ is small, to improve precision, and C = 1
otherwise).

1: Initialize t← t(0), γ ← 0
2: ρ← ∥Z⊤WZ∥2
3: repeat
4: while not converged do
5: ξ ← H(γ − 1

ρ
Z⊤W (Zγ − t); s)

6: γ ← ξ
∥ξ∥2

7: end while
8: δ ← Zγ
9: Fit isotonic regression (18) with δ,W,Z to update t
10: until convergence
11: return t, γ

A summary of our algorithmic procedure is outlined in Algorithm 1. Some prac-
tical implementation notes: (i) The provided values νA have been baseline adjusted
as described in (7) (i.e., a preprocessing νA ← νA−ν∅ for all A ⊆ 2F is assumed). We
take C as 1e+4 if ∥ν∥∞ ≤ 10. (ii) For A = ∅ or A = F , although wSH(A) take infi-
nite weights in theory, practically one can assign a weight equal to a large multiplier
(e.g., 10) times the largest non-infinite weight (cf. (5)), which is often numerically
sufficient to enforce T̂ (νF )=̇

∑p
j=1 T̂ (β̂j). (iii) It is unnecessary to explicitly form the

diagonal matrix W ; only the diagonal weights are required. Likewise, the sparsity
of matrix Z can be utilized. Additionally, key quantities such as Z⊤W and Z⊤Wt
can be precomputed prior to the iterative updates to improve computational effi-
ciency. (iv) In Step 9), we employ a self-implemented, stack -based weighted PAVA
for improved efficiency. (v) The paired data (νi, t̂i) approximate T and form the basis
for visualizing T̂ (·) and its inverse T̂−1(·) via a smooth monotonic interpolation of
unique, sorted pairs. By averaging any duplicate coordinates before interpolation,
the method guarantees a well-defined increasing mapping suitable for a variety of
applications. Overall, Algorithm 1 is straightforward to implement and scales very
well in practice.
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4 Data-Driven Insights

4.1 Domain Adaptation

To propose a convenient noisy data generation scheme, let’s revisit the statistical
model defined in Section 2, where the expectation E[T ∗(ν)] = Zγ∗, with T (·) applied
componentwise. Assume without loss of generality that Z is structured using a bit
generation process, with each row corresponding to the binary representation of i−1
(e.g., the second row is [1, 0, . . . , 0]). For γ∗ = c0[2

0, 21, . . . , 2p−2, 2p−1]⊤, this yields

E[T ∗(ν)] = c0[0, 1, . . . , 2
p − 2, 2p − 1]⊤

where c0 =
√

3
4p−1

ensures that γ∗ is normalized. To simulate this in experiments,

we generate noisy versions νA for all subsets A using

ν = Q(c1 · σ(U)) ∈ R2p

where U ∈ R2p contains entries uniformly distributed between 0 and c0(2
p − 1),

approximately
√
3 when p is sufficiently large. Here, σ the permutation that arranges

the elements of U in ascending order. An accurate estimator, T̂ or t̂, should then
closely approximate the inverse transformation

T ∗ = Q−1/c1.

The inclusion of c1 is to ensure flexibility.
Figure 1 presents the results under 6 different functional forms for the true trans-

formation T ∗: square root (T ∗ = (·)1/2), fifth root (T ∗ = (·)1/5), exponential (T ∗ =
exp(·)−1), logarithmic (T ∗ = log(·+1)), tangent (T ∗ = tan(·)/c1, c1 = 10), and nor-
mal distribution (T ∗ = Φ(·+c2)/c1, Q(·) = Φ−1(c1·)−c2, c1 = 1/

√
3, c2 = Q(c1σmin)).

Encouragingly, across all cases, the estimated transformation T̂ (ν) closely aligns the
ground-truth T ∗(ν), providing strong empirical evidence for the effectiveness of SISR
in accurately recovering the underlying transformation structure.

Finally, an additional experiment was conducted using data generated according
to νA = maxj∈A βj, where βj = j. The resulting estimated transformation is dis-
played in Figure 2. The recovered transformation exhibits a pronounced increasing
trend and nonlinearity. The estimates are nearly perfectly correlated with the trans-
formed ground truths, and the best-fit line passes through the origin up to a scaling
factor.
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Figure 1: Estimated monotonic transformation T̂ (ν) (in blue) versus the true trans-
formation T ∗ (in red), for p = 10 under 6 different functional forms for T ∗: the
fifth root, square root, normal distribution, tangent, exponential, and logarithmic
transformations.

4.2 Sparsity Recovery

We generate data according to the sparse-γ model in Section 2, with the true trans-
formation set as the cubic root, T ∗(·) = 3

√
·. The ground-truth coefficients are given

by γ∗ = [1/
√
3, 1/

√
3, 1/

√
3, 0, . . . , 0]⊤, a relatively weak signal with sparsity level

s∗ = 3. The noise variance is defined as σ2
A = σ2

0/wSH(A), with varying values
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Figure 2: Estimated monotonic transformation T̂ (ν) (left) and comparison between
γ̂ vs T̂ (β∗) (right, showing an almost perfect correlation of 1.00) for p = 20 under a
winner-takes-all setting.

of σ0. The sparsity level upper bound s in running SISR is set to 1.5 s∗. Perfor-
mance is evaluated using two metrics. The first measures the alignment or affinity
between the two unit-norm vectors: ⟨γ̂, γ∗⟩ × 100 (denoted by Affn), serving as
an index of estimation accuracy. The second metric is the support recovery rate:
|supp(γ̂)∩ supp(γ∗)|/s∗× 100% (denoted by Supp), reflecting the proportion of cor-
rectly identified nonzero components in the true support. Table 1 reports results for
varying values of p and σ0. All results are averaged over 100 simulation runs.

As shown in the table, both performance metrics decline with increasing feature
dimension p and noise level σ0, as expected due to greater model complexity and
reduced signal-to-noise ratio (SNR). Although not reported, running the algorithm
without sparsity enforcement (i.e., s = p) yields noticeably worse affinity scores in
high SNR settings (e.g., the first setting row of Table 1). Compared to the affinity
scores, the support recovery rate remains surprisingly strong even under challenging
conditions, indicating that SISR consistently identifies the correct features.

We further investigated the impact of the sparsity level s on computational time.
In this experiment, we varied s from 5 to 15, while fixing s∗ = 3, p = 15, σ0 = 5e-3.
As illustrated in the figure, lower sparsity levels generally lead to faster computation,
highlighting the efficiency gains achievable when enforcing proper sparsity in the
model.

16



Table 1: Affinity score (Affn) and support recovery rate (Supp) across different
values of p and noise level σ0. Larger values reflect better performance.

σ0 = 1e-3 σ0 = 5e-3 σ0 = 1e-2

Affn Supp Affn Supp Affn Supp

p = 10 99.6 100% 99.6 100% 99.5 100%
p = 15 99.8 100% 99.9 100% 97.8 100%
p = 20 99.9 100% 87.9 100% 80.3 100%
p = 25 87.9 100% 74.0 100% 70.5 100%

σ0 = 5e-2 σ0 = 1e-1 σ0 = 2e-1

Affn Supp Affn Supp Affn Supp

p = 10 97.9 100% 88.7 98.7% 66.2 80.7%
p = 15 79.9 100% 70.9 98.0% 57.6 73.3%
p = 20 68.9 100% 63.2 96.0% 54.3 65.3%
p = 25 65.5 100% 60.6 90.7% 52.1 62.0%
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Figure 3: Computational time versus sparsity level.
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4.3 R2-Payoffs in Regression/Logistic Regression

In regression settings, coalition values for feature subsets are commonly defined using
the coefficient of determination (R2) obtained from retraining the model on each
subset, reflecting the scaled improvement in model fit (Lipovetsky and Conklin, 2001;
Covert et al., 2020). Contrary to conventional expectations, our results unveil a novel
insight: such a standard construction can fail to yield an inherently additive Shapley
framework, especially when features are dependent or include irrelevant ones, which
are almost certain to occur in practice.

To illustrate this phenomenon, let’s consider the following simulation setup: y =
Xα∗+ ϵ, where ϵi ∼ N (0, 1) and each row of X ∈ Rn×p is drawn from a multivariate
normal distribution with mean zero and Toeplitz covariance Σij = θ|i−j| with θ = 0.5.
The true coefficient vector is set as α∗ = [3, 3, . . . , 3]⊤, and the sample size is n = 5p.
For each subset A, we fit a regression model using the predictors indexed by A and
define νA as the resulting R2 value. Logistic regression is also considered in the
classification setting, yi ∼ Bernoulli(πi) and logit(π) = Xα∗, where we generate y
according to a Bernoulli model and define νA using the deviance-based pseudo-R2.
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Figure 4: Estimated monotonic transformation T̂ (ν) using regression-based R2 and
logistic regression-based pseudo-R2 as the coalition worth function, for p = 8, 15.

As shown in Figure 4, the estimated transformation T̂ (ν) deviates significantly
from linearity. For instance, in the regression case, even a simple logarithmic transfor-
mation fails to linearize the relationship, whereas a log-log transformation produces
a nearly linear pattern—suggesting that the underlying transformation is super-
exponential.

To examine whether model sparsity and feature correlation play a role in shaping
the transformation T , we conducted a factorial simulation for linear regression with
p = 15 and s = p. We fixed the coefficient vector to α∗ = [3, 0, 3, 0, . . . , 0]T with the
sparsity level s∗ ∈ {2, 8, 15}, and varied the correlation parameter θ ∈ {0, 0.5, 0.9}.
Hence the design ranges from independent (θ = 0) to collinear (θ = 0.9) predic-
tors, and from very sparse to fully dense signals. Figure 5 displays the empirical
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transformation T̂ recovered in each setting.
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Figure 5: Estimated monotonic transformation T̂ (ν) across varying sparsity levels
(s = 15, 8, 2, top to down) and feature correlation strengths (θ = 0.9, 0.5, 0, left to
right). The RIC criterion identifies s = 6 as optimal.

Two main patterns emerge. (i) Correlation drives curvature: as θ increases,
T̂ deviates sharply from linearity, even in dense models. (ii) Sparsity introduces
breaks: at low s∗ the curve becomes piecewise, with segment slopes that differ
substantially—another marker of non-additivity. Notably, pronounced nonlinear-
ity appears even in the independent, ultra-sparse case (θ = 0, s∗ = 2), showing
that irrelevant features alone can distort raw worths. Hence a monotone nonlinear
transformation is indispensable when translating R2-based worth measures into the
additive Shapley framework; without it, either strong correlation or feature irrele-
vance breaks the required additivity. To our knowledge, these results provide the
first evidence that correlated features and the presence of irrelevant features can
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substantially undermine the additivity assumption in Shapley frameworks.

4.4 Boston Housing

The dataset (Harrison and Rubinfeld, 1978) captures socioeconomic and environ-
mental factors for a suburban area of Boston, including percentage of lower status
of the population (LSTAT), weighted distances to five Boston employment centers
(DIS), average number of rooms per dwelling (RM), bordering Charles River (CHAS),
and others, accompanied by the response, the median property value. We trained an
XGBoost regression model (Chen and Guestrin, 2016) using the hyper-parameter
configuration given by Maniar (2023). After fitting the boosted tree ensemble,
we computed feature attributions using the path-traversal algorithm in TreeSHAP
(Lundberg et al., 2018). For each feature subset A we consider two payoff functions:
the negative mean squared error νMSE

A = −MSE(A) and the negative exponential loss
νexp
A = − exp(cMSE(A)) with c = 50/maxAMSE(A). Figure 6 displays the resulting
Shapley attributions.

The figure contrasts how the two attribution schemes respond to different pay-
off scales. Under the negative-MSE payoff, SISR has little to adjust—the scale is
already compatible with linear additivity. In contrast, for the exponential payoff,
SISR produces a highly nonlinear transformation, which compensates for the dis-
tortions and preserves essentially the same attribution pattern observed under the
MSE scale. The conventional Shapley values shift noticeably: the importance of DIS
increases from minor to leading, and CHAS and several other variables even receive
negative attributions. These sign and rank changes substantially alter the qualita-
tive interpretation of the game and reveal the standard procedure’s sensitivity to the
underlying payoff scale, whereas SISR remains robust.

4.5 German GDP

The quarterly German economic dataset spans January 1991 to December 2023 and
includes indicators for production, labor, trade, and other sectors, all of which have
been stationarized (Jung, 2025). To model GDP growth, we employ a Long Short-
Term Memory (LSTM) network (Hochreiter and Schmidhuber, 1997). As a type of
recurrent neural network, the LSTM is well-suited for capturing long-range tempo-
ral dependencies in economic time series. The payoff for any subset of features is
evaluated using the SAGE algorithm (Covert et al., 2020). Figure 7 contrasts the
conventional Shapley values against SISR-calibrated attributions.

According to the figure, both conventional Shapley values and the SISR method
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Figure 6: Boston housing: feature attributions computed with conventional Shapley
and SISR-calibrated Shapley values for the negative-MSE payoff (top) and the ex-
ponential payoff (bottom), along with the corresponding estimated monotone trans-
formations.

agree that manufacturing (Manuf) is a dominant factor influencing GDP. A notable
divergence appears with the German stock index (GDAXI), which represents the 40
largest and most actively traded companies on the Frankfurt Stock Exchange—a
key indicator for the German economy. While the conventional Shapley approach
assigns little importance to the stock index, SISR attributes nearly 50% of the total
importance to it. The estimated transformation has two significant features: it is
highly nonlinear, challenging the standard additivity assumption, and broken into
disjoint segments, indicating underlying sparsity of the Shapley surrogate model (see
Section 4.3). Across varying sparsity levels, SISR calibration consistently supports
the significance of GDAXI for GDP. The finding is supported by independent statistical
checks (selection by stepwise AIC and BIC, and a p-value below 0.01), as well as by
economic literature identifying the German stock market as a significant indicator of
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Figure 7: GDP data. Top row (left to right): conventional Shapley values, SISR-
estimated transformation and calibrated Shapley values with no sparsity. Bottom
row (left to right): calibrated Shapley values at sparsity levels s = 10, 6, 2. The RIC
criterion identifies s = 2 as optimal.

GDP (Drechsel and Scheufele, 2011).
This example cautions against applying off-the-shelf Shapley formulas to raw

coalition values, as they may mask or distort true importance. By jointly learning a
monotone correction and enforcing sparsity, SISR yields importance scores consistent
with independent checks.

4.6 Gold Price

The monthly time-series dataset from Jabeur et al. (2024) contains gold prices and
related economic indicators from January 1986 to December 2019. The features are a
diverse set of financial and macroeconomic variables, including key commodity prices
(silver, oil, iron ore), the S&P 500 index, and US inflation. For this analysis, the
response variable is constructed as a binary indicator of monthly price fluctuation,
coded as 1 for an increase and 0 otherwise.

We trained an XGBoost classifier (Chen and Guestrin, 2016) and tuned its
hyper-parameters with GridSearchCV in scikit-learn (Pedregosa et al., 2011).
Feature-subset worth was measured by two payoff functions: classification accuracy
and the negative cross-entropy, via the TreeSHAP algorithm (Lundberg et al., 2018)
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for our XGBoost model.
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(b) Cross-entropy payoff

Figure 8: Gold price: feature attributions computed with conventional Shapley
and SISR-calibrated Shapley values for the classification payoff (top) and the cross-
entropy payoff (bottom).

According to Figure 8, when payoffs are based on classification accuracy, both
conventional Shapley and SISR attributions yield nearly identical results, consistently
identifying silver and inflation as the drivers for predicting monthly gold price
rises and falls. In contrast, for the cross-entropy payoff, naive Shapley values become
severely distorted: numerous features appear almost as influential as silver, and the
importance of USDCNY even turns negative. SISR attributions, however, remain stable
by learning the appropriate transformation. This illustrates the high sensitivity of
the standard Shapley procedure to the choice of payoff function, in contrast to SISR,
which provides stable and robust attributions across different payoff schemes.

5 Conclusion

Modern economic and financial analysis increasingly relies on complex models—
including neural networks and ensemble methods—to capture nonlinear, sequential,
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and high-dimensional relationships in macroeconomic and market data. However,
these advances have also created a gap in model explainability, limiting the trans-
parency and trust required for decision-making and policy.

This paper proposed Sparse Isotonic Shapley Regression (SISR) to address two
central flaws of conventional Shapley values in explainable AI: the failure of addi-
tive attributions for inherently nonlinear payoffs, and the absence of native sparsity
control in high-dimensional settings.

By jointly learning a monotonic transformation via weighted isotonic regression
and enforcing sparsity through normalized hard-thresholding, each step of SISR ad-
mits a closed-form update and enjoys theoretical guarantees of global convergence.
SISR eliminates the need for closed-form functional specification, reduces computa-
tional cost, and is well-suited for explaining large, modern economic models.

Our empirical studies demonstrate that SISR yields consistent, sparse, and eco-
nomically meaningful attributions, even in the presence of irrelevant features and
inter-feature dependence—situations where standard Shapley values suffer from se-
vere rank and sign distortions due to their inability to handle nonlinear relationships.
SISR stabilizes attributions across varying payoff scales, filters out spurious features,
and yields results consistent with economic insights, all of which are essential for
model validation, policy assessment, and stakeholder trust.

In summary, SISR provides robust and interpretable attributions for black-box
forecasting or risk models and enables the construction of simplified surrogate mod-
els that preserve the key predictive and explanatory relationships of the original
model, advancing interpretable machine learning for modern economic and financial
applications.
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Fryer, D., Strümke, I., and Nguyen, H. (2021). Shapley values for feature selection:
The good, the bad, and the axioms. Ieee Access, 9:144352–144360.

Harrison, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the demand
for clean air. Journal of Environmental Economics and Management, 5(1):81–102.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Com-
putation, 9(8):1735–1780.

Jabeur, S. B., Mefteh-Wali, S., and Viviani, J.-L. (2024). Forecasting gold price with
the xgboost algorithm and shap interaction values. Annals of Operations Research,
334(1):679–699.

Jothi, N., Husain, W., and Rashid, N. A. (2021). Predicting generalized anxiety
disorder among women using shapley value. Journal of Infection and Public Health,
14(1):103–108.

Jung, Y. (2025). Machine learning-based estimation of monthly gdp.

Lipovetsky, S. and Conklin, M. (2001). Analysis of regression in game theory ap-
proach. Applied Stochastic Models in Business and Industry, 17(4):319–330.

Lundberg, S. M., Erion, G. G., and Lee, S.-I. (2018). Consistent individualized
feature attribution for tree ensembles. arXiv:1802.03888.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpreting model
predictions. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ma, S. and Tourani, R. (2020). Predictive and causal implications of using shapley
value for model interpretation. In Proceedings of the 2020 KDD Workshop on
Causal Discovery, volume 127 of Proceedings of Machine Learning Research, pages
23–38. PMLR.

Maniar, A. (2023). Xgboost model optimization – boston
housing. https://www.kaggle.com/code/advikmaniar/

xgboost-model-optimization-94-boston-housing/notebook.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.

26

https://www.kaggle.com/code/advikmaniar/xgboost-model-optimization-94-boston-housing/notebook
https://www.kaggle.com/code/advikmaniar/xgboost-model-optimization-94-boston-housing/notebook


Robertson, T., Wright, F. T., and Dykstra, R. L. (1988). Order restricted statistical
inference. Wiley Series in Probability and Mathematical Statistics: Probability
and Mathematical Statistics. John Wiley & Sons Ltd., Chichester.

Shapley, L. S. (1953). A value for n-person games. In Kuhn, H. W. and Tucker,
A. W., editors, Contributions to the Theory of Games II, pages 307–317. Princeton
University Press, Princeton.

Slack, D., Hilgard, S., Jia, E., Singh, S., and Lakkaraju, H. (2020). Fooling lime and
shap: Adversarial attacks on post hoc explanation methods. Proceedings of the
AAAI/ACM Conference on AI, Ethics, and Society.

Strumbelj, E. and Kononenko, I. (2014). Explaining prediction models and individ-
ual predictions with feature contributions. Knowledge and Information Systems,
41:647–665.

27


	cover
	Acknowledgement
	Fully Signed Commitment
	Fully Signed Declaration
	Shapley-report-Yau
	Introduction and Motivation
	Proposed Method
	Optimization Algorithm
	Data-Driven Insights
	Domain Adaptation
	Sparsity Recovery
	R2-Payoffs in Regression/Logistic Regression
	Boston Housing
	German GDP
	Gold Price

	Conclusion


