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irreducible when ¢ is a root of unity, most notably when § = 0. In this paper, we show that
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phisms between adjacent modules and demonstrate exactness everywhere. The surjection from
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1. INTRODUCTION

The Temperley-Lieb algebra was formulated by the mathematical physicists Temperley and
Lieb in 1971 in their study of planar lattice models to generalize the transfer-matrix method for
problems of percolation and coloring [32]. Since its conception, the Temperley-Lieb algebra was
quickly recognized for its significance as an aid to the study of ice-type and Potts models [2].
It has also played a major role in mathematical physics due to its numerous applications to
integrable models, quantum groups, and von Neumann algebras [1]. About a decade later, the
eminent knot theorist Jones independently rediscovered the Temperley-Lieb relations in his work
on finite-index von Neumann subfactors, which inspired the creation of the Jones polynomial [18].
The curious reader who wishes to know more about the origins and early developments of the
Temperley-Lieb algebra may desire to consult the survey [10].

Following the work of Jones [18, 19, 20], the Temperley-Lieb algebra has generated increasing
interest from the perspective of representation theory. For instance, analyzing the structure of
the irreducible and indecomposable representations of the Temperley-Lieb algebra has proven to
be a rather nontrivial task [16, 28, 33]. Additionally, the Temperley-Lieb algebra is connected
to several other algebraic objects, including the Hecke algebra and the braid group [20, 33], as
well as certain closely related variants, such as its affine or nilpotent deformations [3]. Notably,
it follows that the Temperley-Lieb algebra is related to the double-affine Hecke algebra, also
known as the Cherednik algebra, albeit perhaps more indirectly [4].

1.1. Main results. The Temperley-Lieb algebra TL,(8) depends on an index n € N and a
complex parameter 3 € C. There exist certain standard modules W;* indexed by n and ¢, where
( is a nonnegative integer of the same parity as n. Let ¢ € C\ {0} satisfy g = ¢'/? 4+ ¢~ /2.
It is not difficult to construct a surjection from the Hecke algebra H,(¢) onto the Temperley-
Lieb algebra TL,(53), implying that the representation of the Specht module S((+6/2,(n=6)/2)
factors through to that of the standard module W;'. For generic 3, in which ¢ is not a root of
unity, Westbury proved by computing the Gram determinants on each standard module that
the irreducible modules of TL,(/3) are exactly the standard modules and moreover that TL, (/)
is semisimple [34].

When g is a root of unity, as is the case for specializations such as 8 € {0,1,v/2, ”2‘/5, V3,2},
the structure of the Temperley-Lieb algebra becomes much less straightforward. For such values
of 3, the Temperley-Lieb algebra ceases to be semisimple. Goodman and Wenzl applied the
algebraic methods of evaluation at critical parameter values and spectral analysis for idempotents
to obtain the block decomposition and dimensionality of the irreducible modules of TL,, (/) [16].
The investigations of Goodman and Wenzl have generated further interest in the structure of the
Temperley-Lieb algebra at 3 = ¢'/2 + ¢~'/2 for ¢ a root of unity [12, 22, 23, 25, 28, 29]. For the
noteworthy case of § = 0, of particular importance is the work of Ridout and Saint-Aubin, in
which categorical methods are used to demonstrate that, for odd n, the standard modules remain
irreducible, while for even n they exhibit composition series of length two, entailing a unique
irreducible quotient and irreducible submodule [28]. In this paper, we shall focus extensively on
the specialization to § = 0, which is important as it corresponds to the value of ¢ = —1 of a low
multiplicative order of 2.

Our first main result demonstrates an equivalence between the category of representations of
TL,.(0) and the category of representations of the path algebra CQ,, » on the straight-line quiver
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of § vertices quotiented by some ideal J. Our investigations are motivated upon the work of
Ridout and Saint-Aubin, in which they define a sequence of projective principal indecomposable
modules P;* on TL,(0) [28]. For even n, we show that TL,_;(0) is semisimple and compute the
dimension of the homomorphism spaces among the P;* and W;'. We observe that the dimen-
sionality of our computed homomorphism spaces closely resembles the number of distinct paths
on the double-sided straight-line quiver Q,,/» on 7 vertices satisfying certain special conditions.
Then, treating the projective and standard modules as intrinsically being objects, it is natural
to explore the relationship between TL,(0) and CQ,,/, from a categorical perspective, leading

us to construct the ideal J € CQ,, /. Now we state our first main result as shown below.

Theorem 1.1. There exists an ideal J of the path algebra CQ,, /o for which the functor from
®: Rep(TL,(0)) — Rep(CQ,,)2/J) given by

®(X)= Hom(P},X) —— Hom(P}, X) —— Hom(P}, X) Hom(P!, X)

establishes a category equivalence Rep(TL,(0)) ~ Rep(CQ,/2/J).

Motivated by the implications of Theorem 1.1, our second main result establishes an explicit
sequence of homomorphisms that give rise to a long exact sequence on the standard modules of
TL,(0). Indeed, given our homomorphism space computations on the projective and standard
modules, we may evaluate the functor ® upon each standard module to obtain the objects
® (W), which by Theorem 1.1 can be verified to inherit the structure of a long exact sequence
over the quotient of CQ,,/»/J. Projectivity implies the exactness of @, and hence it is automatic
that a long exact sequence on the standard modules must necessarily exist. More prominently,
we can do even better by deriving explicit diagrammatic formulations of the homomorphisms
connecting adjacent standard modules in the long exact sequence. The upshot is that we have
consequentially established complete diagrammatic descriptions of all irreducible modules of
TL,(0) for all n. In particular, the following theorem encapsulates our second main result.

Theorem 1.2. Let n be even. There exist maps ¢y : Wi, — Wi for all nonnegative even £
such that the sequence

0¢_">Wnn_”;2_> m -¢—2>W§—°>W§L—>O
is exzact. Moreover, the collection {im ¢} | 0 < ¢ <n—2,0=0 (mod 2)} constitutes a complete

set of distinct irreducible modules of TL,(0).

Our third main result lifts the long exact sequence on the standard modules that we have
discovered in Theorem 1.2 onto a long exact sequence on the g-Specht modules specialized to
q = —1 over characteristic two. We motivate the long exact sequence on such a collection of
(—1)-Specht modules by observing that it is guaranteed to exist. This is because, as established
by James and Mathas, the closest analogues of the standard modules over H,(q) are the g-Specht
modules [17]. For 3 = ¢*/2 + ¢7'/2, recall that the representation of the ¢-Specht modules on
two-row partitions factors through, via the aforementioned surjection from H,(q) to TL,(3),
onto the representation due to the standard modules of the Temperley-Lieb algebra. Hence, a
homomorphism between standard modules must also intertwine with the action of H,,(¢) when
interpreted as a linear map between g-Specht modules. As a result, the long exact sequence
given by Theorem 1.2 under specialization to f = 0 automatically implies the existence of a long
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exact sequence of (—1)-Specht modules, providing clear motivation for our foray into the realm
of Specht modules as we investigate the structure of such a long exact sequence.

Unfortunately, for ¢ # 1, the ¢-Specht modules remain fairly intractable objects in comparison
to the Specht modules or standard modules. In contrast, when ¢ = 1, the g-Specht modules and
Hecke algebra collapse respectively into the Specht module and the symmetric group algebra.
This endows Specht modules with a vastly simpler structure that may even be expressed as spans
of polynomials. We can make our analysis for the specialization ¢ = —1 much more tractable by
working over a base field in which —1 and 1 are in fact equal, in which case we are equivalently
analyzing the structure of the Specht modules over characteristic two. As our third main result
details below, we prove that when we take base field k = F, and quotient out all square terms,
the long exact sequence on these (—1)-Specht modules becomes fairly tractable.

Theorem 1.3. Let n be even, and let T* be the polynomial (—1)-Specht modules over the ring

Folzy, o, ..., x,)/(x3, 23, ..., 22). There then exists a long exact sequence

0 —> T(n) — T(n—l,l) iy T(n/2+1,n/2—1) N T(n/?,n/Q) — 50
where the homomorphism between adjacent modules is multiplication by >°7 | x;.

Lastly, we emphasize that we may motivate the above main results, most notably Theorem 1.3,
by computing the Jones polynomial of braid closures. Let m : B, — H,(q) be the natural
homomorphism given by mapping generators to generators. Let x, be the character of the ¢-
Specht module indexed by the partition A - n on H,(q). Let t = q. We can formulate the Jones
polynomial as a polynomial linear combination of such characters.

Proposition 1.4. The Jones polynomial of the closure of any braid a € B,, is given by

_1\n-1 e(e)—n+1 [n/2]
Val(t) = ()" (VD) > (Zt>X(n k)T (T()).

L+t k=0 i=k

Observe that at t = —1 the denominator 1 + ¢ vanishes, implying that the numerator must
vanish as well. If n is odd, one can check by counting parities that Z?:’kk(—l)i = 0, guaranteeing
that the numerator vanishes automatically. However, if instead we have n even, for ¢t = —1
observe that >."-F(—1)’ does not vanish, instead evaluatmg to either 1 or —1 based on parity.
As a result, by Proposmon 1.4 we expect the identity

n/2

S (=1 X (n_ppy7 (m(a)) = 0.

k=0

Tensoring with the sign representation to transform the character due to S (n=kk)T to that of
S(=kk) e arrive exactly at the vanishing alternating sum which follows as a consequence of the
long exact sequence of Specht modules index by two-row partitions as illustrated in Theorem 1.3.

1.2. Future work. Currently, we are investigating the structure of the standard modules M (S*)
of the Cherednik algebra H. on type A, where A - n is a partition and ¢ maps every simple
reflection of G,, to % This follows from the fact that, over type A, the map ¢ must be invariant
over each simple reflection in which the specialization to c is analogous to specializing the Hecke

algebra to ¢ = ™ [4]. For ¢ = €™ = —1, the corresponding specialization is to ¢ = 3.
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As a result, it would be interesting if there exists yet another long exact sequence analogous
to the form of Theorem 1.3, this time on the collection of M(S*), in which X again is a two-row
partition. Correspondingly, we propose the following question.

Question 1.5. Does there exist a long exact sequence of standard modules of the form
0 — M(S™) — M(SP=LDy — o — M(SW/EL2EY L Np(S0/2n/2y
and if so, what is the structure of the homomorphisms connecting adjacent modules?

Pivoting away from algebra and towards knot theory, the statement of Proposition 1.4 will
likewise generate some further research of interest. A link L embedded in the 3-sphere S? is said
to exhibit a splitting if there exists a subspace B C S\ L homeomorphic to S* such that L
intersects both components of S*\ B [24]. Colloquially speaking, this occurs exactly when L can
be separated into two rigid components that can be moved arbitrarily far away from each other,
without disturbing the isotopy class of L. If L is a split link with components L; and Ly, then
Vi(t) = (—tY2 — 72V (t)V1,(t), and hence Vi, (—1) = 0. Thus we wonder if it is possible to
classify all non-split n-braids a € B,, for which V;(—1) = 0.

For odd n, the singularity at ¢ = —1 is removed easily by the polynomial coefficients Z?;kk tt
of the characters, resulting in a clean formula for the Jones polynomial. For instance, when
n = 3, the author has derived the following result [21].

Theorem 1.6 ([21], Theorem 4.7). Let o € By satisfy Va(—1) = 0. Then there exist integers m
and k for which & = &y, where ag = o5 (o10907)*™.

For even n, the singularity at ¢ = —1 cannot be removed in a straightforward fashion. Indeed,
although our main results imply that it must be removable, the polynomial coefficients of the
characters are not divisible by 1+4¢. Hence, the explicit resolution of the singularity at t = —1 of
Vi(t) remains unclear. The simplest case is that of n = 4. Motivated by Theorem 1.6, it would
be interesting to further delve into the behavior of the Specht module characters as t approaches
—1. For instance, we can obtain the value of V4;(—1) by taking the derivative of (14 ¢)V4(¢) and
specializing to t = —1. Hence, we propose the following question.

Question 1.7. What are the possible 4-braids o € By such that Vi(—1) = 07 More fundamen-
tally, how do we evaluate the derivative of xx(m(«)) for X € {(1,1,1,1),(2,1,1),(2,2)} at the
specialization t = —17

1.3. Structure of the paper. Our paper is organized as follows. In Section 2, we introduce the
Temperley-Lieb algebra, the Hecke algebra, and the braid group. In Section 3.1, we introduce
the irreducible and projective modules on TL,(0) and compute the dimensions of several ho-
momorphism spaces involving the standard and projective modules. In Section 3.2, we develop
category theory to prove Theorem 1.1. In Section 4, we construct the homomorphisms between
adjacent standard modules by way of proving Theorem 1.2 and illustrate the irreducible rep-
resentations of TL,(0). In Section 5.1, we reformulate the notion of a Specht module in terms
of polynomials. In Section 5.2, we work with (—1)-Specht modules using such a polynomial
formulation over Fy and prove Theorem 1.3. In Section 6, we use the Ocneanu trace to prove
Proposition 1.4. In Appendix A, we present elementary computations of several homomorphism
spaces from Section 3.1 as well as a proof of the otherwise tedious Lemma 3.15 using composition
series and diagram chasing.
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2. PRELIMINARIES
Let n be a positive integer.

Definition 2.1. The Temperley-Lieb algebra TL,(B) at some parameter 5 € C is generated by
the variables ey, es, ... ,e,_1 on base field C under the presentation

TL(8) = {e1, €0, 601 | € = Bei, eieiiei = eieiie; = €5, €65 = eje; Vi — j| > 2).

Its dimension is the nth Catalan number #1(27?)

Remark 2.2. It may be helpful to formalize the notion of a diagram of strings. Specifically,
every such diagram must consist of the following:

e a pair of horizontal lines,

e a collection of marked points on the horizontal lines, and,

e a collection of curves with endpoints being marked points such that no two curves inter-
sect, and also that each marked point lies on exactly one curve.

Then, each generator can be understood as a diagram of strings from n points above to n
points below, such that
1 2 1 n
U
/)

Multiplication of basis elements amounts to the concatenation of their respective diagrams, in
which the bottom of the first diagram is identified with the top of the second. This preserves the
algebraic relations given in Definition 2.1 as one may check [1]. In particular, all closed loops
may be factored out as the scalar parameter .

€; =

Definition 2.3. Consider some diagram corresponding to a basis element in TL,(3). We refer
to curves connecting two points in its top row as cups and curves connecting two points in its
bottom row as caps. Curves connecting the top and bottom rows are referred to as throughlines.

Example 2.4. Let us consider ejegeseres € TLs(3). We have
it

o
-

- FT]
€1€3€2€1€3 = [\T ) }63 =p 72561637

as we factor out the closed loop in the string diagram for ejeseseqes.
Algebraically, we can use the braid relations to equivalently derive that

2
€1€3€2€1€3 = €1€3€2€3€1 = €1€3€1 = €1€3 = Beses,

as expected.
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Now let £ be some nonnegative integer such that ¢ <n and { =n (mod 2).

Definition 2.5. Call a diagram of strings from n points above to ¢ points below monic if there
are no caps. The C-vector space spanned by the basis of all monic diagrams forms the standard

n . . . n o\ n 242 n
module W}, which has dimension (nT_;) (nT_e_J = =75 (nT_p)

The standard modules are naturally acted upon by TL,(8) via concatenation of diagrams, with
any resultant non-monic diagram due to the formation of caps defined to be equal to 0.

Example 2.6. Consider the basis element x € W given by

U

i

is monic and is thus another basis element of W3.
Observe now that

8
I

We check that

”:ﬂ Eemvav,
' a)

is not monic. In fact, the action of any basis element of TLg() on eyx will result in a non-monic
diagram. Hence e;x = 0.

As discussed in Section 1, the standard modules are irreducible for generic values of f3.

Definition 2.7. The Hecke algebra H,(q) at some parameter ¢ € C\ {0} is generated by the
variables g1, g, ..., gn_1 on base field C under the presentation

Hq(n) = <91792, <oy 9n—-1 ’ (gi - Q)(gi + 1) =0,9i9i+19; = 9i+19:9i+1, 9i95 = 49 V\i - j’ > 2>-
It has dimension n!.

Observe from Definitions 2.1 and 2.7 the similarities between the relations of the Temperley-
Lieb and Hecke algebras. Indeed, as claimed in Section 1, there exists an epimorphism from

Hn(q) to TL,(B) when 8 = ¢'/2 + ¢~1/2,

Proposition 2.8. Let 8,q € C such that 8 = ¢/> + ¢~V and q # 0. Then there exists a
homomorphism 0: H,(q) — TL.(B) where 6(g;) = ¢"/?e; — 1 for all i. Moreover 6 is surjective.

Proof. We check that

0((9: — a)(gi + 1)) = (¢"%e; =1 = q)(q"%e;) = gef — a(¢"* + ¢7"/*)e; = q(e] — Be;) = 0.
Thus 60 respects the first relation of H,(q).
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We also have that
0(gi9i+19:) = (¢"e; — 1)(¢"Peer — 1)(¢"%e; = 1)
= (q3/2 —qB+ 2(]1/2)61' —qleieip1 + €ir1€i) + q1/2€i+1 -1
(q3/2 —qB+ 2Q1/2)€i+1 —q(eeip1 +eipre;) + q"%e; — 1
= (q1/2ei+1 - 1)<q1/26i - 1)((]1/2€z‘+1 - 1)
= e(giJrlgigiJrl)
and
0(g:9;) = (¢"%e; — 1)(q"%e; — 1) = qese; — ¢ (ei + €;) + 1 = (¢"%¢; — 1)(¢"%e; — 1) = 0(g;9:)
or |2 — 7| = 2, implying that ¢ respects the other two relations of ‘H,(q). Since L) = e;, 1t
for |i — j| > 2, implying that 6 he oth lati fH Si egjl i
follows that 6 is an epimorphism. [l

Definition 2.9. Let n be a positive integer. The braid group B, has presentation

B, = <U1,<727 «eyOn—1 | 0034105 = 0441040441, 0;05 = 005 V|i - j| > 2>-
Each braid can be seen as n intersecting strands of string, in which each o; introduces a twist
on the strands in the ith and (i + 1)th positions.

As one can check by comparing the relations of the presentations in Definitions 2.7 and 2.9,
there is a natural homomorphism 7: B,, — H,(q) given by 7(0;) = e; for all i.

3. PROOF OF THEOREM 1.1

3.1. Homomorphism space computations. For the next three sections, let us fix some pos-
itive even integer n and consider exclusively the specialization of the Temperley-Lieb algebra
at S = 0. Since the W/ are not necessarily irreducible at 8 = 0, we shall define a complete
collection of irreducible modules of TL,(0). To do so, we will also need to define a sequence of
projective principle indecomposable modules, following the work of [28].

Definition 3.1. Let ¢ > 0. For any basis elements x,y € W}, let a(x) be the string diagram
obtained by reflecting x horizontally. Obtain the element o(x,y) € TLy(0) by diagrammatically
concatenating a(x) above y. Now consider a pairing (-,-) on the basis elements of W} given by

1 ifa(z,y) € TLy(0) contains ¢ throughlines
(z,y) = .
0 otherwise.

Eztend the above into a bilinear pairing (-,-): W@ W — C. Then, define the quotient modules
¢ =Wo /(x| (z,y) =0 Vye W)

Definition 3.2. Let {P}' | 2 < ¢ < n,f =0 (mod 2)} denote the collection of principal inde-
composable modules, which are the indecomposable direct summands of the reqular representation
of TL,,(0). Each P} is projective.

Observe that in Definition 3.2 we have chosen to index the principal indecomposable modules
by positive even integers, which exactly matches the indexing of the quotient modules. This is
well-defined as it is a general fact that the P}’ and the L} are in bijection with each other [8].

We will need the following results of [28].
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Proposition 3.3 ([28], Corollary 4.2). The isomorphism

ResTL ( yWi' =W e Wiy
holds.
Proposition 3.4 ([28], Corollary 7.4). The collection {L} | 2 < ¢ < n,¢ = 0 (mod 2)} of
quotient modules form a complete set of distinct irreducible modules of TL,(0). Moreover, the
sequence

0— Ly, — W} — L —0
s exact and non-split for each £.

Proposition 3.5 ([28], Proposition 8.2). The following statements are true.

(a) The indexing on the principle indecomposables may be chosen such that for each ¢ > 0
there exists an isomorphism
Py = Indy g Wi
In particular, there exists a short exact sequence
0 — W,y — P — W, —0.

(b) The collection {W; ' | 2 < ¢ < n, ¢ =0 (mod 2)} of standard modules form a com-
plete set of pairwise distinct irreducible modules of TL,_1(0). Additionally, the standard
module W' ' is also projective and isomorphic to L)~} for each ¢ > 0.

Remark 3.6. One may wonder whether there exists a diagrammatic depiction of the quotient
and principle indecomposable modules. Indeed, from Propositz'on 3.5 we have the isomorphism

P =1In dTL »(0) o) Wity The basis of the induced module IndTL" 1 (0) W' can be interpreted as

consisting of dmgmms of strings from n points above to { pomts below in which the only cap
permitted connects the rightmost two points on the bottom.

The diagrammatic construction of Ly is much more subtle. We shall give an explicit charac-
terization of its structure with the proof of our second main result in Section 4.

Now we deduce some novel results.
Corollary 3.7. The algebra TL,_1(0) is semisimple.

Proof. Let V' be some TL,,_1(0)-module, and let W C V' be a submodule of maximal dimension.
We have the short exact sequence

0—W —>V —V/W-—0.

Then V/W is irreducible and thus projective by maximality, implying that the exact sequence
splits. Hence V' = (V/W) @ W. We repeat this process on W by induction. As dimW < dim V/,
our process eventually terminates, expressing V' as the direct sum of irreducibles. O]

Proposition 3.8. Let ¢ and m be positive even integers no greater than n. Then

1 ifle{m,m+2}

0 otherwise.

dim Hom(P;', W) = {
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Proof. By Frobenius reciprocity [14], we observe that

Hom(Py', Wit) = Hom(Indp" %o Wi, Wit) = Hom(Wp!, Resy "% W),

Hence by Proposition 3.3, we find that
Hom(P;', Wyy,) = Hom(W'5', W=y @ Wity).
By Proposition 3.5, all three of W;'', W/}, and W[,‘Lfl are irreducible, so by Schur’s Lemma

dim Hom (P, W) = {We '} 0 Wty Wit

m—1

and the result follows. O

Theorem 3.9. Let ¢ and m be positive even integers no greater than n. Then
2 ifl=m
dimHom(P;, P) =<1 if [( —m|=2
0 otherwise.

We will need the following lemma.

Lemma 3.10. Let A be a C-algebra, and let V., W, Uy, and Uy be A-modules with V- C W and
W/V =2 U, @ Uy. Then there exists some A-module V* such that V C V* C W, V*/V =2 U,
and W/V* = Us.

Proof. Let m: W — U; @ U, be the simple projection from W to W/V = U; & Us. We claim
that V* = 71 (U; @ {0}) satisfies the desired properties. It is clear that V* C W. We note also
that the map sending each w € W to the projection of 7(w) onto U is linear and has kernel V*,
establishing the isomorphism W/V* = Us.

Additionally, since V' = ker 7, it follows that V' C V*. Then the map sending each v € V* to
the projection of m(v) onto Uj is linear and has kernel V', implying that V*/V = Uj. O

Proof of Theorem 3.9. Note by Proposition 3.5 the short exact sequence
0O— W, ,— P — W" —0.
Since exactness is retained upon restriction to TL,_1(0), by Proposition 3.3 the sequence
0 — Wi—i & Wil — Resq" ) Pn — WaTi@ Wil — 0
is also exact. In particular, there exists a sequence of inclusions
0CWihe Wit} € Resy”% P

with Res%:(o)(o) Pr/WrZs@Wr—1) 2 WrZi @ W L. Then, by Lemma 3.10, there exists some

-1
TL,,_1(0)-module V' extending the sequence of inclusions to yield

0C Wil CWatk® Wil CV C Respi" % P

where V/(W2-L @ Wr—l) =2 Wl and Res&:(_ol)(o) PPV = Wl Since WZ%, WrZh and
W1 are all irreducible by Proposition 3.5, it follows that the above inclusions form a composi-

tion series for Res?[:(f)l)(o) P, yielding the multiset {W,2—5 W=7, W2—1, W"-1} of subquotients.
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By Frobenius reciprocity and Proposition 3.5, we have

Hom(P;', P1,) = Hom(Indgy ) Wi's', Prr) = Hom (W75 Resyy ) Pr).

m

Then, Schur’s Lemma implies that the dimension of this homomorphism space is exactly the

multiplicity of W/ ;! in the multiset of subquotients of Res%:(_ol)(o) P". As a result

. n n . n— TL, (0 n
dim Hom(P}", P1) = dim Hom (W;'5", Resq" ) ) P2)
= (WS Wy, Wt Wi Wiy

m

The desired conclusion now follows. O

The reader unfamiliar with the concept of subquotients is advised to refer to the results
developed in Appendix A.

3.2. Category equivalence. We now introduce the concept of quivers and path algebras [7]
in order to formulate the necessary category equivalence.

Definition 3.11. A quiver Q is a directed graph in which loops and multiple edges are allowed.
A path in Q is defined in the familiar graph-theoretic manner, in which vertices and edges are
permitted to appear multiple times. Trivial paths, which start and end at the same vertex and
contain no edges, are also allowed. For every path p of Q, let s(p) and t(p) respectively denote
the starting and terminal vertices of p.

Given two paths p and q of Q such that s(p) = t(q), we let poq be the path that starts at s(q),
traverses along q to reach s(p) = t(q), and then traverses along p to terminate at t(p).

Definition 3.12. Let Q be a quiver. The path algebra CQ of Q is the C-vector space spanned
by all paths on Q such that, for paths p and q of Q, we have

. {poq if 5(p) = t(q)

0 otherwise.

A representation of Q is a collection of vector spaces and maps endowed with a bijection assigning
each vertex of Q to a vector space and each directed edge e of Q to a map between the vector spaces
associated with s(e) and t(e). It is well-known that the representations of Q are in bijection with
the CQ-modules. Hence, the category of representations of Q, denoted Rep(CQ), is ezactly the
category of CQ-modules.

Let us now define the straight-line quiver for some positive integer n.

Definition 3.13. The straight-line quiver Q,, is the quiver on n vertices has the structure

al ag as an—1
[ ] [ ] [ ] LRI o,
b1 ba bs brn—1

We let e; denote the trivial path on the ith leftmost vertez.

We now give the full statement of Theorem 1.1 and establish its proof.
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Theorem 3.14 (Theorem 1.1). In the path algebra CQ,, /o, define the ideal
J = (@it10, bbitr, a;ib; — bipq1a41 |0 <0 <n—2).
Then the functor ®: Rep(TL,(0)) — Rep(CQ,,/2/J) such that

&(X) = Hom(Py,X) — Hom(P!, X) —— Hom(Pr, X) Hom (P, X)

establishes an equivalence Rep(TL,(0)) ~ Rep(CQ,,/2/J).

Proof. Note that P°" = @2 P is a projective of Rep(TL,(0)) as projectivity is preserved
under direct sums. By Propositions 3.4 and 3.5 the collection of irreducible subquotients of P}
include L}, for all ¢ € {=2,0,2}, so every irreducible object of Rep(TL,(0)) is included as a
subquotient within the composition series of P°". Hence for any object X € Rep(TL,(0)) we
have Hom(P°", X) # 0. Thus P°" is a projective generator of Rep(TL,(0)), and the Gabriel-
Popesco Theorem [26] implies that the functor sending X to Hom(P°", X) € Rep(End(P°"))
establishes a category equivalence. Hence Rep(TL,(0)) ~ Rep(End(FP°")).

Now let wy': P/* — PJi, and vy P/, — P;' be nonzero maps between adjacent projectives.

By Theorem 3.9, they are fixed up to a constant and over the projectives they attain the structure

I S I e,
2 n 4 n 6 n T n n:
Y2 Y4 Y6 Tn—2

We make use of the following lemma, whose proof we defer to Appendix A.
Lemma 3.15. For every { < n, the compositions y; owy and wy oy are nonzero and nonidentity.

Let m: P°" — P} and (}: P}’ — P°" be the standard projection and inclusion maps. We
consider the homomorphism of algebras ¥: CQ,,/»/J — End(P°") where ¥(a;) = t5; 5 0ws; omy;,
W(b;) = th; 0 vg; 0 T4 o, and V(e;) = 73;. We observe that

U (air10:) = (13514 © Whiyp © Tyip5) © (13519 © Wh; O To;) = L4y © Wy © Wh; 0 Ty; =0
as wh;_ o o wy; € Hom(Py;, Py, ) = {0} by Theorem 3.9. Similarly, we have

W(bibit1) = (13; © V25 © Thiga) © (Li12 © V3iyn © Mhiya) = 13; © Va3 © Vaip0 © Moy =0
since 73; 0 V5,9 € Hom(Pyip4, P;) = {0} again by Theorem 3.9. Finally, by Lemma 3.15, we
note that wj’ o9y and 7, , o wy,, are both nonzero and nonidentity endomorphisms of Pj,. As
dim End (P}, ,) = 2 by Theorem 3.9, it follows that w}’ o v} and 77, , o w}',, are the same up to
a constant multiplier, so without loss of generality we may assume that wj’ o 77 = 77,5, 0 Wi ,.
Thus

W(aib;) = 1345 0 wWh; ©V3; © My g = L3;19 © Vaipo © Wiy © Moo = W(bit1ai11),

so it follows that J € ker ¥, implying that ¥ is a well-defined homomorphism.

Next we observe the surjectivity of U. Note that End(P°") = @1<; j</» Hom(Py;, Pyj). By
Theorem 3.9, the one-dimensional space Hom(Py;, Pa;12) is spanned by w?;, which is exactly the
image of a;, disregarding inclusions and projections. Similarly, the space Hom(Py; 2, Ps;) is one-
dimensional and spanned by the image of b;, disregarding inclusions and projections. The space

End(P,;) is two-dimensional and spanned by the images of e; and b;a;. All other summands of
D1<i j<ns2 Hom( P, Ppj) vanish, so surjectivity is immediate.
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Finally, we check that dim CQ,,/»/.J can be obtained by summing over the number of distinct
paths from the ith to jth leftmost vertices of Q,/» up to quotienting by J. Let this number
be &(i,7). First note that if |i — j| > 2 then any path between the vertices in question have a
subpath given by ag1ar = 0 or bybrr1 = 0, so &(i,7) = 0. Next, if |i — j| = 1, then £(i,7) = 1
given by the obvious path of length 1, as otherwise we are forced to have a subpath of ax,1ar =0
or bibry1 = 0. For i = j, we have £(i,1) > 2 as ¢; and b;a; are both valid. All other paths vanish
via quotienting by agiiax or bibgiq, or fall to b;a; via quotienting by apby — bxyiagsi. Thus
&(4,1) = 2. It follows that £(4, j) = dim Hom(P,, P»;), and hence

dim End(P°") = Z dim Hom(Py;, Py;) = Z (i, 7) = dim CQy, o/ J.

1<i,j<n/2 1<i,j<n/2

As ¥ is an epimorphism on algebras of equal dimension, it follows that W is an isomorphism.
Thus End(P°") = CQ,,/»/J, and Rep(TL,(0)) = Rep(CQ,,/2/J) as claimed.

We may compose the functor mapping X € Rep(TL,(0)) to Hom(P°", X) € Rep(End(P°"))
with the inverse of ¥, in which an endomorphism of P°" is sent to a path on Q,,/». Applying the
Gabriel-Popesco Theorem once more, this yields a functor ®: Rep(TL,(0)) — Rep(CQ,/2/J)
mapping X to the object

Hom(Py, X) —— Hom(FPy, X) —— Hom(P}, X) Hom(P!, X),

which we interpret as a representation of Q,, /2 by Definition 3.12. Since the FP;* are all projective,
the functor ® is exact, preserving the exactness of sequences. 0

Corollary 3.16. There exists a long exact sequence on the standard modules of the form
0O— W) — W,y —- - — Wy — W —0.

Proof. Retain the same notation from Theorem 3.14. By Proposition 3.8, we have

W) = 0 0 0 C,

where the last entry of ®(W)) is C and everything else vanishes.
If2</¢<n-—2and/is even, we check by Proposition 3.8 that

W) = 0 0 C C 0,

where only the entries corresponding to Hom(P;*, W;*) and Hom(P},,, W;") are C.
Finally, we again have by Proposition 3.8 that

W) = C 0 0 0,

where the first entry of ®(W') is C and everything else is zero.
In particular, by the exactness of ® and the category equivalence established in Theorem 3.14,
the claimed long exact sequence exists if and only if there exists a long exact sequence on
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Rep(CQ,,/2/J) of the form

0 0 0 0 0

o) +— O

—O——Q

0 0 0 C
J
l
0 C C 0 0 0
I
C C 0 0 0 0
I
C 0 0 0 0 0

but this is immediate if we let all leftward-pointing endomorphisms of C be the zero map and
let all other endomorphisms of C be the identity map. O

Remark 3.17. The observant reader may notice the resemblance between the quotient CQ,,/J
and the category of perverse sheaves on P™. In particular, consider the category Perv(P™) of
perverse sheaves on P™ with the stratification P* = U, A" U {pt} [4]. It is well known that the
Perv(P") is equivalent to the category Rep(CQ,,/J*) where

J* = (@ip1a;, bibit, aiby — biyra,41,b1a1 | 0 < i <n—2),

consisting of J with the added relation that bya; = 0 [6].

Since by Lemma 3.15 the maps v§ o wy and w]_, o vr_, are both mnonzero, there is no iso-
morphism of algebras between End(P°") and CQ,,/o/J*. It is necessary to remove the relation
biay to obtain the ideal J as in Theorem 3.14. Alternatively, we can view Rep(CQ,,/J) as being
Perv(P"™) with the leftmost vertex of its corresponding quiver removed.

4. PROOF OF THEOREM 1.2

In this section, we shall construct an explicit sequence of homomorphisms between adjacent
standard modules that give rise to the long exact sequence implied by Corollary 3.16.

Definition 4.1. For some nonnegative positive integer i < {, let 0 € Wf” be the basis element

consisting of a cup surrounded by i throughlines on the left and ¢ — v throughlines on the right.
Observe that there is a right action of Wf“ on W, naturally given by concatenating diagrams.
For some basis element x € W[, the diagram 6! connects the (i + 1)th and (i + 2)th lower
leftmost points of x with a cup.
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Let ¢y - W, — W be the linear map given by the right action
¢ () =) (—1)'d3.
i=0

Example 4.2. In W9, we may observe for instance the elements

(6,580t = |~ JTY T W

Consider the element x € WJ° given by

VARV

Tr =

The diagram x05 entails joining the third and fourth lower leftmost points of x, yielding

UUU
U Y

4 _ —
Ty = =

In particular, we have ¢;°(x) = z(5¢ — 53 + 1), so that

4110(%,): w . U U U + U U U

Proposition 4.3. The map ¢} is a well-defined homomorphism of standard modules.

Proof. We first show that ¢} (z) = 0 as long as © = 0. Equivalently, we may suppose that z is a
non-monic string diagram. Let k& be the number of caps in . Observe that a cup is created if
26! joins two throughlines of x; otherwise, if xd¢ joins a cap with a throughline or another cap,
then exactly one cap is removed. Hence, the diagram zd¢ has at most k — 1 caps. As a result, if
k > 2, then ¢} (z) = 0.

Now suppose that £ = 1. Then z is of the form

1 2 j 042

where the sole cap connects the jth and (j + 1)th leftmost points on the bottom and the w; are
subdiagrams consisting only of nested cups. We now consider the parity of j.

If j is odd, then in order for zd¢ to feature no caps while i is even we must have i = j — 1.
Hence 26! = 0 for all even i such that i # j—1. However, observe that I(SJ‘Ll is formed by joining
the jth and (j+ 1)th leftmost points on the bottom, thus completing a closed loop and vanishing
due to the specialization 3 = 0. Since ¢} (z) is a linear combination of the z¢ restricted to even
values of 4, it follows that ¢} (x) = 0.
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Otherwise, if j is even, then for 25¢ to have no caps while 4 is even we must have i € {j—2,j}.
Hence, we have x6f = 0 for all even i ¢ {j — 2,5}, so it follows that

o (a) = (1) 2 (8], — &)

However, note that

and

xéf_Q:@@ w e \wer/
2

As a result

2t = [\
oty = e T e

1 2 i—1 j ¢

and thus ¢} (z) = 0. Thus, in both cases, we have ¢} (x) = 0, so ¢} is indeed well-defined.
Now it suffices to verify that ¢} intertwines. But this is apparent as the left action of TL,,(0)
on W; operates by concatenation above, while ¢} acts by concatenation below. U

Remark 4.4. Observe that the alternating sum in the construction of ¢} is necessary as in the
proof of Proposition 4.3 it causes the two equivalent string diagrams to cancel to zero in the case
where j is even. Indeed, Proposition 4.3 would fail to hold if ¢} was defined to be a direct or
incomplete summation of the xd.

Additionally, the reason for the specialization 3 = 0 becomes clear in the case where j is odd,
as a closed loop is created while everything else is canceled out. In order for this expression to
be zero, we must force the specialization 3 = 0. This implies that the standard modules under
this specialization are not themselves irreducibles, which makes sense as a long exact sequence
can never arise in a collection of irreducible representations due to Schur’s Lemma.

Proposition 4.5. The composition ¢} 4 0 ¢y =0 holds.

Proof. 1t suffices to show that ¢} (¢} (x)) = 0 for all basis elements x.
Observe that

02
Gi_o(dy (7)) = P}y (xz(—l)iégi)
¢/2 ¢/2—1 '
— (J:Z 5;) ( Z (—1)%55;2)

7=0
0/2 £/2—1
=x> > (=1)"*es
=0 5=0
Note for ¢ > j that 551-55;2 = 5§j5§;_22, while for « < 7 we have 5§i5§j 52j+25£;2. In both cases,
we end up joining the same pairs of points on the bottom edge of the diagram. Hence by a
pairing argument the sign factor (—1)"™/ causes the claimed double summation to vanish. [

Now we are ready to state our main result, which proves a major portion of Theorem 1.2.
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Theorem 4.6 (Theorem 1.2). The standard modules W] and the maps given by ¢} constitute
a long exact sequence of homomorphisms given by

n (o

02y Doz gy Sty W2 W0—>0

n

To prove Theorem 4.6, let g7, o: W/ ' — W}, be the linear map such that g}, ,(z) attaches a
rightmost throughline to the basis element . Let f = ¢} og}',. Finally, let n: W — W7 /im g}

be the simple projection and set f = no f. These maps commute as follows.

n
Wiy

A

W'/ im gj

n

Wé—i—l

We first prove the following lemma.

Lemma 4.7. The map f is a bijection of vector spaces between WLt and W/ im gy

Proof. Observe that f: W, 7ot — Wi/ im g satisfies f=nog¢po gio. Thus, letting x € W/5!
be a generator, we can characterize it as

w ez \wers/
r= ) +

1 2 +1

where the w; are subdiagrams consisting only of cups. Thus

gio(z) = el )

We have
¢/2 '
07 (gsa(7)) = Z(_l)zggw(x)égi-
=0
Based on the above depiction of g7, , (), we observe that g, ,(z)d5; will always have a rightmost

throughline unless ¢ = g, in which we connect the two rightmost points on the bottom of g} ().

It follows that 1 annhiliates all elements in the above summation except for gj' ,(z)df. Hence
ﬂmzmwwg@m=<1W@H<W=04W%W9WW - K&&ﬂ.

In other words, the map f simply bends the rightmost throughline of some z € W' +1 into

the rightmost maximal arc of 2 while leaving everything else intact. The bijective nature of f is
thus apparent, as desired. O
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Proof of Theorem 4.6. Let us retain the notation used in Lemma 4.7. Since f = ¢} o g7, ,, we

have im f C im ¢}. Additionally, the bijective nature of f implies that f is injective. We thus
have the inequality chain

dimim ¢} > dim f > dim W',
implying that
dimim ¢} > dim W5,
and, shifting indices,
dim im ¢} , > dim W',
On the other hand, by Proposition 4.5 we have ¢} , 0 ¢y = 0 for all ¢, so im ¢} C ker ¢} 5. In
particular, rank-nullity implies that

dimim ¢y , + dimim ¢y < dimim ¢y , + dimker ¢, = dim W".
Now note that

= (2)- (1)
() () () (27

= dim W;*5! + dim W' 3!
either due to the above computation or by Proposition 3.3. Either Way7 this forces the equality

cases in which dimim ¢} , = dim W' and dimim ¢} = dim W}’ ;"
Since we have shown previously that im ¢} C ker ¢} _,, the result follows. O

The final portion of Theorem 1.2 can now be proven quite easily.

Corollary 4.8 (Theorem 1.2). For all { < n — 2, the isomorphism im ¢} = L}, , holds, In
particular, the collection {im ¢} |0 <l <n—2¢=0 (mod 2)} forms a complete set of distinct
irreducible modules of TL,(0).

Proof. Since ¢ _o: W' — W, is a valid homomorphism, it is automatic that the sequence

o .
0 — ker ¢ 5 — W' =2 ime¢} , — 0

is exact. By Theorem 4.6, we have im ¢} = ker ¢} , and so the short exact sequence becomes

. ¢ o .
0 — im ¢} — W, —2 im ¢} , — 0.

Recall by Proposition 3.4 that each standard module has a composition series containing exactly
two irreducible quotients, namely due to the short exact sequence

0— Ly, — W, — Ly — 0.
As a result, we have im ¢y = L, , for all £ <n — 2. O

Remark 4.9. Note that Corollary 4.8 implies the irreducibility of the first and last standard
modules as W3 = im ¢y = Ly and W) =im ¢ _, = L.
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5. PROOF OF THEOREM 1.3

5.1. Specht polynomials. Let n be a positive integer, and fix a field k of characteristic zero.
We now turn our attention to the Specht modules over k.

Definition 5.1. Let A\ F n be a partition of n, and let t* be its canonical Young tableau. Let the
row stabilizer Py C &,, be the subgroup containing all permutations o for which i and o(i) are
cell labels appearing in the same row of t* for all i. Define the column stabilizer Qy analogously,
this time containing all o for which i and o (i) share a column in t* for alli.

Definition 5.2. The Young symmetrizer ¢\ € k[S,] and dual Young symmetrizer ¢} € k[GS,]

are given by
c\ = Z €o Z sgn(o)e,
oEPy oeQ

= ( > sgn(o)ea) ( > eg> :
o€l T oEQ, T

The Specht module S* is the right ideal k[S,]cy under the permutation action of k[&,]. They
constitute the irreducible representations of k[S,] for k of characteristic zero.

and

Example 5.3. Consider the partition

v= @y =]
forn =4. It has canonical Young tableaux
A 1]2]3]
t _i .

Then Py = ((12),(13)) and Q, = ((14)). Hence, we have
cx = (e1 +eqa +eas) +ewes) +eazs) +eusa)(er — e
Similarly, one checks that
¢y = (€1 —eqy)(er +eas) +eaa) + e@a) + esa) + €aas).
We observe the following result.

Proposition 5.4. The ideal k[S,]c} is isomorphic to the Specht module S*.

Proof. Observe that
C\T = (Z sgn(a)eg) ( > eg> .
oEPy TEQN

If the coefficient of e, in c, is b, observe that the coeflicient of e, in ¢} is sgn(o)b. Hence
the module k[&,]c;+ yields a representation isomorphic to the tensor of S* = k[&,]c\ with
the sign representation. By going from k[&,]ci+ to k[S,]c5, we once again tensor by the sign
representation as we transpose the Young diagram. It follows that the representation due to
the module k[&,,]c} is isomorphic to that given by the tensor of S* with two copies of the sign
representation. Thus k[S,]c; & S*, as claimed. O
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From now on, by Proposition 5.4 we may use the simpler formulation S* = k[&,,]c5.

Definition 5.5. Let F)\ € k[xy,xa,...,x,] be the product of all binomials of the form x; — x;

for all pairs (i,7) in the same row of ", where i < j. Let k[&,]F\ be the right ideal generated
by F under the usual permutation action of k[&,| on k|xy,za, ..., x,].

Example 5.6. If A\ = (3,1), as before, then
ey _|112]3]

and

2|

t(?’vl)T —

‘n-lk‘w —

Then F(371) =1 — X2 while F(371)T = (C(]l — £L‘2)(ZE2 — 5(73)(1‘1 — [Eg).

Proposition 5.7. Define the monomial m = [, x{* € k[xy, x9, ..., x,], where a; is the number
of cells strictly to the left of the cell with label i in t*" . Then cam = |Py|Fy.

Proof. Suppose that i and j appear in the same row of . Then ((i7)) is a subgroup of
o € Pyr. It thus follows that e; — e(; ;) divides }°, ¢ P sgn(o)e, on the left. Hence, there exists
some ¢’ € k[G,,] such that ¢§ = (e1 — e(;;))c”, so that cym = (e1 — e(;5))(c"m). Specializing to
x; = xj, it is immediate that the polynomial cim vanishes. Hence z; — x; divides cym as long

as ¢ and j are in the same row of t’\T, implying that F)\ divides cim.
On the other hand, if AT = (by, by, ..., by) for by > by > --- > by, we note that

k(b kE bj—1 n
degF,\:Z<22>:Z j:Zai:degm.
i=1 j=0 i=1

i=1 j=

As the action of k[S,,] only shuffles the terms, leaving degrees invariant, it follows that c¢im is
multiple of F)\ by some r € k. To find r, observe that the value of a; remains invariant over cells
in the same column, so we have om = m if and only if 0 € Q7. Hence

aam = Qx| ( > sgn(a)ea) m.
O’EP)\T
Now by the same token the coefficient of m in (Z(,epAT sgn(o)e,)m is exactly [Pyt N Q7| = 1,
and hence the coefficient of m in cim is exactly r = |Q 7| = | Py O

Proposition 5.8. For any z € k[S,,], the annihilation zci = 0 holds if and only if zFy = 0.

Proof. Let m be the same monomial from Proposition 5.7. If z¢§ = 0, then |Py|zF)\ = zcim = 0,
so that zFy = 0.

On the other hand, let ¢: S* — k[&,]F) satisfy 1(zc}) = zF\. Note that this is well-defined,
as if z1¢} = 2a¢5 then (21 — 22)c} = 0, implying by the above result that (z; — 22) Fy = 0, giving
2 Fy = % F\. Now note that ker 1) is a proper subrepresentation of S*, from which irreducibility
implies that kert) = {0}. In other words, if zF\ = 0, then zc} = 0, as desired. O
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A direct consequence of Proposition 5.8 is its implications of alternate formulations of Specht
modules over fields of positive characteristic.

Corollary 5.9. Over the field F, of p elements, the representations S* and F,[S,]F\ are iso-
morphic.

Proof. By Proposition 5.8 on C, we have that zc} = 0 if and only if zF)\ = 0 for all z € C[G,,].
Since restriction from C onto Z confers no additional algebraic relations, it follows that z F\ = 0 if
and only if z¢§ = 0 for all z € Z[&,,]. Hence, if we let ¢': Z[S,]cy — Z[S,]F\ be the pullback of
Y from C to Z, we must have ker ¢’ = {0}, so ¢’ is well-defined and injective. Since the preimage
of any 2 F) always contains zcj, we note that ¢’ is also surjective and hence a bijection. Finally,
for any z € Z[S,] and zyc; € Z[S,]c, we have ¢ (z(20¢})) = zz0F\ = z1(zpc} ), so ¢ intertwines
with respect to the action of Z[S&,]. We deduce that v’ is an isomorphism.

It is well known that tensoring a module with [, is equivalent to quotienting out every multiple
of p in that module. Hence, over [F, the Specht module admits the characterization

S)\ = Fp[Gn]ci = Z[@AC? K7z, ]Fp = Z[GR]F)\ X7z, Fp = ]Fp[Gn]F)\
and we finish. O

As a result, rather than thinking about the Specht module S* in terms of F,[&,], we may
instead do so in terms of polynomials in F,[xy, za, ..., ).

Remark 5.10. One may naturally wonder whether Proposition 5.8 can be extended to fields of
nonzero characteristic. We conjecture that the answer is in the positive.

Observe that we exploit the characteristic of k solely to guarantee that ker ) is trivial due to
irreducibility in the latter half of our proof of Proposition 5.8. Hence only the direction that
having zF\ = 0 implies zcy = 0 still requires additional investigation.

5.2. Exact sequence over characteristic two. We bridge our work in Sections 4 and 5.1 by

translating the exact sequences on the standard modules of TL,(0) onto the Specht modules.

However, instead of adapting base field C, on which the Specht modules are irreducible, we shall

instead do so over Fy. By Corollary 5.9 on p = 2, we may work with the polynomial Specht

modules. To introduce nilpotent elements, we shall also quotient by the set {x?, 23,... 22}.
Fix some even ¢ < n.

Definition 5.11. Let T* = Fo[S,,|F)/(z?, 23, ..., 22) C Folzy, 2o, ..., 2] /{22, 23, ..., 22) be the

r'n

Specht module on the algebra F5[S] in which all squares are quotiented out.

Definition 5.12. Let A = (”T“, "T’e) Define the map G : W — T* such that, for some basis
element x € Wp, the image G} (x) consists of the product of all terms of the form x; + x; for all

(,7) such that the ith and jth leftmost points on top are connected by a cup.

Remark 5.13. Since the representation of the (—1)-Specht modules on two-row partitions factors
through the epimorphism 0: H,(q) — TL,(5) from Proposition 2.8 to yield the standard modules
of the Temperley-Lieb algebra, it follows automatically that the (—1)-Specht modules on two-row
partitions form the structure of a long exact sequence. However, the structure behind such a
sequence is perhaps unclear as the q-Specht modules are tractable only when q = 1, as then the
Hecke algebra H,, (1) collapses into C[S,]. The motivation behind working over Fy thus follows
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from the fact that 1 = —1 in a field of characteristic two, allowing us to write the (—1)-Specht
modules as spans of Specht polynomials as established in Corollary 5.9.

As discussed in Section 1, the Specht modules are irreducible over a field of characteristic zero,
equivalent to having q not being a root of unity. This is due to the philosophy that working in a
field of prime characteristic p is tantamount to working with ¢ = €*™%/? for some p{ a [30]. Our
situation falls in the case where p = 2.

Example 5.14. Consider the element x € W32 given by
12345 6 78 9101112
Since nodes 1 and 4, 2 and 3, 6 and 11, 7 and 8, and 9 and 10 are connected by cups, we have
G%Q(Q?) = (.1'1 + x4)(x2 + 55'3)($6 + $11)<£L‘7 + $8)(l‘9 + 1’10).
Proposition 5.15. The map G} is a bijection on vector spaces.
Proof. One checks by the hook length formula that
dim §* = (ﬂ) - (n_f 1) = dim Wy

2 2
We defer the calculations in full to Section 6. Thus it suffices to show that G} is a surjection.

Since A consists of at most two columns, any basis element w € T is a product of binomials.
We will represent such a polynomial by writing the numbers from 1 to n such that they are
evenly spaced around a circle. Draw a chord from ¢ to j if and only if z; +x; divides w. Observe
for any kl, ]{32, ]{?3, and ]{?4 that

(xkl + $k3)<xk’2 + 33k4) = ('r]ﬂ + xk’z)('xks + xk’4) + ('r]ﬂ + $k4)($k2 + xk?,)

in Folzy, 20, ..., 1,] /{23, 23, ..., 22), implying that any intersection of chords can be resolved by
kl kl kl
kg ko _ k4 ko + ky ko .
ks ks k3

The total length of the chords drawn on each component must strictly decrease every time we
use the above resolution. Hence, using a finite number of resolutions, we may write our original
starting combination of chords, corresponding to w, as a sum of chord diagrams such that no two
chords intersect. Each chord diagram can then be unraveled to yield a diagram with n points
on top and a number of nonintersecting cups connecting pairs of such points. We draw in the
throughlines, which pass through all upper marked points that are not connected by cups.

We still need to consider the possibility that a throughline may intersect an arc. If the
cup corresponding to x; + x; intersects the throughline corresponding to zj, then we have
x; +x; = (x; + x) + (¥ + ), giving us the resolution

ik J ik J ik J

NPAERSA R
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Note that every use of the above resolution decreases the number of crossings by 1. No new
crossings are introduced as the throughlines are all vertical. We may thus write w as a sum
of polynomials corresponding to such diagrams of cups and throughlines, with no intersections
at all. However, such diagrams are exactly the basis elements of W', and can be mapped to a
polynomial in T* via G7. In other words, w lies in the image of G. O

Definition 5.16. Let ¢} : TEFHLEE D) oy PS50 gt by multiplication by > | x,,.
Proposition 5.17. The map ¢} is the lift of ¢y, so that 7 o Gy, = Gy o ¢p. In particular,

the following diagram commutes.

oy

n n

W _— W
042 L

Gia| |

(gt agtony VL (et agt
Proof. Consider a basis element € W/,,. Number the points on the top row of the diagram-
matic representation of x with the integers from 1 to n, going from left to right. For each
J < £+ 2, suppose that the jth leftmost throughline occurs at the point numbered with k;.
Then G} o ¢} takes an alternating sum over connecting the (2¢ — 1)th and 2ith throughlines
with a cup, which multiplies the Specht polynomial G, ,(x) with the binomial z,, | + 2y,,. In
characteristic 2 the alternating sum becomes a normal sum, and it follows that

0/2+1 042

GP(Op(x) = D (Thyy + Thy, )Gl () = D a1, G o ().

i=1 =1

Note that Gp, o (z) = [T /271 b, where the binomials b; have S\ 727 b+ 52 4 = S0 2.
Since in Fy[zy, g, . .., x,]/(x3, 23, ..., 22) we have b? = 0 for all 4, it follows that
n 042 (nff)/Zfl
(Z o= ) Clal@) = Y biGhil) =0.
i=1 i=1

Combining the above equations implies that

042

W (Gz+2 ZmnG£+2 Zxk Ge+2( z) = Gy (¢} (x)),

as claimed. 0
We can now complete the proof of Theorem 1.3.

Corollary 5.18 (Theorem 1.3). The ¢} constitute a long exact sequence of homomorphisms be-
tween adjacent standard modules T* on Fylxy, T, ..., x,] /{22, 22, ..., 22) for two-row partitions,
given by

0 iy ) P2y pn-11) Proag Y8 /24 n/2-1) Y0 pn/2m/2) ()

Proof. Recall the exactness of the ¢} due to Theorem 4.6. Then the desired result is immediate
by Propositions 5.15 and 5.17. O
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6. PROOF OF PROPOSITION 1.4 AND APPLICATIONS

Fix a positive integer n. We start by giving a quick refresher of the connections between the
Hecke algebra and braid group that we have mentioned previously in Section 2.

Definition 6.1. When q is not a root of unity, the irreducible modules of the Hecke algebra
H.(q) are the q-Specht modules, denoted by S;‘, and are indexed by partitions A F n.

Definition 6.2. Let 7: B,, — H,(q) be the homomorphism such that 7(o;) = g; for all i, and
let xx: Hn(q) = C be the character of the q-Specht module S as a representation of Hn(q).
Also, let e: B, — Z be the homomorphism such that e(o;) = 1 for all i. For any o € B, we
call e(e) its exponent sum.

Fittingly, under specialization to ¢ = 1, the ¢g-Specht modules collapse into the usual Specht
modules defined in Section 5.1 as H,(q) collapses into the group algebra C[&,,].

Definition 6.3. Let A = n be a partition. For a boxr b € X in its Young diagram, let the hook
length of b, denoted h(b), be the number of bozes directly below or to the right to b, including b
itself. Also, let r(b) be the number of rows below the topmost row that b resides in, and define
c(b) analogously but in comparison to the leftmost column.

Example 6.4. Consider the partition

(9,9,7,5,3,2,1) =

SB[

The box b marked with a club has 3 boxes below it, denoted using hearts, and 6 boxes to its right,
denoted using diamonds. Counting the boxes, the hook length of b is then h(b) =346+ 1 = 10.
We can also check that r(b) = 1 and c¢(b) = 2.

Proposition 6.5 ([20], Definition 3.5). The dimension of the q-Specht module is given by

|
dim S} = —
Sy = T, ROy

Corollary 6.6. Let A = (n — k, k) be a two-row partition for some k < 3. Then

s ()-(1")

Proof. Define ¢ = n — 2k. We note that X is given by a 1 x £ rectangular grid attached to the
right of a 2 x k rectangular grid. In the 1 x ¢ rectangular grid, the hook length ranges from 1
to £. Similarly, in the rightmost column of the 2 x k grid, the hook length ranges from 1 to &,
while in the leftmost column of the same grid the hook length ranges from ¢ + 2 to k + ¢ + 1.
We therefore have the multiset equality

(hb) [beX =({i|1<i<k+0+1}\{l+1})U{i|1<i<k}.
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Hence Proposition 6.5 yields that

st =g = (o) (i) = () -00)

as claimed. 0

This confirms the dimension equivalence claimed at the start of the proof of Proposition 5.15.
Note that setting ¢ = n — 2k is apt, as W;" has the same dimension as S50 = gk,

Now consider the two-variable link polynomial X (g, A) in the context of braid closures. To
avoid confusion with the partitions A F n, we shall use the capital letter A to denote the second

parameter of X (g, A), instead of the more standard .

Definition 6.7 ([20], Definition 6.1). For a braid o € B,,, the HOMFLY polynomial under Jones
normalization

= —71_/\(1 " A tr(m(a
Kol ) = () (VAF (o)

is an invariant of the oriented braid closure link &. Here tr(m(«)), also known as the Ocneanu

trace, is the character of the reqular representation of H,(q) evaluated at . Moreover, the Jones
polynomial is obtained by the specialization V4(t) = X4(t,t).

We can also write tr(m(«)) in terms of characters of the g-Specht modules.

Theorem 6.8 ([15], Theorem 1.1). For o € B,,, the Ocneanu trace () is given by the sum

tr(m(a)) = > Qoalw),

AFn

where setting z = — 11_—[{1(1 and w =1 — q+ z, the weight €2 satisfies

c(b)z

r(0),, _
qw—(g
=[]
bex 1 ")

Here, the product runs through all n bozes b € \.
Let Q3 be the rational function in ¢ given by specializing the weight 2, on ¢ = A =¢. We

now prove the following results that will be key to recovering the Jones polynomial of n-braids.
Proposition 6.9. The weight of S(;\ under the specialization ¢ = A =t is given by
1 tc(b) _ tr(b)+2

Q5 =
A (1+wn££ 1 — th®)

Proof. Comparing formulas for €2, and €23, note that it suffices to show that

tc(b) _ tr(b)+2
O g, =

1+t
if ¢ = A =t. This follows as we find that z = — ll:[fq = —ll_;ttz = —%th, giving
. ; . ; . D th—t -2
hw— gl =q'(1— — gz =qi(1 - i)y =4(1—t)— =
(w-—gz=ql—gq+t2)-gz=q1-q+2(¢ -¢)=t1-1) -7~ 1

We finish by substituting in (7, j) = (r(b), c(b)). O
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Proposition 6.10. For k < 4, let A = (n — k k)" be a partition with at most two columns.

Then
1 n—=k

= —— .
A (A4t ;

Proof. Again define ¢ = n — 2k. Looking at the two possible columns of A, we observe the
multiset equivalence

{(r(0),c(d)) |be A} ={(,0)|0<i<k+(—1}U{(1)|0<i<k—1}.
Since the set of hook lengths is invariant when taking transposes, by Corollary 6.6 we have that
{hO) | beX}={i|1<i<Ek+l+1}\{{+1}HUu{i|l<i<k}.
By Proposition 6.9, it follows that

1 tc(b) _ tr(b)+2

o =
A (L) bll 1 — th®)

1 k+0—-1 1 k+0+1 k ) >

[T -+ Hl — 1) (1_tg+1 IT a-)[[a-1)

IO i=1 i=1
th(1 — L) kil ok , <l~c+é+1 k& ' )

G L a=nIla-n{ I a-nlla-»
B tk(l_tZ—H)

(I14+t)"(1—1)

-1

-1

D
= t
(1+t) =
as claimed. 0

We are now ready to prove our main result.

Proposition 6.11 (Proposition 1.4). The braid closure of any a € B,, has Jones polynomial

_1\n—1 e(@)—n+1 [n/2]
Vd(t):< D" (V) 3 <Zt> (i)™ ().

1+t k=0 i=k

Proof. If a partition has more than two columns, then there exists some box b € A satisfying
r(b) = 0 and ¢(b) = 2. Thus Q5 contains a factor of w — ¢z = tijrf = 0 by Proposition 6.9 and
is thus equal to 0.

Hence only partitions with at most two columns, that is, of the form (n — k, k)" for k < 5,
contribute to the trace. Applying Proposition 6.10, we find that

tr(m(a)) = B — MZ/QJ (Z t ) X (ki) T ()

(1+t)n k=0 i=k
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Specializing the HOMFLY polynomial to obtain the Jones polynomial, by Theorem 6.7 we get
Va(t) = Xal(t, t)

= —71_152 " ) tr(n(a
(~aty) W atata)

1 [n/2] /n—k )
= ((_1)7%1(\/%)6(04)77%1(1 + t)nil) ((1 + t)" Z <Z ﬂ) X(nk,k)T<a))

k=0 \i=k
(_1)n—1(\/Z)e(a)—n+l an:/% (Z )
= t | Xn—k) 7 (@),
1 +1 k=0 i=k
as desired. ]

Example 6.12. We apply Lemma 6.11 to the case where n = 3. Here, we observe that
(_1)n—1(\/g)e(a)—n+1 [n/2] (
Va(t) = YA ) Xyt (@)
L+t k=0 i=k

(VOUUA+t 4+ + ) xaan (@) + (+ 2)xen(a)

t(1+1)

el 1

- M) & ((t 7 ) xan(@) + xen(@)

The (—1)-Specht module SUEY yields the sign representation, so X (@) = (=1)4) and

Va(t) = (\/Z)e(a) ((t + 1) (—1)e(a) + X(2,1)(a>> :

This exactly verifies the formula for the Jones polynomial of a braid closure & for o € By as
claimed by Birman [5].

Remark 6.13. If we specialize tot = —1, then Theorem 6.11 must express Va(t) as an indeter-
minate form. In other words, we expect att = —1 that
[n/2] /n—k
l+t= > (Zt) (n—t )T (@) = 0.
k=0 i=k
The above is guaranteed for odd n as then
n—k n—2k
D (=D = (=) Y (-1) =0
i=k i=0
For even n, however, it must instead be the case that
[n/2]
Z (_1>kX(n—k,k)T(a> = 0.
k=0

After tensoring with the sign representation to transpose the two-column partitions (n — k, k)T
to their corresponding two-row partitions (n — k, k), it is not surprising that there exists a long
ezact sequence on the Specht modules T %% over Folxy, oo, ..., x,]/(x2, 22, ..., 22) as we have
shown in Theorem 5.18.
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In general, the q-Specht modules are irreducible whenever q is not a root of unity. This
corresponds directly to the case where the standard modules W' of the Temperley-Lieb algebra
are irreducible whenever we have B = ¢'/? + ¢~ /% for q not a root of unity.

APPENDIX A. PROOF OF LEMMA 3.15 WITH DIAGRAM CHASING

In this section, we develop some useful representation-theoretic background and compute
several homomorphism spaces between the modules of TL,,(0) using rather elementary methods.
Throughout this section, we fix some field k and designate A as a general k-algebra.

Proposition A.1. Let A, B, C, and X be A-modules such that A, B, and C form a short exact
sequence and let ¢: X — B be a homomorphism as in the following diagram.

X
’:”@N
)
0 A——B——C 0

Suppose that go ¢ = 0. Then ¢ factors through A as f o1 for some homomorphism ¢: X — A.

Proof. Let x € X, so that g(¢(z)) = 0. By exactness ¢(x) € kerg = im f. Since f is injective
there exists some unique y € A such that ¢(z) = f(y). Thus we may make the assignment
¥(x) = y as a map of vector spaces. We check that ¢ = f o, and it follows that v is a valid
homomorphism because it certainly intertwines. U

In fact, the dual of Proposition A.1 holds true as well.

Proposition A.2. Let A, B, C, and X be A-modules such that A, B, and C' form a short exact
sequence and let ¢: B — X be a homomorphism as in the following diagram.

X
A
0 ——A—=B——C—0

Suppose that po f = 0. Then ¢ factors through C' as 1o g for some homomorphism ¢: C' — X.

Proof. By surjectivity, for any ¢ € C' there exists by € B such that g(by) = c¢. Let ¥(c) = ¢(bo),
so it is immediate that ¢ = 1 o g. Clearly ¢ intertwines and thus is a homomorphism.

For all b € ker g, we have by exactness that b € im f and thus b = f(a) for some a € A, giving
o(b) = ¢(f(a)) = 0. Hence if g(by) = g(by) then by — by € kerg C ker ¢, so ¢(by) = ¢(ba). It
follows that 1 is well-defined. O

Now we formally define the notion of composition series.

Definition A.3. Let V' be an A-module of finite dimension. Suppose that there exist submodules
Vo, Vi, Vo, ..., Vi with Vo =V and V), = {0} such that there exists a filtration

{0}=ViCVinnC---CViCW=V

for which V;/Viy1 is irreducible for all i < k — 1. Then the sequence (Vo,Vi,..., Vi) is a com-
position series of V', with irreducibles of the form V;/V;y1 called its subquotients. The following
facts about composition series are well-known [13].
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e The Jordan-Hélder Theorem states that iof (Vo,Vi,..., Vi) and (V§,V{,...,V},) are two
composition series of V', then we have the multiset equality

{Vo/Vi,Vi/Va, o Vied/Vied = {Vg/VI, VI Ve, Vi Vi)

o IfU CV is a submodule of V, then there exists a composition series (Vo, Vi,..., Vi) of
V' containing U, that is, U € {Vy, V1,..., Vi }.

Proposition A.4. Let V and W be A-modules with V' having composition series (Vo, Vi, ..., Vi)
and W having composition series (Wo, Wy, ..., Wy,). Suppose for some i and j that

VilVier, Vier [ Viga, - Vi Vi y O AW /Wi, W W, oo, Wy [ Wi} = 0

and

{Wo /Wi, Wi /W, o, Wiy W3 0 Vo / Vi, ViV, oo, Vieea [ Vi) = 0.
Then every homomorphism ¢: V — W factors through as ¢ = v o o m; where v;: W; — W is
the simple inclusion and 7;: V' — V/V; is the simple projection.

Proof. We show the desired result for i = kK — 1 and when j = 1, as we may iterate inductively
for larger values of 7 and j.

Let ¢ = k — 1. Suppose that Vi1 & {Wo/Wy, Wy /Wo, ..., Wy_1/W,,}. Then there is an
inclusion ¢': Vi_1 — V, with which ¢/ = ¢ o/ is a homomorphism from V,_; to W. Since Vj_1 is
irreducible, by Schur’s Lemma it follows that ker ¢’ is either {0} or V},_;. The former case implies
that Vi_; is a subrepresentation of W. Hence there is a composition series of W containing Vj_1,
from which the Jordan-Holder yields Vi, € {Wo /Wy, Wy /Wa, ..., Wy_1/Wy,}, a contradiction.
It follows that ker ¢’ = Vj_; and thus ¢’ = 0, and we have the following diagram.

w
%dﬂ r\\ff\
0 Vict —— V ——= V/Vhey —— 0

In particular, Proposition A.2 implies that ¢ factors through as ¢ o 7; as claimed.

Now suppose instead that j = 1. We have W/Wy & {Vi/Vi,Vi/Va, ..., Vk_1/Vi}. There is a
projection 7': W — W/Wj, from which ¢” = 7’ 0 ¢ is a homomorphism from V' to W/W;. Since
W /W is irreducible, we note that im ¢” is either {0} or W/W;. In the latter case, we have an
epimorphism from V' onto W/W;. However, applying our work from the above case of i = k —1,
this cannot happen, since W/Wy & {Vy/V1,V1/Va, ..., Vi_1/Vi} implies that the epimorphism
must factor through all projections. Thus ¢” = 0, yielding the following diagram.

v
PR
0 WlLLj w - W/Ww, —— 0
Using Proposition A.1, we conclude that ¢ factors through as ¢; o 1. U

Note that Proposition A.4 formalizes the subquotient multiplicity argument that we used in
the latter half of the proof of Theorem 3.9.

We now demonstrate some applications of the above results by computing some homomor-
phism spaces between the standard and projective modules of TL,(0).
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Proposition A.5. The homomorphism space Hom(W7, W},) is trivial.
Proof. Let ¢: W' — W, be a homomorphism. Corollary 4.8 yields the short exact sequences
0— Ly, — W' — Ly —0
and
0— Ly, — Wiy — Lj,—0.

Hence there is an inclusion ¢: Ly, , — W' and a projection w: Wy, — Ly, ,. Thus mo¢gor
is an endomorphism of L}, , and must therefore be scalar multiplication by Schur’s Lemma. If
this composition is not nonzero, then ¢ o is a section map, implying that W} , splits into direct
summands, which is a contradiction as it is well-known [28] that W is indecomposable. Hence

7o ¢ ot must be the zero map.
Let x: Ly, , — W}, be the inclusion map from the short exact sequence

n n n
0 L€+4 WZ+2 LE+2 > 0.

We thus have the following diagram.

n
% L€+4

n T n ¢ n s n
Ly - Wy -3 Wiy, —— L,

Specifically, applying Proposition A.1 implies that ¢ o ¢ factors through L}, , as above, but by
Schur’s Lemma Hom(L} ,, Ly, ,) = 0. Thus ¢pot=r00=0.
Let p: W — L} be the projection map from the short exact sequence

0— Ly, — W, — Ly — 0.
Now our diagram is the following.

n
Wiy

% qﬁ r\\\:r\

0 —— Ly —— W' —— Lj 0

Proposition A.2 implies that ¢ factors through L} so that ¢ = 7o p. Here 7 € Hom(L}, Wy,,).
Since Corollary 4.8 implies that W/, has composition series 0 C L}, , € W/, ,, we find that
W} 5 has subquotient multiset {L},,, L}, ,}. Observe that Ly} ¢ {L} 5, L}, ,}, from which Propo-
sition A.4 implies that 7 factors through the projection and inclusion maps and must therefore
be zero. We conclude that ¢ =00 p =0. U

Proposition A.6. If |[{ —m| > 6 or m = { + 4, then Hom(FPy, P,,,) is trivial.
Proof. Recall by Proposition 3.5, we have the exact sequence
0 — W,y — P — W, —0.
Hence there is a sequence of inclusions
0C Wy, C Py
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where Pj'/W;', = W}, Similarly, by Corollary 4.8, we have the inclusion
0C Ly, W)

where W;'/L},, = Lj. Thus by Lemma 3.10 there exists a space V' such that the series of
inclusions

OCLyCW;,CVCP/

forms a composition series such that the subquotients are Ly, Wi ,/Ly = L} o, V/WJ, = L},
and P;'/V = L}. The multiset of irreducible subquotients on P} is thus {L}, L} ,, L},,, L} }.

If |¢ —m| > 6, the multisets of irreducible subquotients of P;* and P are disjoint. By Propo-
sition A.4, we can then factor through all elements of the composition series of the projectives,
implying that Hom (P}, PI') is trivial.

In general, we have the composition series

0=V,CV;ChCViCVy=Pp
with Vo = W, and Vi = L} such that
(%/VYL VYI/X/% ‘/2/%7 ‘/é/‘/ﬁl) = ( ZL’ L?—FQ: 72—27 L;)
For m = ¢ + 4, this gives
0=W,CWsCW, CW, CW,=PFj,
where Wy = W/, such that
(Wo /Wi, Wy /Wo, Wa /W3, W3 /Wy) = (Ly, g, Ly 16, Lo, Ly y)-

Then
{Va/ V3, V3 /Vi} 0 AW /Wh, Wh /Wo, Wo /Ws, W3 /Wy } =
and
{WO/W17 WI/WQ} N {%/‘/17 ‘/1/‘/27 ‘/2/‘/37 ‘/3/‘/4} - ®7

so Proposition A.4 implies that any map from P} to P}, factors through as ¢ = ¢; 04 om; in
which i = j = 2. Then ¢ is a map from V;/Vo = Pp/Wi, = W to Wy = W},. However, by
Proposition A.5 we are forced to have ¢» € Hom(W}', W/, ,) be the zero map, implying that ¢
must be zero as well. This finishes the proof. O

Observe that Proposition A.6 alone establishes a significant portion of the homomorphism
space computations as done in Theorem 3.9. In the proof of the latter we use Frobenius reci-
procity, which is fairly powerful as TL,_1(0) is semisimple by Corollary 3.7. Here we instead
found elementary solutions using primarily diagram chasing and the notion of composition series.

We close this section with the proof of Lemma 3.15. Recall from earlier that we have set
wp: P — Py and ) P, — P to be the unique maps, up to a constant, between adjacent
projectives, in which they attain the structure

wsy' wy W Wn—2

P, P, Py . P,.

V3 L 76 Yr—2

Lemma A.7 (Lemma 3.15). For every { < n, the compositions vy owy and wy o~y are nonzero
and nonidentity.
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Proof. Let us first consider the composition ;' o w;. Again recall by Proposition 3.5, that we
have the exact sequence

0 — W,y — P — W,/ —0,

with the map from W', to P}’ injective and the map from P;' to W, surjective. Hence, the
map from Pj* to P, is characterized by the composition

P} — W, — P},.
For the map from P}, to F;', we may thus consider the following diagram.

Py

n - n n
P£+2 WZ—I—Z WZ

Since the map from P;' to W' is surjective, by projectivity it must factor through P;* to obtain
a nonzero map from PJ, to P/ of the above form. Indeed, attaching in more short exact
sequences, we may fold the above maps into the following diagram.

% l \ Jé
P} —— Pj, — Py

“e [
| s

Wiy —— W

As all solid lines are known to commute, we note that So« is exactly ¢} composed with the map
from W to W/, going down the middle column of the above diagram. However, this is exactly
the zero map as the middle column is an exact sequence, implying that 5 oa = 0. Additionally,

since the rightmost column of the above diagram is another short exact sequence, it follows by
Proposition A.1 that o factors through W;', as o = 0 o ¢ _,. It follows that

Y ow, =aol=0do0¢, 400.

To show that v} owy is nonzero, it suffices to show that ¢} _, is nonzero as 9 is an inclusion while
0 is a projection due to the construction of exact sequences. To avoid circularity, suppose we do
not a priori know the construction of ¢} ,. It is, however, easy to verify that it must be nonzero
as by Corollary 4.8 it is simply given by the composition

W, — Ly — W,

Additionally, we check easily that v} owy is nonidentity, as otherwise this induces a section map
on the P;' with respect to the quotient W', contradicting the fact that P; is indecomposable.
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Now we consider the composition wj’ o ;. This time, we have the following diagram.

Ve Wy
P€n+2 Pén PZFZ
‘| | <

by

It is easy to check that everything commutes by projectivity, and in particular
W orp=vodiop

Since v is an inclusion while p is a projection, it follows that wj o~} is nonzero and nonidentity
for the exact same reasons as in the previous case. We are done. U
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