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Abstract

We study the conformal type of surfaces spread over the sphere via random quasiconformal
maps. Constructing a random Beltrami coefficient on the complex plane, we obtain a locally
quasiconformal homeomorphism with prescribed dilatation that is almost surely surjective and,
with high probability, approximately linear. This yields a normalization for random meromorphic
functions associated to surfaces spread over the sphere, from which we prove that the surfaces are
almost surely parabolic and obtain bounds on the growth order of their Nevanlinna characteristic.
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1 Introduction

The uniformization theorem states that every simply connected Riemann surface is conformally
equivalent to the closed unit disk D, the plane C, or the Riemann sphere C (see [I], Chapter 10).
An important classical problem in the study of Riemann surfaces is the type problem, which asks
to identify the conformal type of a simply connected Riemann surface.

A surface spread over the sphere is a pair (X,p), where X is a topological surface and
p: X — C is a continuous, open, and discrete map from X to the Riemann sphere [5]. According
to Stoilov’s theorem [12], there exists a unique conformal structure on X such that the map p
is holomorphic. If X is simply connected and ¢ is a uniformizing map from either C, C, or D
to X, then f = po ¢ is a meromorphic function, and X is called the Riemann surface of f~!.
Surfaces spread over the sphere are a natural way to construct Riemann surfaces and work with
the inverses of non-injective meromorphic functions. They were initially used to study inverses
of polynomial functions, and work on surfaces spread over the sphere has since been generalized
to potentially infinite-sheeted surfaces.

Let s(r) be a nondecreasing nonnegative function defined on [0,00). The order A and lower
order A of s(r), respectively, are defined by the formulas

1
A = lim sup M, A = lim inf

log s(r)
oo logT = r5oo logr

The order of s(r) is the infimum of all constants k such that s(r) = O(r¥). A meromorphic
function f associated to a surface spread over the sphere has a Nevanlinna characteristic T'¢(r).
The Nevanlinna characteristic is of interest because it controls the distribution of the roots of
f(2) = a for any given a € C. For example, the Picard-Borel theorem [10] states that the order
of Ty(r) is the same as the order of ny(r,a) for all @ with at most 2 exceptions; here ns(r,a)
denotes the number of roots of f(z) = a in the disk {|z| < r}. Nevanlinna theory can be used to
prove and vastly generalize the classical Little Picard theorem, which states that a nonconstant
meromorphic function can omit at most two points of C. We define the order and lower order
of f as the order and lower order, respectively, of T(r). An important problem in the theory
of value distribution of meromorphic functions is to determine the order and lower order of a
meromorphic function.

We consider a model for constructing Riemann surfaces. We color the cells of an infinite
grid of unit squares black and white in a checkerboard pattern. Associate a copy of the upper
hemisphere {z | Im(z) > 0} of the Riemann sphere to each white square and a copy of the lower
hemisphere to each black square. Furthermore, to each vertex of the grid associate a point on the
boundary RU {oo} between the two hemispheres. We require that if vy, ve, v3, v4 are the vertices
of a cell in the grid in clockwise order, then the boundary points associated to these vertices are
also in cyclic order (clockwise or counterclockwise). Each hemisphere has four associated points
on its boundary, which we will call marked boundary points. Given any two neighboring cells ¢
and ¢/, we glue the hemispheres associated to ¢ and ¢’ by identifying the boundary arcs between
the marked points associated to the two vertices that ¢ and ¢’ share.

Let R be the surface formed by gluing together all the hemispheres associated to the cells of
the grid. Note that R is a surface spread over the sphere, where the projection map p : R — C
takes each component hemisphere of R to the corresponding hemisphere on the Riemann sphere
C. The projection p makes R into a Riemann surface homeomorphic to the plane.

The preimage p~1 (RU{oo}) of the extended real line is called the net of (R, p). Let S denote
the set of surfaces spread over the sphere whose net is homeomorphic to an infinite square grid;
the set S is precisely the collection of surfaces that can be constructed according to the method
above. Vinberg [14] asked the question of what the conformal type of a surface in S could be.



Clearly such a surface can be of parabolic type, as demonstrated by the Riemann surface of !,

where p is a Weierstrass elliptic function. A paper by Geyer and Merenkov [§] answers Vinberg’s
question by constructing a hyperbolic surface with a square grid net.

In this paper, we continue the study of Vinberg’s question by constructing a probability
measure on a subset of & and showing that almost all surfaces in it are parabolic. Thus the
hyperbolic surface is an edge case. Our main tool is the use of randomly constructed quasicon-
formal mappings, which normalize the meromorphic functions associated to random surfaces in
S. Quasiconformal mappings are a generalization of conformal maps that retain many properties
of conformal maps, and they are useful because of their flexibility. They were studied extensively
by Teichmiiller, for example in [I3]. The study of random quasiconformal mappings was carried
out from an analytic point of view in [4] and from a geometric point of view in [9]. Building on
these developments, we establish results that extend the scope of the existing theory. An original
feature of our work is the application of our results about random quasiconformal maps to the
study of conformal type of surfaces in §. It is of interest to know what other applications our
theorems about random quasiconformal mappings may have.

Surfaces in § may be given a Riemannian manifold structure via the pullback of the spherical
metric on C. Our model constructs random surfaces with constant positive curvature outside of
the countable set of vertices between 4 cells. Surfaces spread over the sphere such as ours are a
natural extension of the notion of the Riemann surface of a multi-valued algebraic function. In
particular, surfaces spread over the sphere allow for fibers of infinite cardinality. Combinatorially,
the random Riemann surfaces in S have a square lattice structure. Conformal structures arising
from random lattices have been studied extensively, for example by Angel and Schramm in [3]
and by Gill and Rohde in [I1]. Random lattices have become of interest in the study of statistical
mechanics and 2 dimensional quantum gravity, where the discretization is used to convert an
integral over an infinite dimensional space into a sum over finitely many variables, as in [7].
Previous work has focused on random triangulations, and we extend it to random lattices with
quadrilateral cells.

In order to construct random quasiconformal mappings, we let a partition P = {Dy, D, D3, ... }
be a countable collection of Jordan regions D; with disjoint interiors whose closures cover C. In
this paper, we take all of the Jordan regions D; to contain their boundary. In Section [3] we will
describe a model for choosing a Beltrami coefficient p randomly on each region D of the partition.
?—F‘IZ ‘I is not necessarily uniformly bounded on C, meaning that the measurable Rie-
mann mapping theorem is not applicable; however, we will still be able to construct a locally
quasiconformal homeomorphism w* with Beltrami coefficient p. Even though w* is injective, it
is not necessarily surjective. For technical reasons, we restrict our attention to probabilistically
bounded differentials p on partitions P of bounded geometry; these will be defined in Section [3}
We then obtain our first main theorem.

The quantity

Theorem 1. If u is a probabilistically bounded Beltrami differential on a partition P with bounded
geometry, then the map w* is surjective onto C with probability 1.

For p € C, let B(p, R) denote the open disk of radius R centered at p. In Section [3[ we also
define a condition on P and g known as periodicity. Our second main theorem states that if we
additionally have periodicity, then w* is close to a linear map with high probability on any disk
large enough.

Theorem 2. Let p be periodic and P be a periodic partition with bounded geometry. Then there
exists a linear map A, such that for any € > 0, there exists a constant R. such that if R > R, is
large enough, then |A, —w"| < eR on B(0, R) with probability 1 — €. Here A,, depends only on
the probability distribution according to which p is chosen.



The usefulness of Theorems [I| and [2 stems from the natural occurrence of random quasi-
conformal maps in the modification of random meromorphic functions associated with surfaces
in §. In particular, we will consider a probability space (V,ny), where V is a subset of S and
7y is a probability measure on V. The following theorem will then be an easy consequence of
Theorem [

Theorem 3. Almost all surfaces in (V,ny) are parabolic.

Theorem |2 provides more specific information about the structure of our random quasicon-
formal maps and thus lets us extract more information about a meromorphic function f defined
by a surface in V. In particular, in addition to learning that f is defined on all of C, we are also
able to estimate their order of growth using the following theorem.

Theorem 4. The meromorphic function f defined by a surface in (V,ny) almost always has
order at least 2 and lower order at most 2.

In Section |2, we discuss relevant background related to extremal length and quasiconformal
mappings. In Section [3] we define partitions of bounded geometry, probabilistically bounded
random Beltrami differentials, and periodic partitions and differentials. In Section {4 we will
prove some properties of percolation in partitions of bounded geometry. In Section p] we will
use our percolation results to prove “rough quasiconformality” of random quasiconformal maps,
which will allow us to prove Theorem In Section [0 we will generalize the results of Ivrii
and Markovié¢ [9] to prove Theorem [2l In Section [7] we define the probability space (V,ny). In
Section [8] we demonstrate the power of our new methods by using Theorems [I] and [2] to prove
Theorems [3[and [4] vastly generalizing the solution to Vinberg’s problem [I4]. Lastly, in Section |§|
we discuss potential directions of future research.

2 Background

We review relevant background related to the theory of extremal length and quasiconformal
mappings in order to establish notation and conventions. We follow Ahlfors’ texts [I] and [2].
Let T’ be a family of rectifiable curves in C. Define a metric p : C — R to be allowable if it is
Borel measurable, nonnegative, and [ p? dx dy does not equal 0 or co. Given v € I' and an
allowable p, define p(v) according to the formula

o) = / p ldz.

L(p) = inf p(7)-

We then have
Define A(p) according to the formula

Ap) = //p2 da dy.

Definition. The extremal length of T, denoted A(T'), is defined by

M) = Sup I;l((pp)) 7

We have the following definition.

where the supremum is over all allowable functions p.



The following proposition makes extremal length relevant to our study of conformal type.

Proposition 5 ([2, Corollary of Theorem 3 in Chapter 1]). If ¢ is conformal in a region con-
taining a family T of rectifiable curves, and TV = ¢(T'), then A(T") = A(T).

We will also need the proposition below, known as the comparison principle.

Proposition 6 ([I, Theorem 4-1]). Let T' and I” be two curve families such that every curve
~v €T contains some v € TV. In that case, A(T') > \(T”).

Lastly, the following proposition, known as the composition law, allows us to further compare
the extremal lengths of various curve families.

Proposition 7 ([I, Theorem 4-2]). Let Q1,5 be disjoint open sets and I'1,To be families of
curves in §2q, o, respectively. If T is a third curve family such that each v € T’ contains ay; € T'y
and a v2 € T'g, then AN(T") > A(T'1) + A(T'2).

In this paper, we take a quadrilateral to mean a Jordan region ) with four vertices on its
boundary dividing the boundary into four arcs, referred to as sides. Furthermore, one pair of
opposite sides is marked, so that it is possible to consider the family I' of curves in ) connecting
the opposite marked sides. We define the modulus of @ by the formula

Mod Q = A\(T")~*.

An orientation preserving homeomorphism ¢ on a region €2 is called K quasiconformal if
1
Ve Mod Q < Mod ¢(Q) < K Mod @

for all quadrilaterals @ in Q.

Let A(r, R) denote the annulus with center 0, inner radius r, and outer radius R. Given a
topological annulus A, let Mod A denote the extremal length of the family of curves connecting
the boundary components of A. It is well known that Mod A(r, R) = % log % (see Example 2
from Chapter 1 of [2]).

Proposition [6] leads to the following criterion for parabolicity.

Proposition 8. Let X be a simply connected open Riemann surface, and let K be a compact
subset of X with a nonempty interior. Let I' be the family of curves connecting the boundary
of K to the boundary of X, meaning that each curve in I' starts on the boundary of K and is
eventually in the complement of any compact subset of X. If A(T') = oo, then X is parabolic.

Proof. Suppose for sake of contradiction that X is hyperbolic. By the uniformization theorem,
we may let ¢ be a conformal map from X to the unit disk D. We may further ensure that ¢
maps an interior point of K to 0. We may thus choose 0 < r < 1 such that B(0,r) C ¢(K). Let
I’ be the family of curves connecting the boundary of B(0,7) to the boundary of the unit disk.
By Propositions ] and [} we have

AIY) = Me(I)) = AT) = o0,

so A(I”) = oco. However, the extremal length of the curve family connecting opposite boundary
components of the annulus A(r, 1) is % In %, and this quantity is clearly not infinite. We have
obtained a contradiction, showing that X is parabolic. O



3 Random Differentials on Partitions of the Plane

Let P = {D1,D3,Ds,...} be a partition of the complex plane C into a countable number of
Jordan regions D; such that they cover C and have disjoint interiors. Here we take a Jordan
region to contain its boundary. We make several weak assumptions to control the behavior of
the partition P. We define the mesh size d of P by the formula

d = sup{diam D;},

where diam D; denotes the diameter of D;. We say that P has bounded density if for all R > 0,
there exists a constant kg such that for all p € C, the disk B(p, R) intersects at most kg regions
of P. We then have the following definition.

Definition. A partition P has bounded geometry if it has finite mesh size and has bounded
density.

We discuss a construction of a random Beltrami differential in the plane C. For each region

D;, let uf)(z) denote a family of Beltrami differentials on D; parametrized by ¢t € R. Here, the
value of t is chosen by some probability measure v; on R, so that ,ugi)(z) is a randomly chosen
function on D;. From here forward, we make the assumption that for each ¢ and 7 there exists
a constant kgi) < 1 such that | u,@(z)| < kgi) for all z € D;. Thus the quasiconformal dilatation

() .
= L(Z;} is bounded in each D;. For each 4, we require kt(l) to be measurable as a function
4

of t.

Let i be the random Beltrami coefficient on C such that the value of p(z) in each D; is ugl) (2),
where ¢ is chosen independently and at random by v; in each D; (the existence of p is guaranteed
by the Kolmogorov extension theorem). Let K, (z) = ijﬁggl‘
associated with . Even though K, is bounded in each D;, we don’t necessarily have an upper
bound on K, that holds across all C. Thus the measurable Riemann mapping theorem does
not guarantee the existence of a quasiconformal homeomorphism w* : C — C whose Beltrami
coefficient is p. However, Ivrii and Markovié [9] outline a method of constructing w#. If we
consider the truncated Beltrami differential ur = p - Xp(o,r), then K, is bounded on all of
C because B(0, R) intersects finitely many regions D; by the finite density of P and K, is
bounded in each D;. Thus the measurable Riemann mapping theorem guarantees the existence
of a quasiconformal homeomorphism wg : C — C with Beltrami differential pup that fixes the
points —1,0,1. We may then take a convergent subsequence of the wgr as R — oo that converges
to a map w : C — C with Beltrami differential ;. We may postcompose w* with a Mobius
transformation to ensure that it fixes 0,1, co (where w* is said to fix oo if w#(C) C C). The map
wH is injective, but it is not necessarily surjective.

We now define what probabilistically bounded means in Theorem

be the quasiconformal dilatation

Definition. The random differential u is probabilistically bounded if for all € > 0, there exists a
constant k < 1 such that for all 4, the probability that |u| < k everywhere on D; is at least 1 —e.

Since K, = ifl‘z |‘, we obtain an equivalent definition below. Indeed, the constant K in the
definition below is connected to the constant k in the definition above by the formula K = %

Definition. The random differential u is probabilistically bounded if for all € > 0, there exists a
constant K < oo such that for all ¢, the probability that K,, < K everywhere on D; is at least
1—e.



For our second main theorem, we also need some periodicity assumptions. We say that P is
periodic with period I' if there is a two dimensional lattice of vectors I such that if v € I, then
translation by v is a symmetry of P. We additionally say that a random Beltrami differential p
on P is periodic with period T if p is distributed in the same way in D; and D;; whenever D, is
the translation of D; by v € I'. We show the following lemma about periodic differentials.

Lemma 9. If u is a periodic differential on a periodic partition P of bounded geometry, then it
is probabilistically bounded.

Proof. We first show that for all i € N and € > 0, we may choose k; < 1 such that |u| < k; on D;
with probability 1 — €. Recall that k,ﬁ” is a measurable function of ¢ such that ygz)(z) < kt(z) on

D;. For given k < 1, let BS) denote the set of ¢ € R such that kt(i) < k. Any t belongs to Blii)
for k large enough, so continuity of measure implies that

lim v; (B,Ef)) =1.
k—1

Thus it is possible to choose k; < 1 large enough that Vi(B,(:i)) > 1—¢, meaning that || < kz@ <k
on D; with probability at least 1 — e.

Let v and v be two vectors that generate I'. The parallelogram spanned by u and v is
contained within B(0, R) for some R large enough. The finite density of P implies that this
parallelogram intersects finitely many regions D;. Fix € > 0. For each region D; intersecting the
parallelogram, we may choose k; < 1 large enough that |u| < k; on D; with probability 1 —e. If
we let & < 1 be the maximum of the k; across all D; intersecting the parallelogram spanned by
u and v, it follows by periodicity that |u| < k with probability 1 — € in any region D;. Thus p is
probabilistically bounded. O

Suppose now that u is a periodic Beltrami coefficient on a partition P of bounded geometry.
As a consequence of Lemma [9) we may apply Theorem [I] to conclude that w* is almost surely
surjective. Thus w* is defined by its Beltrami coefficient 1 up to post-composition by a biholo-
morphism of the plane C, which must be of the form z +— az + b. From here forward, we require
that w* fixes 0,1, co; this almost surely determines w* uniquely.

4 Percolation

Let P be a partition of bounded geometry. We start by proving a lemma about the rate of
growth of the number of regions D; intersecting the disk B(0, R).

Lemma 10. Let P be a partition of bounded geometry. Let k(R) denote the number of regions
D; that B(0, R) intersects. Then there exist constants m and M depending only on P such that
for all R large enough, we have that

mR? < k(R) < MR

Proof. To prove the upper bound k(R) < M R?, note that there exists a constant M’ such that
B(0,R) can be covered by M’R? disks of radius 1 for R large enough. By the definition of
bounded density, each of those disks intersects at most ky regions, so B(0, R) intersects at most
k1 M'R? regions. The upper bound is thus proved with M = k;M’.

Let d denote the mesh size of P, meaning that d > diam D; for all ¢. To prove the lower
bound, note that there exists a constant m such that for all R large enough, the interior of
B(0, R) contains at least mR? squares of side length 2d that don’t intersect each other, even at

10



the boundary. To each square () we can associate a region D¢ that contains the center of Q.
Note that the regions Dg are all distinct, since clearly a single region D of diameter at most d
cannot contain the centers of two squares, which are more than 2d apart. It follows that B(0, R)
contains at least mR? regions. O

Note that it follows from the proof of Lemma 0] that the finiteness of k; implies the finiteness
of kg for all R, since kg < k; M’'R?. Thus bounded density can be thought of as a local condition
in the sense that the finiteness of kg for any R implies the finiteness of kg for all R.

We now describe a percolation process on P. Fix a constant 0 < r < 1 and color each region
D; blue or yellow independently and at random such that the probability that any given region
is yellow is at most r (note that the probabilities that two different regions are yellow don’t have
to be the same, as long as they are both independent and don’t exceed r). In this case, r is called
the percolation parameter. For any rectifiable curve +, let its chemical length dcpem (77) be defined
as the length of its intersection with the blue regions. For any two points x and y, let dehem (2, Y)
denote the infimum of depem(y) across all curves v connecting = and y. The Euclidean distance
between z and y will be denoted by d(z,y). We are now ready to prove our main lemma about
percolation, which states that the chemical distance is comparable to the Euclidean distance
with high probability. The lemma is motivated by Lemma 4.2 of [9].

Lemma 11. Let P be a partition of bounded geometry. Then there exists a positive constant
r < % dependent on P only such that if the percolation parameter is at most r, then for any N
large enough the following holds with probability at least 1— ﬁ for any two points x,y € B(0,N)
with d(z,y) > log N we have

5 d(2,9) < deben(2,3) < d(z1).

Proof. Let d denote the mesh size of P. Fix R > 3d. Let the R-neighborhood of a region D;
denote the set of all points whose distance to D; is less than R. Whenever two regions are at a
distance at least R from each other, then their %—neighborhoods do not intersect any regions in
common.

Consider two points z,y € B(0, N). We construct a graph G = (V, E) as follows, where the
vertex set V' consists of regions D in P and the edge set E consists of pairs of regions in V. Add
the region containing x to V. Consider a path « leading from z to y. As we travel along =, if
we enter a region that is at a distance of at least R from any other region in V', we add the new
region to V. Lastly, construct an edge between two elements of V if and only if the distance
between the corresponding regions is at most 2R.

We claim that G is connected. Indeed, we may show that as we travel along v, every region
we add to V belongs to the same connected component of G as the region containing z. If we
add region D to V as we travel along v, let D’ denote the region v was in before entering D.
Then D’ is not in V), so its distance to a region in V is at most R. Thus the distance from D to
a region in V is at most R+ d < 2R. It follows that D is in the same connected component as
the previous regions in V. Thus G is connected.

Lastly, note that V must contain a region whose distance to y is at most 2R. Indeed, if the
region containing y is not in V, then its distance to some region in V is at most R, and the
distance from y to a region in V' is at most R + d < 2R. We may thus choose a sequence o of
regions in V starting with the region containing = such that any two consecutive regions in o are
at a distance of at most 2R apart, and the last region is at a distance of at most 2R from y. By
construction, each region in o is at a distance of at least R from its neighbor. Let L denote the
number of regions in o.

11



Call a region D in o insular if each region intersecting the %—neighborhood of D is blue. If
at least 1—90 of the regions in ¢ are insular, it follows that

9 R
dehem (7) > ——=L. 4.1
che ( ) 10 3 ( )
Choose a sequence of points x = 1,9, ...,z such that x; belongs to the ith region in o. Since

any two regions in V" are at most 2R apart and the diameter of each region is at most d, it follows
that d(z;,2;41) < 2R+ 2d < 3R. Similarly, d(xp,y) < 3R. It follows that

d(z,y)
L>—>= 4.2
Substituting Equation into Equation we obtain
9 Rd(z,y) 1

> — — .
dchem( ) <103 3R 10d(x,y)

Our strategy is now to show that with high probability, for all possible sequences o at least 19—0
of the regions in ¢ are insular.

If d(z,y) > log N, then Equation implies that the length L of an associated sequence o
of regions is at least OgN . Call a sequence o of regions associable if the distance between any
two consecutive reglons 1n o is at most 2R and the distance between any two regions in o is at
least R. We establish lower bounds on the probability that for any associable sequence of length
L> longN , at least % of its regions are insular.

Set k =k B4 80 that the %—neighborhood of any region intersects at most k regions (this is

possible because P has bounded density). Thus the probability that a region is not insular is at
most

1—(1—r)k<1—(1—rk)=rk
The probability that more than 1 regions in an associable sequence of length L are not insular

is thus at most .

Z (L> (rk)? <2l Z (rk)? < 2L+1(rlc)LO
J=1{51 J i=l151

where the last inequality holds as soon as we set r small enough that rk < % We used the fact
that the distance between any two regions of an associable sequence is at least R to conclude
that their %—neig‘hborhoods don’t intersect any regions in common, allowing us to conclude that
the probabilities that two regions of the sequence are insular are independent.

By Lemma there exists a constant M such that for all N large enough, the disk B(0, N)
intersects at most M N? regions of the partition P. Fix a region D of an associable sequence o.
Any region whose distance to D is at most 2R must intersect the disk of radius 2R + d < 3R
centered around any point in D, meaning that there are at most ksr choices for the next region in
o after D. Thus the number of associable sequences of length L is at most M N 2k3 ‘»» Since there
are at most M N?2 choices of starting region. Thus the probability that there exists a sequence of
length L for which at least % regions aren’t insular is at most MNngR-QL“(rk)l% =2MN2al,

where o, = 2k3R(rk)T10. Summing over all L > loggRN, we obtain that
oo o0
> 2MN?af =2MN* Y af
L=z L=

< 4MN2a£‘10gN)/3R
1

_ 2 log o) /3R
— AMN?2Nosar)/ Sﬁ

12



for all N large enough if we choose r small enough. Note that r does not depend on N as N — oo.
We thus have that if we choose r small enough, then with probability at least 1 — ﬁ all
associable sequences of length at least 10§RN satisfy the property that at least 19—0 of their regions

are insular. Thus for any pair of points z,y with d(z,y) > log N, we have that

1
> P
dehem (77) > 10d(x,y)

for any curve v connecting x and y. It follows that with probability at least 1 — $7 we have

1
dchem ($7 y) Z Tod(x> y)

for any pair of points x,y with d(z,y) > log N. The proof is complete.

5 Rough Quasiconformality

In this section, we introduce a notion of “rough quasiconformality” and prove that the mapping
w* is roughly quasiconformal with high probability. We then use our results to prove Theorem [T}
The definitions and proofs are largely based on the work of Ivrii and Markovié [9].

Definition. An orientation preserving homeomorphism ¢ is called (K, €) roughly quasiconformal
if it changes the modulus of any rectangle with side lengths of at least € by a factor of at most
K.

We now show that the random quasiconformal map w* is roughly quasiconformal with high
probability on B(0, V).

Lemma 12. Let pu be a probabilistically bounded Beltrami coefficient on a partition P with
bounded geometry. There is a fized constant K such that for any N large enough, w* is (K,log N)
roughly quasiconformal on B(0, N') with probability 1 — .

Proof. By probabilistic boundedness of p, it is possible to choose a constant K > 1 such that
the probability that
K, <K'

is at least 1 — r, where r is the constant whose existence is guaranteed by Lemma Color a
region D of the partition yellow if K, > K’, and color it blue otherwise. The regions are colored
independently, and the probability that a region is yellow is at most 7. It follows by Lemma
that for all N large enough, we have with probability at least 1 — % that

1
dchcm($7 y) Z 10d(x’ y)
for all x,y with d(z,y) > log N.

Fix a rectangle R C B(0, N) with side lengths ¢1,¢5 > log N such that the sides of length
¢, are marked. We establish upper bounds on Mod w#(R). To this end, let B denote the union
of the blue regions, and set the metric pr = xprr. Note that A(pr) < ¢1¢5. Consider also the
metric defined by )

pi(w) = PFac(uw) (W)}  Xun @ (),

so that A(pg) = A(pr) < l14s.
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Let ' denote the family of curves connecting opposite marked sides of length ¢; of R. Since
w* is K’ quasiconformal in the blue regions, we have that

(0" (1) = = pm ()

for all v € I'. Since the distance between the endpoints of « is at least ¢ > log N, it follows
from Lemma that pr(y) > 11% with probability 1 — ﬁ Denoting by I'* the family of curves

connecting opposite marked sides of w#(R), it follows that

ls.

1
L. (I') >
oi )_10\/ﬁ

Thus

A(px 2%
Mod w*(R) = A(IT*) 7! < L(/(OII‘Z))Q < IOOK’% = 100K’ Mod R
PR 2

for all R with probability 1 — % It similarly follows that

1
M ® >—— M
odw"(R) > 100K odR
by considering the family of curves connecting the unmarked pair of sides of R. Thus w* is
(100K’ log N) roughly quasiconformal with probability 1 — #, and the lemma is proved with
K =100K".

O
Using Lemma we are ready to begin the proof of Theorem

Proof of Theorem/[]] Let Q(n, N) denote the topological annulus consisting of the square [~ N, N|?
with the square [—n,n]? removed from its center. We have that Mod Q(n, N) denotes the ex-
tremal length of the family of curves connecting opposite boundary components of Q(n, N). We
establish lower bounds on Mod ¢(Q(N,2N)), where ¢ is any (K, N) roughly quasiconformal map.

Let Ry denote the rectangle [V, 2N] x [-2N,2N], and let Ra, R3, R4 denote the rotations of
Ry by 90°,180°,270° degrees about the origin, respectively. Any path « that connects opposite
boundary components of Q(N,2N) must cross R; for some 1 < ¢ < 4. Indeed, suppose without
loss of generality that the ending point of v is on the side z = 2N. Since the starting point of
v has z-coordinate at most N, it follows that - crosses R;. The rectangles R; are depicted in
Figure

Therefore a path v connecting opposite boundary components of ¢(Q(N,2N)) must cross
@(R;) for some 1 < i < 4. Since the modulus of R; is %, it follows that the modulus of ¢(R;) is
at least ;1. For any € > 0, there exists a metric p; such that A(p;) = 1 and the p;()* > 7= — €
for any curve v crossing ¢(R;).

Consider now the metric p = p1 + -+ 4+ ps. We have A(p) < 16 and p(v)? > ;5 — € for any
curve 7 connecting opposite boundary components of ¢(Q(N,2N)). It follows that the extremal
length of the curve family crossing ¢(Q(N,2N)) is at least

Letting € tend to 0, we obtain

14



Ry

N

R3 Rl

Ry

Figure 5.1: Curve v connecting opposite boundary components of Q(N,2N)

Note that Q(2FN,2¥+t1N) is contained in B(0,2**1y/2N). Choose N large enough that
N > log(2v2N) and Lemma [12| applies to B(0, N’) for all N’ > 24/2N. Consider the sequence
of nested annuli
Q(N,2N),Q(2N,4N),Q(4N,8N), ...

With probability I—W, we have that w* is (K, 2¥ N') roughly quasiconformal in B(0, 2+1\/2N);
in fact, w* satisfies the stronger assumption of (K, log(2*1y/2N)) rough quasiconformality. We
therefore have that the extremal length of the curve family connecting opposite boundary com-
ponents of Q(2F N, 2F 1 N) is at least ﬁ. By the Borel-Cantelli lemma, this holds almost surely
for all but finitely many k. By Proposition[7} the extremal length of the curve family connecting
wh([~N, NJ?) to the boundary of w*(C) is at least 5l + zig + -+ = 00. By Proposition it
follows that w#(C) is parabolic almost surely. This means that w* is surjective almost surely,

completing the proof.
O

6 Rescaling

We now turn to proving Theorem [2| Given §, let Is denote the map z — §z. Let P denote the
partition P scaled by applying the map I, meaning that the mesh size of §P is smaller than the
mesh size of P by a factor of 6. We may consider the corresponding random Beltrami differential
I = |1 O 15_1 on the partition §P. Lastly, let wj denote the quasiconformal map with Beltrami
differential y5. We rephrase Lemma (12| for wf.

Lemma 13. Fiz any N,e > 0. For any ¢ small enough, the map w§ is (K, €) roughly quasicon-
formal on B(0, N) with probability at least 1 — €.

Proof. Showing that w§ is (K, €) roughly quasiconformal on B(0, N) is equivalent to showing that
wh is (K, te) roughly quasiconformal on B(0,5"1N). However, this is true with probability
at least 1 — ]‘3,—22 for § small enough that §~te > log(6 *N) by Lemma E It remains to further
choose § small enough that J‘\% < e. O

We now obtain a slightly modified form of Theorem

Theorem 14. Let p be periodic and P be a periodic partition with bounded geometry. Then
there exists a linear map A, such that for any e > 0, there exists a constant 0. such that if 0 < 0.
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is small enough, then |A, —w§| < € on B(0,1) with probability at least 1 —e. Here A, depends
only on the probability distribution according to which p is chosen.

The proof of the theorem follows verbatim from sections 6 and 7 of [9] once rough quasiconfor-
mality is established with high probability in Lemma[I3] Note that the assumption of periodicity
is used in the proof of Lemma 6.3 in [9]. We now deduce Theorem [2[ from Theorem

Proof of Theorem[d We continue with the same notation as the statement of Theorem [2} Set
0= %. Consider the map w = I5 o w” o [g. We have that the Beltrami coefficient of w is the
coefficient p o I on the partition 6P, meaning that w is distributed in the same way as w}.

It follows from Theorem [14] that if § < &, is small enough (or equivalently R > 6! is large
enough), then with probability 1 — e, we have |w — A,| < € on B(0,1). Therefore |[Ir ow oI5 —
IroA,ols| < eR on B(0,R). However, since I[rowoIs = wH and Igo A, 0I5 = A, it follows
that with probability 1 — €,

|lw' — A,| < eR

on B(0, R) as needed. Thus Theorem [2|is proved with R, = 5 1.
O

Remark. Note that Theorem holds when B(0, R) is replaced by Ir(K), where K is an arbitrary
compact set and Ir(K) is the dilation of K by a factor of R. Indeed, this holds by observing
that Ir(K) C B(0,cR), where c is a constant so that K C B(0,¢). It then follows by Theorem [2]

that |w* — A,| < €cR on Ir(K) for R large enough, and it remains to choose €’ = ¢~ le.

7 Random Riemann Surfaces

In this section, we define a subset V of S and define a probability measure 7y on V. The need
to consider a simpler subset of S arises from the difficulty of parametrizing all of S. As we will
see, the generality of Theorems [1|and [2| gives us flexibility in the choice of V, and V encompasses
a wide variety of the surfaces in §. For the remainder of this section, note that a surface in
S is determined by its marked boundary points, so that a probability distribution on S can
be thought of as a probability distribution according to which the marked boundary points are
chosen.

View the Riemann sphere C as the subset {(z,y, 2) | % +y? + 2% = 1} of R3, so that the set
of points with z > 0 corresponds to the upper hemisphere H* of complex numbers with positive
imaginary part, and the set of points with z < 0 corresponds to the lower hemisphere H™ of
complex numbers with negative imaginary part. Consider the polar coordinate system (r,8) on
the unit disk {(z,y,0) | 22 + y* < 1} such that the points 1,00, —1,0 have coordinates (1,0),
(1,%), (1,7), (1, 37”)7 respectively. In the hemispheres HT and H™, define the polar coordinate
systems (r, ) so that the polar coordinates of a point (z,y, z) in one of the hemispheres are the
same as the polar coordinates of (z,y,0). From now on, call these the hemispherical coordinates
on HT and H~.

Consider an infinite rectangular lattice in the plane. Label the vertex at position (i,j) with
an integer between 1 and 4 depending on the parity of ¢ and j such that the vertices of any
cell are labeled 1,2,3,4 in cyclic order. Choose four points with hemispherical coordinates
(1,61),(1,602),(1,03), (1,04) and open arc intervals C;, 1 < i < 4, so that the C; are disjoint, their
closures cover R U {oo}, and the endpoints of C; are (1,0;) and (1,6;41) (here 65 = 6;). This is
shown in Figure [7.1] Lastly, define probability distributions 7; on the C;. The distributions n;
may for instance be the uniform distributions induced by arc length.

16



1 2 1 2 1 2
(1’ 92)

4 3 4 3 4 3 Cy 4

1 2 1 2 1|2 ( )

1,6,

4 |3 |4 |3 |2 |3 (1,65)

1 2 1 2 1 2 Cy

4 |3 |a |3 |4 |3 Cs (1,604)

Figure 7.1: Labeling the vertices and dividing R U {co} into intervals.

To construct a Riemann surface R in S, we assign to each vertex labeled ¢ a random marked
boundary point chosen by 7;. Gluing together the surface with these marked points, we obtain a
Riemann surface. We let V be the set of surfaces obtainable in this way. The vertices of a surface
in V are restricted to vary along an interval C; in order to guarantee that the marked boundary
points of each cell are in cyclic order. Now, let 7, be the distribution on V corresponding
to choosing each vertex according to 7; (the existence of 7y, is guaranteed by the Kolmogorov
extension theorem). We thus have a probability space (V,ny). Note that the definition of (V,ny)
depends on the choice of 6;.

The set V is large enough to contain a hyperbolic surface, as shown by Geyer and Merenkov [J].
However, Theorem [3| which will be proved in Section [§] states that the set of hyperbolic surfaces
has measure 0 in (V,7ny). Thus there almost surely exists a biholomorphism ¢ : R — C.
The surface R comes equipped with a mapping p : R — C which sends each cell in R to the
corresponding hemisphere of C. Therefore, a surface R in V can be viewed as the Riemann surface
of the inverse to the meromorphic function f = po ¢!, which almost always has the plane C as
its domain of definition. Thus R almost always defines a meromorphic function f in the plane up
to precomposition by an automorphism of C, which is of the form z — az + b. If we consider the
Nevanlinna characteristic Ty(r) of f, defined for r in [0, 00), we see that precomposing f by an
automorphism of C at most changes the constant in front of » and changes T¢(r) by a bounded
additive factor, thereby not changing the order or lower order of f. Theorem [4] which references
the order of growth of f, therefore makes sense.

8 Quasiconformal Deformation of an Elliptic Function

In this section we prove Theorems [3] and [4] using Theorems [I] and [ respectively. We accomplish
this by obtaining f as a locally quasiconformal deformation of an elliptic function of order 2.

Let (1,m;) be the midpoint of C;. Consider the upper hemisphere H* with marked boundary
points (1,m;). There exists some rectangle Q C C and a conformal map g : Q — C that takes Q
to H* and the vertices of @ to the points (1,m;). Extending g by reflection we obtain a doubly
periodic function g : C — C that maps each cell of a rectangular grid in C onto either the upper
hemisphere H* or the lower hemisphere H™.

Define Rg to be the surface in ¥ with the marked boundary point (1, m;) assigned to vertices
labeled i (here we are using the vertex labeling from Section . Then p induces a mapping
90 : C = Rg such that p = pg o po, where pg : Rg — C is the natural projection taking each cell
of Ry to the corresponding hemisphere of C.
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Given a Riemann surface R in V and the associated projection p : R — C, we deform gq into
a function @g : C — R so that f = po @g, where f is such that R is the Riemann surface of f~!.

Divide each hemisphere of Ry into eight sectors along the lines § = 6; and 6 = m,;. Consider
the preimages of these lines by po. They divide each cell of the rectangular grid in C into eight
triangular Jordan regions, where each triangular region corresponds to a sector of a hemisphere
on Rg. This is demonstrated in Figure

Figure 8.1: The cells of the rectangular grid divided into triangular Jordan regions.

Fix some cell in R. Suppose that the vertex with label i of that cell has associated boundary
point with coordinates (1, ;) for 1 < i < 4. Note that (1, ;) belongs to the open arc interval
C; with endpoints (1,6;), (1,6;1+1). We apply a map of the form (r,0) — (r, k(6)), where k(0) is
a piecewise linear map such that (1,m;) is taken to (1, «;) and (1, 6;) is fixed for 1 <4 < 4. Note
that this map is quasiconformal with constant Beltrami coefficient in each of the eight sectors of
each hemisphere. Applying these maps to each hemisphere, we obtain a locally quasiconformal
map ¢ : Rg — R. The action of ¢ on a single hemisphere is shown in Figure 3.2

Figure 8.2: The action of ¢ on one hemisphere

Let P be the partition each region of which is the set of eight triangular regions adjacent to a
vertex, and let 4 be the Beltrami coefficient of po¢o . The measures v; introduced in Section [3]
are defined on R, whereas the measures 7; are defined on C;. This causes no difficulty, since Cj is
homeomorphic to R. Note that by the composition rules for Beltrami coefficients, the coefficient
1 is no longer constant on each triangular region; however, |u| is constant on each triangular

region and depends continuously on «;. It follows that the function kt(i) from Section |3[ can be
chosen to be measurable in ¢; in fact, it can be chosen to be continuous.
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Consider the random locally quasiconformal map w*. If we set f = po ¢ o g o (w*)~!, then
the composition rules of Beltrami coeflicients imply that f is conformal. Furthermore R is the
Riemann surface of f~1.

C 0 RO ¢ R
qu J{P

f J—

wWH(C) —---mmm e + C

Figure 8.3: R is the Riemann surface of f~1.

The partition P is periodic and has bounded geometry, and p is periodic on P. Thus Lemma[J]
implies that yu is probabilistically bounded, so Theorems [I] and [2] are applicable. We now obtain
a quick proof of Theorem [3]

Proof of Theorem[3 Note that ¢opgo (w*)~! is a conformal homeomorphism from w*(C) to R.
By Theorem [1, we have that w* is almost surely surjective onto C, so ¢ o pg o (w*)~! is almost
surely a biholomorphism from C to R. O

We now want to estimate the order of f. Since Theorem [2]is applicable, we are ready for the
proof of Theorem

Proof of Theorem[]} Let o be the spherical metric on C scaled so that C has area 1. We define
A(t) to be the area of B(0,t) in the pullback metric f*o. According to a well known formula of
Ahlfors and Shimizu (Equation 12 in [6]),

Ty(r) = /0 @dr +0(1).

We thus need to estimate the growth of A(t).

Let D(0, R) denote the ellipse such that A,(D(0, R)) = B(0, R), where A, is the linear map
whose existence is guaranteed by Theorem 2 Note that D(0, R) is D(0, 1) scaled by a factor of
R. By the remark at the end of the proof of Theorem [2| the conclusion of Theorem [2| holds with
B(0, R) replaced by D(0, R). Fix € > 0. We may choose a sequence R,, such that the conclusion
of Theorem |Z| holds for R, with probability at least 1 — 5% for all positive integers n. By the
Borel-Cantelli lemma, with probability 1 the conclusion of Theorem [2] holds for infinitely many
n. The following deductions hold for these values of n.

For infinitely many values of R,,, for t € [%, Rn],
I -2¢(Au(D(0,1))) € w"(D(0,1)) C Ii12c(Au(D(0,1)))
with probability 1. Using the definition of D(0,t), we may rewrite this as
B(0,t(1 — 2¢)) C w"(D(0,t)) C B(0,t(1 + 2¢)),
or alternatively as
(w")~H(B(0,t(1 — 2¢))) € D(0,t) C (w*)"H(B(0,t(1 + 2¢))).

It thus follows that for t € [£=(1 + 2¢), R,,(1 — 2¢)],

D <o, Mf%> c (w1 (B(0,8) € D (0, 1_’526> (8.1)
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For simplicity, from now on we take ¢ < % small enough so that the above holds for ¢t €
[0.6R,,0.9R,].

We now turn to bounds on A(t). There exist constants m and M such that for large enough
t, D(0,t) completely contains at least mt? cells of the rectangular lattice in its interior and is
contained in the union of M? cells. Recall that we are interested in the function f = po¢o pgo
(w*)~L. For t € [0.6R,,0.9R,,], Expression [8.1] implies

w0, < 0 (0.5,

from which it follows that the image of B(0,t) by (w*)~! is contained in the union of at most

M (7%5:)? cells. Thus the image of B(0,t) by pg o (w)~! is covered by at most M(755-)?

hemispheres. Since ¢ maps hemispheres to hemispheres and each hemisphere has area %, it
follows that

Mt?
A(t) < TR

We construct an analogous lower bound on A(t). We have

(w")~Y(B(0,t)) D D (0, lf%)

for t € [0.6R,,0.9R,] for infinitely many R, with probability 1. It follows that the image of

B(0,t) by (w")~! contains at least m(35;)? cells. Thus the image of B(0,t) by poo (w*)~" and
¢ o oo (w)~! contains at least m(gf5;)? hemispheres. Hence

mt?
Alt) > ———.
() = 2(1 + 2¢)?
In summary, we have that for some constants ¢; and ca,
cit? < A(t) < eot?
for ¢t € [0.6R,,,0.9R,,] for infinitely many n with probability 1. Integrating, it follows that
R 0.9R 0.9R
n A t n A t n
T¢(R,) +O(1) = / th > / ﬁdt > / crtdt = 0.225¢; R2.
0 t 0.6Rn 0.6R,
Denoting the order of growth of f by A, it follows that
log T logT 21 1
A = limsup 252 S i sup 08T ) o 2108 Fn + O
r—00 ogr n—soo  log Ry n—00 log R,

with probability 1.
Similarly, we have that

=2

0.9R,, A(t) 0.9R,,
Tf(oan) + O(l) = / Tdt < / cotdt = 0'40562R3w
0

0

where we used the fact that A(¢) is an increasing function. Denoting the lower order by ), it

follows that
logT log T¢ (0. 21 1
A = liminf 28D g 08 THO09RA) o e 2log iy +0(1)
r—oo  logr n—oo  log0.9R, n—oo log R, + O(1)

with probability 1. The proof of Theorem [4] is complete.
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9 Directions for Further Research

One of the main limitations of Theorems [3] and [ is that they only establish results about a
subset V of §. The main challenge in constructing a measure on all of § is that § is difficult to
parametrize: simply specifying each marked boundary point does not necessarily define a surface
in &, since the marked boundary points associated to the vertices of a cell must be in cyclic
order.

One idea for parametrizing all of S is to specify the vertices of each hemisphere up to bi-
holomorphism. More specifically, let a, b, ¢, d be the marked boundary vertices of a hemisphere
in cyclic order, so that there exists a unique automorphism of the hemisphere mapping b, ¢, d to
1,0, 00, given by

(z—¢)(b—d)
—d)b—o)

The cross ratio of a, b, c,d is defined as the image of a under this map; it is thus given by the
formula

(a—c)(b—d)

(a—d)b—c)

Since a, b, ¢,d are in cyclic order, it follows that (a,b;c,d) belongs to the interval (1,00). If
H(a,b,c,d) denotes the hemisphere with the marked boundary points a, b, ¢, d, it follows that
there exists a biholomorphism between H(a,b,¢,d) and H(da',¥,¢’,d") mapping corresponding
marked boundary points to each other if and only if (a,b;c,d) = (a’,b’;¢',d’). Thus each hemi-
sphere can be specified up to biholomorphism by its cross ratio, which is an arbitrary number
from (1, 00).

The natural question is whether specifying the cross ratio of each cell of a surface R € S
determines R up to biholomorphism. This is phrased more specifically in the following conjecture.

(a,b;c,d) =

Conjecture 1. Suppose R and R’ are two surfaces in S such that the cell of R at position (i,7)
has cross ratio x; ; and the cell of R’ at position i,j has cross ratio X;,j' Suppose furthermore
that xi; = X;,j for alli,j. Then R and R’ are of the same conformal type, meaning that R and
R’ are equivalent up to biholomorphism.

Conjecture [1] is non-trivial to prove. Indeed, even though there exist biholomorphisms ¢; ;
from the cell of R at position (i,j) to the cell of R’ at position (7, j), the ¢; ; do not glue into
a biholomorphism ¢ : R — R’ because the ¢, ; do not necessarily agree at the boundary of
neighboring cells. A proof of Conjecture [I] would allow one to associate a surface in S with well
defined conformal type to every element of the countably infinite product space (1,00)¥. From
here it is easier to define a probability distribution on the set of surfaces with a square grid net,
for example by choosing each cross ratio independently and at random with the same probability
distribution on each cell. This would open up the possibility of proving that almost every surface
in § is parabolic, without having to restrict to a subspace V.

It is also of interest to know whether the proof of Theorem [4] can be strengthened to a proof
of the following conjecture.

Conjecture 2. The meromorphic function f defined by a surface in (V,ny) almost always has
order 2.

log T’ (r)
lo

The author of this paper has not been able to obtain upper bounds on lim sup

gr
lower bounds on lim inf % that hold almost surely. Proving Conjectures [1| and [2| is an
interesting further direction of research.

or
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