

S.T. Yau High School Science Award

Research Report

The Team

Kyle Wu

Hunter College High School
New York, United States

Under the guidance of

Alexander Petrov

Clay Fellow

Massachusetts Institute of Technology
Cambridge, United States

Title of Research Report

**The Reduction of the Unit Group
Modulo a Prime Ideal**

Date

August 24, 2025

Commitments on Academic Honesty and Integrity

We hereby declare that we

1. are fully committed to the principle of honesty, integrity and fair play throughout the competition.
2. actually perform the research work ourselves and thus truly understand the content of the work.
3. observe the common standard of academic integrity adopted by most journals and degree theses.
4. have declared all the assistance and contribution we have received from any personnel, agency, institution, etc. for the research work.
5. undertake to avoid getting in touch with assessment panel members in a way that may lead to direct or indirect conflict of interest.
6. undertake to avoid any interaction with assessment panel members that would undermine the neutrality of the panel member and fairness of the assessment process.
7. observe the safety regulations of the laboratory(ies) where we conduct the experiment(s), if applicable.
8. observe all rules and regulations of the competition.
9. agree that the decision of YHSA is final in all matters related to the competition.

We understand and agree that failure to honour the above commitments may lead to disqualification from the competition and/or removal of reward, if applicable; that any unethical deeds, if found, will be disclosed to the school principal of team member(s) and relevant parties if deemed necessary; and that the decision of YHSA is final and no appeal will be accepted.

X /s/ Kyle Wu

Name of team member: **Kyle Wu**

X (Available upon request)

Name of supervising teacher: **Alexander Petrov**

The Reduction of the Unit Group Modulo a Prime Ideal

Kyle Wu
Hunter College High School

August 24, 2025

Abstract

We consider the attainability of various subgroups of $\mathbb{F}_{p^n}^\times$ as images of the unit group of a number field under reduction modulo a prime ideal, with p a prime and n a positive integer.

In the quadratic case, we show that the attainable subgroups of $\mathbb{F}_{p^n}^\times$ are exactly the subgroups of $\{x \in \mathbb{F}_{p^n}^\times : N_{\mathbb{F}_{p^n}/\mathbb{F}_p}(x) = \pm 1\}$ of even order, or those with even order dividing $2\frac{p^n-1}{p-1}$. We find a novel use for the sequence of Dickson polynomials to show this. Additionally, we in the case with general n and rational prime p we show that the maximal image is exactly the subgroup $\{x \in \mathbb{F}_{p^n}^\times : N_{\mathbb{F}_{p^n}/\mathbb{F}_p}(x) = \pm 1\}$ of $\mathbb{F}_{p^n}^\times$. In the totally real cubic case, we make progress towards a result, leading to a conjecture on the general characterization of the possible images.

Keywords: unit group, prime ideal, reduction map, fundamental units

Contents

1	Introduction	4
2	Background	6
3	Maximal Image of the Unit Group	7
4	The Image Modulo Non-Inert Primes	8
5	Real Quadratic Fields	10
6	Cubic Fields	15
7	Future work	16

1 Introduction

The unit group of the ring of integers of a number field has been an important subject of study in algebraic number theory. Dirichlet's Unit Theorem ([Cona]) describes the unit group as a product of a finite \mathbb{Z} -module of specified degree and a cyclic group of roots of unity. However, it does not give an explicit description of a system of fundamental units for the unit group, and so determining a system of fundamental units has been a problem of interest in algebraic number theory.

We consider the problem of controlling the image of the group of units under reduction modulo a prime ideal. In a number field K of degree n , we will denote the ring of integers of K by \mathcal{O}_K and the group of units by \mathcal{O}_K^\times . Supposing that a rational prime p is inert in K , we find that the quotient $\mathcal{O}_K/p\mathcal{O}_K$ is isomorphic to the finite field \mathbb{F}_{p^n} . Making use of the structure of $\mathbb{F}_{p^n}^\times$, we note that the finite field norm agrees with the field norm $N_{K/\mathbb{Q}}$ modulo p , so that all units must reduce modulo p to an element with finite field norm ± 1 . This gives restrictions on the structure of the image of the unit group, and leads to a general conjecture on the attainability of various subgroups of $\mathbb{F}_{p^n}^\times$ as the image of the reduction of the unit group of a number field. We define the subgroup

$$U_{\mathbb{F}_{p^n}^\times} = \{x \in \mathbb{F}_{p^n} : N_{\mathbb{F}_{p^n}/\mathbb{F}_p}(x) = \pm 1\} \quad (1)$$

of $\mathbb{F}_{p^n}^\times$, and show that the image of the group of units must lie in this group. This leads to the conjecture that all subgroups of $U_{\mathbb{F}_{p^n}^\times}$ can be realized as the reduction of the group of units of some number field. More formally, we have the following:

Conjecture 1.1. Let p be a prime, n be a positive integer, and S be a subgroup of $U_{\mathbb{F}_{p^n}^\times}$. Then there exists a number field K of degree n in which p is inert and such that the reduction of \mathcal{O}_K^\times modulo p is exactly the subgroup S of $\mathbb{F}_{p^n}^\times$.

We first show the more specific case that the maximum size, the entirety of $U_{\mathbb{F}_{p^n}^\times}$, is always attainable. That is, the following theorem holds:

Theorem 3.2. For a fixed odd rational prime p and positive integer n , there exist infinitely many number fields K of degree n for which p is inert in K and the reduction of the unit group modulo $p\mathcal{O}_K$ attains the maximal size $2(1 + p + \cdots + p^{n-1})$.

This can be shown by constructing a number field containing a unit that reduces to a generator of the subgroup $U_{\mathbb{F}_{p^n}^\times}$. This result does not require much control over the group of units, as there are no further constraints on the unit that we construct a number field to contain; it does not need to be a fundamental unit.

We then give some bounds on the reduction of the unit group modulo a non inert prime, using the methods developed to describe the possible images of the unit group when reduced modulo a single inert prime. Specifically, we assume p is unramified and splits as $\mathfrak{p}_1\mathfrak{p}_2, \dots, \mathfrak{p}_k$ for prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_k$. Then, we relate the modulo p reduction of $N_{K/\mathbb{Q}}(\alpha)$ with the finite field norms of the reduction of α modulo each \mathfrak{p}_i . This gives Theorem 4.4, a bound on the size of the image of the group of units analogous to the bound given in Lemma 2.1.

We also show that, in the case where our number field is quadratic and real, every subgroup of $U_{\mathbb{F}_{p^2}}$ is realizable as the image of the group of units, given that it contains -1 :

Theorem 5.4. For a fixed odd prime p and subgroup S of $U_{\mathbb{F}_{p^n}^\times}$ containing -1 , there exists a real quadratic field $K = \mathbb{Q}(\sqrt{m})$ in which p is inert and the group of units of K reduces modulo $p\mathcal{O}_K$ to exactly S .

This result requires a more careful choice of number field, since a unit we construct it to contain may not necessarily be fundamental. To prove this theorem, we correspond units α that are not fundamental units of $\mathbb{Q}(\alpha)$ with values of the Dickson polynomials. We then show that the sequence of Dickson polynomials approximate an infinite exponential sequence and thus have density 0, guaranteeing a choice of α reducing to a desired generator of a subgroup of $U_{\mathbb{F}_{p^n}^\times}$ that is a fundamental unit in $\mathbb{Q}(\alpha)$.

As a consequence of this result, all even divisors d of $2(1+p)$ are realizable as the size of the reduction of the group of units of some number field K modulo $p\mathcal{O}_K$, where p is inert in K .

For the cubic case, we will consider only the real cubic case. Since the unit group has rank two in this case, it is much harder to control the exact image of the unit group because must produce number fields in which we have control over both fundamental units. We focus on Minkowski units, or units in cyclic extensions K/\mathbb{Q} such that the unit and its conjugate generate \mathcal{O}_K^\times . The existence of Minkowski units in cyclic cubic fields is proven in Theorem 3.28 of [Nar04]. We use Minkowski units to restrict the image of the group of units under reduction, since Galois conjugates of elements of \mathbb{F}_{p^n} are powers of the original element due to the Frobenius automorphism, making the problem once again a matter of controlling the reduction of one unit. We prove a sufficient condition for a root of a polynomial to be a Minkowski unit (Theorem 6.1) and expect that this condition is satisfied enough to resolve Conjecture 1.1 in the case of real cubic fields. When considering the construction of a field with a given Minkowski unit, we refer to other papers on the construction of number fields satisfying given properties, including Shanks [Sha74] and Balady [Bal16].

Our problem is related to Artin's conjecture in its focus on the multiplicative group generated by the reduction of an element. Artin's primitive root conjecture states that an integer that is neither square nor -1 is a primitive root modulo infinitely many primes. A natural generalization for Artin's conjecture for number fields asks when a nonzero element α of the ring of integers of a number field K is a generator of the group $(\mathcal{O}_K/\mathfrak{p}\mathcal{O}_K)^\times$ for infinitely many prime ideals \mathfrak{p} . Sections 6.1.1 and 9.7 of [Mor12] explain several other variants of the conjecture for number fields and the progress that has been made on them. Kitaoka, Ishikawa, Chen, and Yu ([IK98], [CKY00], [Kit06], [Kit07]) have also considered the size of the image of the unit group when reduced modulo a prime ideal, especially in the case of a real quadratic field. Our problem is a natural "converse" of this problem, starting with a given odd prime p and constructing a number field K such that p is inert in K and the group of units of K has a given image when reduced modulo p .

2 Background

Let K be a number field of degree n with ring of integers \mathcal{O}_K and unit group \mathcal{O}_K^\times . Furthermore, let p be a rational prime inert in K and let $\phi_p : \mathcal{O}_K \rightarrow \mathcal{O}_K/p\mathcal{O}_K$ denote the reduction map on \mathcal{O}_K sending an element to its residue class in $\mathcal{O}_K/p\mathcal{O}_K$.

We first consider the multiplicative structure of $\mathcal{O}_K/p\mathcal{O}_K$. It is well-known that $\mathcal{O}_K/p\mathcal{O}_K \cong \mathbb{F}_{p^n}$, where n is the degree of K , and furthermore we have that the multiplicative group of \mathbb{F}_{p^n} is cyclic. Thus, using the finite field norm $N_{\mathbb{F}_{p^n}/\mathbb{F}_p}$ we define a subgroup $U_{\mathbb{F}_{p^n}^\times}$ as in Equation 1 containing all elements of norm ± 1 . Due to the structure of \mathbb{F}_{p^n} , this subgroup is cyclic and has order equal to the number of solutions to $N_{\mathbb{F}_{p^n}/\mathbb{F}_p}(x) = \pm 1$ or $x^{2(1+p+\dots+p^{n-1})} = 1$, which is precisely $2(1+p+\dots+p^{n-1})$.

We now relate \mathcal{O}_K^\times with $U_{\mathbb{F}_{p^n}^\times}$. We first describe a relationship between the field norm $N_{K/\mathbb{Q}}$ and the finite field norm on $\mathcal{O}_K/p\mathcal{O}_K$. This allows us to characterize the possible images of the unit group under reduction modulo $p\mathcal{O}_K$ in terms of $U_{\mathbb{F}_{p^n}^\times}$:

Lemma 2.1. The image of \mathcal{O}_K^\times under ϕ_p is isomorphic to a subgroup of $U_{\mathbb{F}_{p^n}^\times}$ containing -1 .

Proof. We first show that for $\alpha \in \mathcal{O}_K$, we have

$$\phi_p(N_{K/\mathbb{Q}}(\alpha)) = N_{\mathbb{F}_{p^n}/\mathbb{F}_p}(\phi_p(\alpha)).$$

Consider a \mathbb{F}_p -basis $1, \overline{\alpha_1}, \dots, \overline{\alpha_{n-1}}$ of \mathbb{F}_{p^n} . Let $1, \alpha_1, \dots, \alpha_{n-1}$ be some choice of elements of \mathcal{O}_K whose reductions are $1, \overline{\alpha_1}, \dots, \overline{\alpha_{n-1}}$ respectively. Observe that these elements are \mathbb{Z} -linearly independent because if they were not then we could take a \mathbb{Z} -linear combination of them that is 0 in \mathcal{O}_K and divide factors of p from the coefficients until one of them is nonzero modulo p . Then, the resulting linear combination has reduction equivalent to 0 in \mathbb{F}_{p^n} but not all coefficients equivalent to 0 in \mathbb{F}_p , contradicting the assumption that $1, \overline{\alpha_1}, \dots, \overline{\alpha_{n-1}}$ formed a basis in \mathbb{F}_{p^n} . Since they are all elements of \mathcal{O}_K , it follows that they form a basis of K .

Now, consider the matrix $M_{\phi_p(\alpha)}$ over K representing multiplication by $\phi_p(\alpha)$ as a linear map from \mathbb{F}_{p^n} to itself with basis $1, \overline{\alpha_1}, \dots, \overline{\alpha_{n-1}}$. Additionally, consider the matrix M_α over \mathbb{Q} representing multiplication by α as a linear map from K to itself with basis $1, \alpha_1, \dots, \alpha_{n-1}$. Since the basis used in $M_{\phi_p(\alpha)}$ is the reduction of the basis used in M_α and it represents a reduction of the multiplication map of M_α , we see that the entries of $M_{\phi_p(\alpha)}$ are the reductions of the entries of M_α . By treating the determinant as a polynomial in the entries of the matrix, we observe that $\det(M_{\phi_p(\alpha)}) = \phi_p(\det(M_\alpha))$.

By Theorem 67 in [Rot98], the extension $\mathbb{F}_{p^n}/\mathbb{F}_p$ is Galois. Thus, by Theorem 5.1 in [Conb], the determinant of the matrix representing multiplication by α in the extension $\mathbb{F}_{p^n}/\mathbb{F}_p$ is equal to the product of the Galois conjugates of α , or $\alpha^{1+p+\dots+p^{n-1}} = N_{\mathbb{F}_{p^n}/\mathbb{F}_p}(\alpha)$.

Thus, $\det(M_{\phi_p(\alpha)}) = N_{L/\mathbb{F}_p}(\phi_p(\alpha))$ and we know $\det(M_\alpha) = N_{K/\mathbb{Q}}(\alpha)$ so it follows that $\phi_p(N_{K/\mathbb{Q}}(\alpha)) = N_{L/\mathbb{F}_p}(\phi_p(\alpha))$.

Our desired result follows, as we have that the image of \mathcal{O}_K^\times under ϕ_p is a subgroup of $U_{\mathbb{F}_{p^n}^\times}$, and it must contain -1 since $-1 \in \mathcal{O}_K$ is a unit. \square

Corollary 2.2. The order of the image of the unit group under ϕ_p is an even divisor of $2(1 + p + \dots + p^{n-1})$.

Having established a necessary condition for the possible images of \mathcal{O}_K^\times under ϕ_p , it remains to determine which images are obtainable. Fixing a prime p and degree n , we will consider whether there exists a number field K whose unit group reduces to a given subgroup of $U_{\mathbb{F}_{p^n}^\times}$.

3 Maximal Image of the Unit Group

The first case we will consider is how to construct a number field whose group of units attains the maximal image $U_{\mathbb{F}_{p^n}^\times}$ when reduced modulo p . To do so, we will consider constructing K by adjoining an element whose reduction maps to a generator of $U_{\mathbb{F}_{p^n}^\times}$. First, we prove a lemma to ensure the inertness of p in K :

Lemma 3.1. For a number field $K = \mathbb{Q}(\alpha)$ and rational prime p , if α has minimal polynomial f of degree n which is irreducible in $\mathbb{F}_p[x]$, then p is inert in K .

Proof. By the Dedekind-Kummer Theorem, from the irreducibility of f in $\mathbb{F}_p[x]$ it suffices to show that $p \nmid [\mathcal{O}_K : \mathbb{Z}[\alpha]]$. By Lemma 3.32 in [Jar14] this is equivalent to the discriminant of the integral basis $\{1, \alpha, \dots, \alpha^{n-1}\}$ not being divisible by p . Considering the discriminant as a Vandermonde determinant, we have that it is equal to $\prod_{i < j} (\sigma_i(\alpha) - \sigma_j(\alpha))^2$ where each σ_i is a distinct embedding of K into a fixed extension of \mathbb{Q} . Since all finite fields are perfect, f is separable in $\mathbb{F}_p[x]$ so by its irreducibility it follows that f has no double roots in \mathbb{F}_{p^n} . Thus, $(\sigma_i(\alpha) - \sigma_j(\alpha))^2$ is nonzero in \mathbb{F}_{p^n} so the product is nonzero modulo p . Therefore, the discriminant is not divisible by p and p is inert in K . \square

Remark 3.2. In order to begin to consider the image of the group of units \mathcal{O}_K^\times under reduction by ϕ_p , we must first make a choice of isomorphism between $\mathcal{O}_K/p\mathcal{O}_K$ and \mathbb{F}_{p^n} . However, since $\mathbb{F}_{p^n}^\times$ is cyclic, automorphisms on it preserve subgroups and thus the subgroup $\phi_p(\mathcal{O}_K^\times) \subset \mathbb{F}_{p^n}^\times$ does not depend on a choice of isomorphism $\mathcal{O}_K/p\mathcal{O}_K \cong \mathbb{F}_{p^n}$.

Theorem 3.3. For a fixed rational prime p and positive integer n , there exists a number field K of degree n in which p is inert and such that the image of its unit group \mathcal{O}_K^\times under the reduction map ϕ_p is exactly $U_{\mathbb{F}_{p^n}^\times}$.

Proof. Since $\mathbb{F}_{p^n}^\times$ is cyclic, it has a generator g . If p is odd, then we may write $U_{\mathbb{F}_{p^n}^\times}$, a cyclic subgroup of $\mathbb{F}_{p^n}^\times$ of order $2(1+p+\dots+p^{n-1}) = \frac{p^n-1}{(p-1)/2}$, as the subgroup generated by the element $u = g^{(p-1)/2}$. If $p = 2$, we note that $U_{\mathbb{F}_{p^n}^\times} = \{x \in \mathbb{F}_{p^n} : N_{\mathbb{F}_{p^n}/\mathbb{F}_p}(x) = 1\} = \mathbb{F}_{p^n}^\times$, so we may simply set $u = g$. In either case, by the fact that u generates a group of order more than p^{n-1} , we have that the minimal polynomial f of u has degree n . We also have that f is monic and has constant coefficient $(-1)^{n+1}$. Now, consider an arbitrary polynomial $\tilde{f} \in \mathbb{Z}[x]$ which is monic, has constant coefficient $(-1)^{n+1}$, and whose reduction modulo p is equivalent to f . Then \tilde{f} is irreducible by the irreducibility of f in $\mathbb{F}_p[x]$ and thus we may let K be the extension $\mathbb{Q}(\alpha)$ where α is an arbitrary root of \tilde{f} . Then we claim K satisfies the desired property.

To show this claim, we first observe that by Lemma 3.1 we have that the irreducibility of f in $\mathbb{F}_p[x]$ implies that p is inert in K . Now, we see that α is a unit in K since its minimal polynomial has a constant coefficient $(-1)^{n+1}$. Additionally, $\phi_p(\alpha)$ generates $U_{\mathbb{F}_{p^n}^\times}$ because it is a conjugate of u so it generates the same subgroup, as discussed in Remark 3.2. Thus, we have exhibited a number field K of degree n for which p is inert and the image of the unit group \mathcal{O}_K^\times under ϕ_p contains $U_{\mathbb{F}_{p^n}^\times}$. By Lemma 2.1 the reduction of the unit group of K is also contained in $U_{\mathbb{F}_{p^n}^\times}$, so it must be exactly $U_{\mathbb{F}_{p^n}^\times}$. \square

Note that due to the freedom in constructing a polynomial \tilde{f} in Theorem 3.3, we may extend the result to give a number field such that the group of units achieves the maximal image of $U_{\mathbb{F}_{p^n}^\times}$ when reduced modulo multiple different primes p separately.

Lemma 3.4. For any k distinct rational primes p_1, \dots, p_k and positive integer n , there exists a number field K for which every p_i is inert in K and the reduction of the unit group modulo each $\langle p_i \rangle$ is exactly $U_{\mathbb{F}_{p_i^n}}$.

Proof. Let g_i denote the generator of $\mathbb{F}_{p_i^n}^\times$, and then define $u_i = g_i^{(p_i-1)/2}$ if p_i is odd and $u_i = g_i$ otherwise. Define $f_i \in \mathbb{F}_{p_i}[x]$ as the minimal polynomial of u_i . Then by Chinese Remainder Theorem we may construct \tilde{f} to be a monic integer polynomial of degree n and constant coefficient $(-1)^{n-1}$ such that it reduces to f_i modulo each p_i . This is possible because the p_i 's are distinct, and thus for each x^t coefficient of \tilde{f} for $1 \leq t \leq n-1$ the Chinese Remainder Theorem states that there exists a residue class modulo $p_1 p_2 \dots p_k$ equivalent to that x^t coefficient modulo each p_i . Then, following the rest of the proof for Theorem 3.3 for each p_i we see that \tilde{f} is irreducible and if it has a root α then $K = \mathbb{Q}(\alpha)$ has degree n . Furthermore, we see that each p_i is inert in K . We also find that α is a unit in K and also reduces under each ϕ_{p_i} to a conjugate of u_i which generates each $U_{\mathbb{F}_{p_i^n}}$. \square

4 The Image Modulo Non-Inert Primes

Using the same tools as in the inert prime case, we place some bounds on the image of the unit group of K when reduced modulo a prime p not inert in K .

Theorem 4.1. *Let K be a number field of degree n with r_1 real embeddings and $2r_2$ complex embeddings. Let p be a rational prime which is unramified in K and splits as $\mathfrak{p}_1 \dots \mathfrak{p}_k$ where the prime ideal \mathfrak{p}_i has inertial degree e_i . Then the size of the image of the reduction of the group of units modulo p is at most $2 \cdot \text{lcm}(p^{e_1} - 1, \dots, p^{e_k} - 1)^{r_1 + r_2 - 1}$.*

Proof. First, note that by the Chinese Remainder Theorem we have $\mathcal{O}_K/p\mathcal{O}_K \cong \mathcal{O}_K/\mathfrak{p}_1 \times \dots \times \mathcal{O}_K/\mathfrak{p}_k \cong \mathbb{F}_{p^{e_1}} \times \dots \times \mathbb{F}_{p^{e_k}}$. Thus, $(\mathcal{O}_K/p\mathcal{O}_K)^\times \cong \mathbb{F}_{p^{e_1}}^\times \times \dots \times \mathbb{F}_{p^{e_k}}^\times \cong \mathbb{Z}/(p^{e_1}-1)\mathbb{Z} \times \dots \times \mathbb{Z}/(p^{e_k}-1)\mathbb{Z}$. Thus every element of $(\mathcal{O}_K/p\mathcal{O}_K)^\times$ has order dividing $\text{lcm}(p^{e_1}-1, \dots, p^{e_k}-1)$. Thus, each of the r_1+r_2-1 fundamental units has order $\text{lcm}(p^{e_1}-1, \dots, p^{e_k}-1)$ and since in addition to ± 1 they generate all units, the image of the group of units has maximum size $2 \cdot \text{lcm}(p^{e_1}-1, \dots, p^{e_k}-1)^{r_1+r_2-1}$. \square

Corollary 4.2. If p splits completely in K , then the size of the reduction of the group of units modulo p is at most $2(p-1)^{r_1+r_2-1}$, since in this case $\text{lcm}(p^{e_1}-1, \dots, p^{e_k}-1) = \text{lcm}(p-1, \dots, p-1) = p-1$.

We also prove a result relating the field norm of an element $\alpha \in \mathcal{O}_K$ with the finite field norms of its reductions modulo $\mathcal{O}_K/\mathfrak{p}_i$ for each prime ideal \mathfrak{p}_i in the splitting of p when p is unramified.

Lemma 4.3. Let K be a number field of degree n and let a rational prime p which is unramified in K split as $\mathfrak{p}_1 \dots \mathfrak{p}_k$, where each \mathfrak{p}_i has inertial degree e_i . Let $\phi_i : \mathcal{O}_K \rightarrow \mathbb{F}_{p^{e_i}}$ denote the reduction map modulo \mathfrak{p}_i and let $\phi_p : \mathcal{O}_K \rightarrow \mathbb{F}_p$ denote the reduction map modulo p . Then for a given element $\alpha \in K$ we have that

$$\phi_p(N_{K/\mathbb{Q}}(\alpha)) = \prod_{i=1}^k N_{\mathbb{F}_{p^{e_i}}/\mathbb{F}_p}(\phi_i(\alpha)).$$

Proof. We may consider residue classes of $\mathfrak{p}_1 \dots \mathfrak{p}_k$ as elements of $F = \mathbb{F}_{p^{e_1}} \times \dots \times \mathbb{F}_{p^{e_k}}$, an n -dimensional vector space over \mathbb{F}_p . Then, viewing F as a direct sum of k independent subspaces we may take a standard basis \mathcal{B} of F in which e_i of the basis vectors have nonzero projection to $\mathbb{F}_{p^{e_i}}$ for each $1 \leq i \leq k$. If we let $\tilde{\mathcal{B}}$ be a set of elements of K whose reduction modulo p is \mathcal{B} , we find that this must be a basis of K because if we could write 0 as a nontrivial \mathbb{Q} -linear combination of elements of $\tilde{\mathcal{B}}$ then by scaling up to get a \mathbb{Z} -linear combination and dividing by powers of p until one of the

coefficients is not a multiple of p , we find that the reduction of this linear combination is a nontrivial linear combination of elements of \mathfrak{B} that equals 0, which would contradict the fact that \mathfrak{B} is a basis.

Now, considering F and K as n -dimensional vector spaces over \mathbb{F}_p and \mathbb{Q} with bases \mathfrak{B} and \mathfrak{B} respectively, we see that multiplication by α in F and in K are both linear maps. Thus, we may describe the map over F as an $n \times n$ matrix M_α with entries in \mathbb{F}_p , and the map over K as an $n \times n$ matrix \widetilde{M}_α with entries in \mathbb{Q} . Now, since the basis used in M_α is the reduction of the basis used in \widetilde{M}_α and it represents a reduction of the multiplication map of M_α , we see that the entries of M_α are the reductions of the entries of M_α . Thus, we have that $\phi_p(N_{K/\mathbb{Q}}(\alpha)) = \phi_p(\det \widetilde{M}_\alpha) = \det M_\alpha$.

Now, it suffices to show that $\det M_\alpha = \prod_{i=1}^k N_{\mathbb{F}_{p^{e_i}}/\mathbb{F}_p}(\phi_i(\alpha))$. To see this, first observe that since each e_i in \mathfrak{B} was picked to be a basis element of the independent subspace $\mathbb{F}_{p^{e_i}}$, a linear map on F with basis \mathfrak{B} can be split up into the direct sum of linear maps on each $\mathbb{F}_{p^{e_i}}$ so the matrix M_α can be split up into the direct sum of the multiplication by α matrices over each $\mathbb{F}_{p^{e_i}}$. The determinant of the multiplication by α matrix over $\mathbb{F}_{p^{e_i}}$ has determinant $N_{\mathbb{F}_{p^{e_i}}/\mathbb{F}_p}(\phi_i(\alpha))$ and the determinant of a direct sum of matrices is equal to the product of their determinants, so $\det M_\alpha = \prod_{i=1}^k N_{\mathbb{F}_{p^{e_i}}/\mathbb{F}_p}(\phi_i(\alpha))$, as desired. Thus

$$\phi_p(N_{K/\mathbb{Q}}(\alpha)) = \det M_\alpha = \prod_{i=1}^k N_{\mathbb{F}_{p^{e_i}}/\mathbb{F}_p}(\phi_i(\alpha)).$$

Thus, the relationship between the norms holds. \square

Using this property of the norm, we find that a result analogous to Lemma 2.1 holds:

Theorem 4.4. *Let K be a number field of degree n and let a rational prime p which is unramified in K split as $\mathfrak{p}_1 \dots \mathfrak{p}_k$, where each \mathfrak{p}_i has inertial degree e_i . Then the size of the reduction of the group of units modulo p is at most $\frac{2}{p-1} \prod_{i=1}^k (p^{e_i} - 1)$.*

Proof. By the Chinese Remainder Theorem, we have $\mathcal{O}_K/p\mathcal{O}_K \cong \mathcal{O}_K/\mathfrak{p}_1 \times \dots \times \mathcal{O}_K/\mathfrak{p}_k \cong \mathbb{F}_{p^{e_1}} \times \dots \times \mathbb{F}_{p^{e_k}}$, so an element of $\mathcal{O}_K/p\mathcal{O}_K$ is uniquely determined by its residue classes modulo each \mathfrak{p}_i . Let $\phi_i : \mathcal{O}_K \rightarrow \mathbb{F}_{p^{e_i}}$ denote the reduction map modulo \mathfrak{p}_i . Then, consider any of the $\prod_{i=1}^{k-1} (p^{e_i} - 1)$ choices of residue classes modulo each \mathfrak{p}_i from $i = 1$ to $k-1$. Then any element α which satisfies each of these equivalences and is a unit must have

$$\prod_{i=1}^k N_{\mathbb{F}_{p^{e_i}}/\mathbb{F}_p}(\phi_i(\alpha)) \equiv \pm 1 \pmod{p}$$

by Theorem 4.3. Thus,

$$N_{\mathbb{F}_{p^{e_k}}/\mathbb{F}_p}(\phi_k(\alpha)) \equiv \pm \left(\prod_{i=1}^{k-1} N_{\mathbb{F}_{p^{e_i}}/\mathbb{F}_p}(\phi_i(\alpha)) \right)^{-1}$$

so the other residue classes determine two possibilities for the norm of $\phi_k(\alpha)$ for a unit α .

Now, note that for each $\alpha \in \mathbb{F}_p^\times$ the equation $N_{\mathbb{F}_{p^{e_k}}/\mathbb{F}_p}(x) = \alpha$ or $x^{1+p+\dots+p^{e_k-1}} = \alpha$ has at most $1 + \dots + p^{e_k-1}$ roots in $\mathbb{F}_{p^{e_k}}$. Additionally, every one of the $p^{e_k} - 1 = (p-1)(1+p+\dots+p^{e_k-1})$ elements of $\mathbb{F}_{p^{e_k}}^\times$ has a norm that is equal to one of the $p-1$ elements of \mathbb{F}_p . Thus, the preimages of all the elements of \mathbb{F}_p^\times under the norm map $N_{\mathbb{F}_{p^{e_k}}/\mathbb{F}_p} : \mathbb{F}_{p^{e_k}}^\times \rightarrow \mathbb{F}_p^\times$ have the same size $1 + p + \dots + p^{e_k-1}$.

It follows that the first $k-1$ residue classes of an element $\alpha \in K$ determine 2 possible values for $N_{\mathbb{F}_{p^{e_k}}/\mathbb{F}_p}(\phi_k(\alpha))$ so that α lies in one of $\frac{2}{p-1} (p^{e_k} - 1)$ possible residue classes modulo \mathfrak{p}_k . Thus, there are $\frac{2}{p-1} \prod_{i=1}^k (p^{e_i} - 1)$ possible k -tuples of residue classes modulo each \mathfrak{p}_i for a unit, so this is the maximum on the size of the image of the group of units under the reduction map. \square

Remark 4.5. This bound is sometimes weaker than the one given in Theorem 4.1 and sometimes stronger, depending on the different inertial degrees of the ideals that p splits into.

5 Real Quadratic Fields

We now consider the case where $n = 2$. We also restrict our focus to real quadratic fields, as Dirichlet's Unit Theorem gives that the rank of the unit group is 0 in a complex quadratic field and 1 in a real quadratic field. We will use a similar lifting argument to construct $K = \mathbb{Q}(\alpha)$ for α a generator of a given subgroup of $U_{\mathbb{F}_{p^n}^\times}$ containing -1 , but more work will need to be done to ensure this unit is fundamental.

We first focus on minimal polynomials of the form $x^2 - ax + 1$ and $x^2 - ax - 1$, and determine when one of them has a root $\alpha = \beta^k$ for β a root of another polynomial of that form and k an integer greater than 1. The polynomials $x^2 - ax \pm 1$ for which no such β exist are precisely the ones for which α is a fundamental unit in $\mathbb{Q}(\alpha)$. To characterize exactly the set of a for which the root of $x^2 - ax \pm 1$ for which no such β exists, we use a polynomial series in order to relate polynomials whose roots are powers of each other.

Definition 1. For a real number b , we define the sequence of polynomials $P_{b,0}, P_{b,1}, \dots$ recursively with $P_{b,0}(x) = 2$, $P_{b,1}(x) = x$, and $P_{b,n+1}(x) = xP_{b,n}(x) - bP_{b,n-1}(x)$.

This sequence is also called the sequence of Dickson polynomials $D_n(x, b)$, where $P_{b,n}(x) = D_n(x, b)$. More on Dickson polynomials can be found in Section 9.6 of [MP13].

Lemma 5.1. If α is a root of the polynomial $x^2 - ax + b$ where $b \neq 0$, then α^k is a root of $x^2 - P_{b,k}(a)x + b^k$ for all nonnegative integers k .

Proof. We see that by Vieta's formulas $a = \alpha + \frac{b}{\alpha}$ so by Identity 7.8 from [LN87], $P_{b,k}(a) = \alpha^k + \frac{b^k}{\alpha^k}$. Additionally, $\alpha^k \cdot \frac{b^k}{\alpha^k} = b^k$ so by Vieta's formulas α^k and $\frac{b^k}{\alpha^k}$ are roots of $x^2 - P_{b,k}(a)x + b^k$.

For the sake of completeness, we provide a full proof by induction on k . For $k = 0, 1$ we have $\alpha^0 = 1$ is a root of $x^2 - 2x + 1$ and α^1 is a root of $x^2 - ax + b$. Now, assume that α^k is a root of $x^2 - P_{b,k}(a)x + b^k$ for all $k \leq n$. Then α is a root of $x^2 - ax + b$, α^n is a root of $x^2 - P_{b,n}(a)x + b^n$, and α^{n-1} is a root of $x^2 - P_{b,n-1}(a)x + b^{n-1}$. Equivalently, α is a root of the polynomials $x^2 - ax + b$, $x^{2n} - P_{b,n}(a)x + b^n$, and $x^{2(n-1)} - P_{b,n-1}(a)x^{n-1} + b^{n-1}$ so it is a root of

$$(x^2 + b)(x^{2n} - P_{b,n}(a)x^n + b^n) + P_{b,n}(a)x^n(x^2 - ax + b) - bx^2(x^{2(n-1)} - P_{b,n-1}(a)x^{n-1} + b^{n-1})$$

which simplifies to

$$x^{2n+2} - (aP_{b,n}(a) - bP_{b,n-1}(a))x^{n+1} + b^{n+1} = x^{2n+2} - P_{b,n+1}(a) + b^{n+1},$$

so α^{n+1} is a root of $x^2 - P_{b,n+1}(a)x + b^{n+1}$ and our induction is complete. \square

Now, we have characterized all a for which the root of $x^2 - ax \pm 1$ is a power of the root of another quadratic polynomial $x^2 - a'x \pm 1$ by giving a sequence of polynomials such that this property holds when a is attained as a value of one of the polynomials. We will show that the natural density of such values is 0.

Lemma 5.2. Let \mathcal{S}_1 denote the set of all integers a greater than 2 for which a root α of $x^2 - ax + 1$ is not a fundamental unit in the real quadratic number field $\mathbb{Q}(\alpha)$. Similarly, let \mathcal{S}_2 denote the set of all integers a greater than 2 for which a root α of $x^2 - ax - 1$ is not a fundamental unit in the number field $\mathbb{Q}(\alpha)$. Then the natural density of both \mathcal{S}_1 and \mathcal{S}_2 in the integers is 0.

Proof. We first consider the natural density of \mathcal{S}_2 . If a root α of $x^2 - ax - 1$ is not a fundamental unit in the number field, then we must have that α can be written as β^k for some unit β and integer $k > 1$. Then, if we let β be a root of $x^2 - bx - 1$, it follows from Lemma 5.1 that $a = P_{-1,k}(b)$. Thus, in order for a to be in \mathcal{S}_2 it must be of the form $P_{-1,k}(b)$ for some integer b and positive integer $k > 1$.

We may further reduce the problem using the fact that every coefficient in $P_{-1,k}$ is positive and that $P_{-1,k}$ is either an even polynomial or an odd polynomial. Thus, if b is negative and $P_{-1,k}$ is odd then $P_{-1,k}(b)$ is negative and if $P_{-1,k}$ is even then $P_{-1,k}(b) = P_{-1,k}(-b)$. Thus, it suffices to show that the set

$$\mathcal{S}'_2 = \mathbb{N} \cap \left(\bigcup_{b \in \mathbb{Z}} \{P_{-1,k}(b) : k \geq 2\} \right) = \mathbb{N} \cap \left(\bigcup_{b \in \mathbb{N}_0} \{P_{-1,k}(b) : k \geq 2\} \right)$$

has natural density 0.

To show this, we first note that the sequence $P_{-1,2}(0), P_{-1,3}(0), \dots$ alternates between 0 and 2. We also have that, up to a finite number of cases, the sequence $P_{-1,0}(1), P_{-1,1}(1), \dots$ is greater than geometric with ratio 3/2. To see this, we recognize the sequence as Lucas' sequence with closed form $\varphi^k + (1 - \varphi)^k$ for $\varphi = \frac{1+\sqrt{5}}{2} > 3/2$, and furthermore the $(1 - \varphi)^k$ term has absolute value strictly less than 1 for $k \geq 1$. Now, we also have that the sequence $P_{-1,2}(b), P_{-1,3}(b), \dots$ is greater than geometric with common ratio b . This is because $P_{-1,n+1}(b) = bP_{-1,n}(b) + P_{-1,n-1}(b) > bP_{-1,n}(b)$.

To show \mathcal{S}'_2 has density 0, we may consider the cardinality of the intersection $\mathcal{S}'_2 \cap \{1, 2, \dots, n^2\}$ for each positive integer n . From the fact that $P_{-1,k}(b)$ increases as k increases, we see that for a fixed b we have that $P_{-1,k}(b)$ attains its minimum at $k = 2$, when $P_{-1,k}(b) = b^2 + 2$. Thus, in order for $\{P_{-1,k}(b) : k \geq 2\}$ to intersect $\{1, 2, \dots, n^2\}$ at all, we need, $b^2 + 2 \leq n^2$ or $b < n$. Then, for each such b , we have that since $P_{-1,k}(b)$ is greater than geometric with common ratio b , its intersection with $\{1, 2, \dots, n^2\}$ has size at most $\log_b(n^2)$. Thus, for some positive integer c ,

$$\begin{aligned} \frac{1}{n^2} |\mathcal{S}'_2 \cap \{1, 2, \dots, n^2\}| &\leq \frac{1}{n^2} \left(c + \sum_{b=1}^{\infty} |\{P_{-1,k}(b) : k \geq 2\} \cap \{1, 2, \dots, n^2\}| \right) \\ &= \frac{1}{n^2} \left(c + \log_{3/2}(n^2) + \sum_{b=2}^{n-1} |\{P_{-1,k}(b) : k \geq 2\} \cap \{1, 2, \dots, n^2\}| \right) \\ &\leq \frac{1}{n^2} \left(c + \log_{3/2}(n^2) + \sum_{b=2}^{n-1} \log_b(n^2) \right) \\ &\leq \frac{1}{n^2} (c + 2(n-1) \log_{3/2}(n)) \\ &\leq \frac{1}{n^2} (c + 2n \log_{3/2}(n)) \\ &\leq \frac{c + 6 \log n}{n} \end{aligned}$$

which approaches 0 as n grows large. So \mathcal{S}'_2 also has natural density 0 so \mathcal{S}_2 does, as desired.

We now deal with the density of \mathcal{S}_1 . Similarly to in the first case, note that a root α of $x^2 - ax + 1$ not being a fundamental unit is equivalent to it being written as β^k for some other unit β , which has a minimal polynomial of the form $x^2 - bx \pm 1$ for integer b . There are a finite number of cases where $\mathbb{Q}(\alpha)$ is not a totally real quadratic field, which occurs when $a \leq 2$. Thus, by Lemma 5.1, up to a finite number of cases, we have that a being in \mathcal{S} is equivalent to a being written in the form $P_{1,k}(b)$

for some integer $k \geq 2$ and $b \in \mathbb{Z}$ or as $P_{-1,k}(b)$ for some even $k \geq 2$ and $b \in \mathbb{Z}$. Also, by the density of \mathcal{S}'_2 , the set of cases where $a = P_{-1,k}(b)$ has natural density 0. Thus, it only suffices to consider the natural density of the set

$$\mathcal{S}'_1 = \mathbb{N} \cap \left(\bigcup_{b \in \mathbb{Z}} \{P_{1,k}(b) : k \geq 2\} \right).$$

Now, observe that when $|b| \leq 2$, we have that $\{P_{1,k}(b) : k \geq 2\}$ is a subset of $\{-2, -1, 0, 1, 2\}$. To show this, note that if $|b| \leq 2$ then the root of $x^2 - bx + 1$ is a root of unity so any k th power of the root is also either 0 or a root of unity. Thus, the polynomial $x^2 - P_{1,k}(b)x + 1$ always has roots that are roots of unity and it follows that $|P_{1,k}(b)| \leq 2$ as well.

Now, for $|b| > 2$, we will prove inductively that the sequence $|P_{1,2}(b)|, |P_{1,3}(b)|, \dots$ is strictly increasing and is greater than geometric with common ratio $|b| - 1$. For our base case, we note that $|P_{1,2}(b)| = |b^2 - 2|$ and $|P_{1,1}(b)| = |b^3 - 3b| \leq |b|(|b^2 - 2| - 1) \leq (|b| - 1)|b^2 - 2|$ since $|b| - 1 < |b^2 - 2|$ from the fact that $|b| > 2$, so this case works. Then, assuming $|P_{1,n-1}(b)| < |P_{1,n}(b)|$, we see that

$$|P_{1,n+1}(b)| = |bP_{1,n}(b) - P_{1,n-1}(b)| \geq \left| |bP_{1,n}(b)| - |P_{1,n-1}(b)| \right| \geq (|b| - 1)|P_{1,n}(b)|.$$

Thus, our induction is done.

To show \mathcal{S}'_1 has density 0, we may consider the cardinality of the intersection $\mathcal{S}'_1 \cap \{1, 2, \dots, n^2\}$ for each positive integer n . From the fact that $|P_{1,k}(b)|$ increases as k increases, we see that for a fixed b we have that $|P_{1,k}(b)|$ attains its minimum at $k = 2$, when $P_{1,k}(b) = b^2 - 2$. Thus, in order for $\{P_{1,k}(b) : k \geq 2\}$ to intersect $\{1, 2, \dots, n^2\}$ at all, we need, $b^2 - 2 \leq n^2$, which can be rewritten as $b \leq n$. Then, for each such b , we have that since $|P_{1,k}(b)|$ is greater than geometric with common ratio $|b| - 1$, its intersection with $\{1, 2, \dots, n^2\}$ has size at most $\log_{|b|-1}(n^2)$. Thus

$$\begin{aligned} \frac{1}{n^2} |\mathcal{S}'_1 \cap \{1, 2, \dots, n^2\}| &\leq \frac{1}{n^2} \left(5 + \sum_{b \in \mathbb{Z}, |b| > 2} |\{P_{1,k}(b) : k \geq 2\} \cap \{1, 2, \dots, n^2\}| \right) \\ &= \frac{1}{n^2} \left(5 + \sum_{b \in \mathbb{Z}, 2 < |b| \leq n} |\{P_{1,k}(b) : k \geq 2\} \cap \{1, 2, \dots, n^2\}| \right) \\ &\leq \frac{1}{n^2} \left(5 + \sum_{b \in \mathbb{Z}, 2 < |b| \leq n} \log_{|b|-1}(n^2) \right) \\ &= \frac{1}{n^2} \left(5 + 4 \sum_{b=2}^{n-1} \log_b(n) \right) \\ &\leq \frac{1}{n^2} (5 + 4(n-2) \log_2(n)) \\ &\leq \frac{4n \log_2(n)}{n^2} \\ &\leq \frac{4}{\log 2} \cdot \frac{\log n}{n} \end{aligned}$$

which approaches 0 as n grows large. Thus, \mathcal{S}'_1 has natural density 0 so \mathcal{S}_1 has natural density 0. \square

Remark 5.3. Note that the density argument used in this result on the family of polynomials $P_{b,k}$ for $b = \pm 1$ is not true of general families of integer polynomials with increasing degrees. In fact, we

may take an example as simple as $x^2 + 1, x^3 + 2, x^4 + 3, \dots$ to see that the natural density of the values attained by the polynomials can be 1. The families considered here are special in a sense due to the fact that $P_{b,n}(x)$ for $b = \pm 1$ only takes on a finite number of values for small x and is on the order of x^n for large x . Thus, the values attained by $P_{b,n}(x)$ are roughly in correspondence with the perfect powers, which have natural density 0.

Having shown that polynomials of the form $x^2 - ax \pm 1$ “almost always” have a root α such that α is a fundamental unit in $K = \mathbb{Q}(\alpha)$, we now consider when p is inert in K . This is not immediate because in the case where we want the image of the unit group to have size 2 or 4, we need α to reduce to an element of \mathbb{F}_p under ϕ_p , implying that the corresponding $x^2 - ax \pm 1$ is reducible in $\mathbb{F}_p[x]$. Thus, we give the following criteria, leveraging the fact that \mathcal{O}_K need not be equal to $\mathbb{Z}[\alpha]$:

Lemma 5.4. Fix a prime $p \geq 3$. Then the following quadratic polynomials f have a root α for which p is inert in $\mathbb{Q}(\alpha)$:

- (i) $x^2 - (mp^{2k} + 2)x + 1$ for positive integer k and m congruent to a quadratic nonresidue modulo p .
- (ii) $x^2 - (2mp^2 + 2q) - 1$ when $p \equiv 1 \pmod{4}$, where m is congruent to a quadratic nonresidue modulo p and q is an integer satisfying $q^2 \equiv -1 \pmod{p^3}$.
- (iii) $x^2 - ax + 1$, where the reduction of the quadratic modulo p is irreducible in $\mathbb{F}_p[x]$.

Additionally, for (ii), we have that such a residue class $\pmod{p^3}$ corresponding to q exists.

Proof. For (i), we have by the quadratic formula that $\alpha = \frac{mp^{2k} + 2 \pm \sqrt{(mp^{2k} + 2)^2 - 4}}{2}$ so $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{(mp^{2k} + 2)^2 - 4})$ and thus if $\sqrt{(mp^{2k} + 2)^2 - 4} = b\sqrt{d}$ for squarefree d and integer b , then $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{d})$. By Section 5.9 of [Jar14] it suffices to show d is a quadratic nonresidue modulo p . Then observe that $b\sqrt{d} = \sqrt{(mp^{2k} + 2)^2 - 4} = \sqrt{m^2p^{4k} + 4mp^{2k}} = p^k\sqrt{m^2p^{2k} + 4m}$ so $\frac{b}{p^k} = \sqrt{\frac{m^2p^{2k} + 4m}{d}}$ is an integer so $\frac{m^2p^{2k} + 4m}{d} \equiv \frac{4m}{d}$ is a quadratic residue modulo p . From the fact that m is a quadratic nonresidue, it follows that d is also a nonresidue. Thus, p is inert in $\mathbb{Q}(\alpha)$ in this case.

For (ii), we first show that a residue class corresponding to such a q exists given $p \equiv 1 \pmod{4}$. Observe that there exists a generator g of $(\mathbb{Z}/p^3\mathbb{Z})^\times$ which has order $p^3 - p^2$ and that $p^3 - p^2 \equiv 0 \pmod{4}$. Thus, we may take any q in the residue class equivalent to $g^{(p^3 - p^2)/4}$ modulo p , as it will have order 4 and thus satisfies $q^2 \equiv -1 \pmod{p^3}$. Now, to show that p is inert in $\mathbb{Q}(\alpha)$, we see that by the quadratic formula $\alpha = \frac{2mp^2 + 2q \pm \sqrt{(2mp^2 + 2q)^2 + 4}}{2}$, so $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{(2mp^2 + 2q)^2 + 4})$ and thus if $\sqrt{(2mp^2 + 2q)^2 + 4} = b\sqrt{d}$ for squarefree d and integer b , then $\mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{d})$. Again, it suffices to show d is a quadratic nonresidue modulo p . Assume for the sake of contradiction it were a quadratic residue modulo p . Then observe that $b\sqrt{d} = \sqrt{(2mp^2 + 2q)^2 + 4} = 2\sqrt{m^2p^4 + 2mp^2q + q^2 + 1} = 2p\sqrt{m^2p^2 + 2mq + (q^2 + 1)/p^2}$ so $\frac{b}{2p} = \sqrt{\frac{m^2p^2 + 2mq + (q^2 + 1)/p^2}{d}}$ is an integer so $\frac{m^2p^2 + 2mq + (q^2 + 1)/p^2}{d} \equiv \frac{2mq}{d}$ is a quadratic residue modulo p . By similar reasoning to the previous case, it suffices to show that $2q$ is equivalent to a quadratic residue modulo p .

To see this, we will consider p modulo 8 and make use of Quadratic Reciprocity, which states that 2 is a quadratic residue modulo an odd prime p if and only if $p \equiv \pm 1 \pmod{8}$. If $p \equiv 1 \pmod{8}$ then $q \equiv g^{(p^3 - p^2)/4} \equiv (g^{(p^3 - p^2)/8})^2 \pmod{p}$ is a quadratic residue and by Quadratic Reciprocity 2 is a quadratic residue as well so $2q$ is. If $p \equiv 7 \pmod{8}$ then $(p^3 - p^2)/4$ is odd so $q \equiv g^{(p^3 - p^2)/4}$

$(\bmod p)$ is a quadratic nonresidue and by Quadratic Reciprocity 2 is also a quadratic nonresidue so $2q$ is a quadratic residue. We conclude that d is a quadratic nonresidue, so p is inert in K .

For (iii), we have by Lemma 3.1 that p is inert in $\mathbb{Q}(\alpha)$. \square

Theorem 5.5. *For any odd prime p and subgroup S of $U_{\mathbb{F}_{p^2}}$ containing -1 , there exists a real quadratic number field K in which p is inert and the image of the group of units of K under ϕ_p is exactly S .*

Proof. We first treat the case where S is a subgroup of $\mathbb{F}_{p^2}^\times$. Letting g be a generator of $\mathbb{F}_{p^2}^\times$, we see that S lies in \mathbb{F}_p^\times if and only if its order divides $p-1$. However, it also has order dividing $2(p+1)$, and it must also have an even number of elements. Thus, we find that the only possibilities are when the order of S is 2 or when $p \equiv 1 \pmod{4}$ and the order of S is 4.

When S has size 2, consider the set of a for which $a = mp^{2k} + 2$ for k an integer and m congruent to a quadratic nonresidue modulo p . Then since the set of such a has positive natural density greater than $1/p^2$, we have by Lemma 5.2 that there exists some such a for which the root α of $x^2 - ax + 1$ is a fundamental unit in $\mathbb{Q}(\alpha)$. Then take K to be $\mathbb{Q}(\alpha)$. To show this works for this case, we first note that by part (i) of Lemma 5.4 p is inert in $\mathbb{Q}(\alpha)$. Now, by construction we have that α is a fundamental unit in $\mathbb{Q}(\alpha)$ so every other unit is of the form $\pm\alpha^k$ for $k \in \mathbb{Z}$. Finally, note that the reduction of α under ϕ_p is a root of $x^2 - ax + 1$ which is equivalent to $x^2 - 2x + 1$, so α reduces to 1 in \mathbb{F}_{p^2} . Thus, every element in the unit group reduces to ± 1 under ϕ_p so the image of \mathcal{O}_K^\times under ϕ_p has order 2.

For $s = 4$ and $p \equiv 1 \pmod{4}$, we have by part (ii) of Lemma 5.4 that there exists an integer q for which $q^2 \equiv -1 \pmod{p}$. Also, we have that for this q and any m equivalent to a quadratic nonresidue modulo p , p is inert in $\mathbb{Q}(\alpha)$ for α a root of $x^2 - ax - 1$ when $a = 2mp^2 + 2q - 1$. Since the set of such a has positive natural density greater than $1/p^2$, we have by Lemma 5.2 that some such a has the property that α is a fundamental unit in $\mathbb{Q}(\alpha)$, and we may take $K = \mathbb{Q}(\alpha)$ for this value of a . Thus, every element of \mathcal{O}_K^\times is of the form $\pm\alpha^k$ for $k \in \mathbb{Z}$. Let the reduction of α modulo p be $\bar{\alpha}$. Then $\bar{\alpha}$ is a root of the reduction of $x^2 - ax - 1$ modulo p , which is equivalent to $x^2 - 2q - 1 = (x - q)^2$. Thus, $\bar{\alpha} = q$ and the order of $\bar{\alpha}$ is 4. Thus, the reduction of the group of units has size 4 in this case.

Now, we consider when S is not a subgroup of \mathbb{F}_p^\times . Then consider a generator g_s of S . Since g_s is not in \mathbb{F}_p , its minimal polynomial is of the form $x^2 - \bar{a}x + 1$ or $x^2 - \bar{a}x - 1$ for some $\bar{a} \in \mathbb{F}_p$. Then, consider the set of a whose reductions modulo p map to \bar{a} . Since the set of such a has positive natural density equal to $\frac{1}{p}$, we have by Lemma 5.2 that there exists some such a for which the root α of $x^2 - ax + 1$ or $x^2 - ax - 1$ is a fundamental unit in $\mathbb{Q}(\alpha)$. Then take K to be $\mathbb{Q}(\alpha)$. To show this works, we first note that p is inert in $\mathbb{Q}(\alpha)$ by part (iii) of Lemma 3.1. We also have that the image of α under ϕ_p is a root of $x^2 - \bar{a}x + 1$ in \mathbb{F}_{p^2} so it is g_s or g_s^{-1} , both of which give that the reduction of the unit group is exactly the group generated by g_s which is S .

Thus, for every subgroup of $U_{\mathbb{F}_{p^2}}$, we have exhibited a number field whose group of units has the desired image when reduced under ϕ_p . \square

Example 5.6. We may construct a real quadratic number field K in which the prime $p = 23$ is inert and whose unit group has size exactly 8 when reduced modulo p . We first find a polynomial in $\mathbb{F}_p[x]$ of the form $x^2 - ax + 1$ whose roots in \mathbb{F}_{p^2} have order 8. This can be done by factoring the 8th cyclotomic polynomial in $\mathbb{F}_p[x]$ as $\Phi_8(x) = x^4 + 1 = (x^2 - 5x + 1)(x^2 - 18x + 1)$ and choosing a to be equivalent to 5 $(\bmod p)$. Then we may lift a to be 5 and notice that by part (iii) of Lemma 5.4, p is inert in $K = \mathbb{Q}(\alpha)$. We also see that the element α has a minimal polynomial that reduces modulo p to the minimal polynomial of an element of order 8 in $U_{\mathbb{F}_{p^2}}$. Thus, the image of the reduction of

the group of units has size exactly 8. Finally, we have that $5 \notin S_1$ so that α is a fundamental unit in \mathcal{O}_K . Thus, the reduction of the group of units of \mathcal{O}_K is exactly the subgroup of size 8 in $U_{\mathbb{F}_{p^2}}$.

Example 5.7. We may construct a real quadratic number field K in which the prime $p = 5$ is inert and where the reduction of the group of units of \mathcal{O}_K modulo $p\mathcal{O}_K$ has size exactly 2 (i. e., is the subgroup $\{\pm 1\}$ of $U_{\mathbb{F}_{p^2}}$). Using the process given in part (i) of Lemma 5.4, we first consider the number field $K = \mathbb{Q}(\alpha)$ where α is a root of the polynomial $x^2 - (2 \cdot p^2 + 2)x + 1 = x^2 - 52x + 1$. In this number field, p is inert and we also have that the reduction of the minimal polynomial of α is $x^2 - 2x + 1$, thus the reduction of α must be 1. However, we actually have that $52 \in S_1$, as $52 = P_{1,3}(4)$. In other words, we see that $\alpha^{1/3}$ is a root of $x^2 - 4x + 1$, so α is not a fundamental unit of K , and instead $\alpha^{1/3}$ is. Thus, this number field does not work. If we instead try letting α be a root of $x^2 - (3 \cdot p^2 + 2)x + 1 = x^2 - 77x + 1$, we see again that p is inert in K and that the reduction of the minimal polynomial of α is $x^2 - 2x + 1$ so α must reduce to 1. A short computation shows that $77 \notin S_1$ so in this case α is a fundamental unit of K . Thus, we see that for this choice of K the reduction of the group of units of \mathcal{O}_K modulo $p\mathcal{O}_K$ is exactly the set $\{\pm 1\}$ with size exactly 2.

6 Cubic Fields

When considering totally real cubic fields, the problem of obtaining all subgroups of $U_{\mathbb{F}_{p^3}}$ becomes more complex due to the unit group having rank 2. We prove a theorem that suggests that this should be possible, by focusing on constructing number fields in which a unit of our choice becomes a Minkowski unit. Here, by Minkowski unit we mean a unit that forms a system of fundamental units with its conjugate. This property would be helpful because the conjugates of an element α of \mathbb{F}_{p^n} are of the form α^{p^k} due to the Frobenius endomorphism. Thus, any subgroup of \mathbb{F}_{p^3} generated by the reduction of a Minkowski unit of a number field K automatically contains the reduction of all of its conjugates. Therefore it contains the reduction of the system of fundamental units so it contains the reduction of the entire unit group.

In terms of constructing number fields to have Minkowski units with a given minimal polynomial, we have the following result on when the roots of a polynomial of the form $P(x) = x^3 + ax^2 + bx + 1$ are Minkowski units, subject to an assumption that they generate a Galois field and whose discriminant is not too far from $\text{Disc}(P)$:

Theorem 6.1. *For a fixed positive integer D and constant $\varepsilon > 0$, there exists a constant $C = C(D, \varepsilon)$ such that the following holds. Assume integers a and b satisfy $|a|^{2-\varepsilon} > |b| > |a| + 2 > C$ and the number field K with defining polynomial $P(x) = x^3 + ax^2 + bx + 1$ is Galois. Furthermore assume $\mathbb{Z}[\alpha]$ for α a root of P has index $d < D$ inside \mathcal{O}_K . Then any two roots of P form a system of fundamental units for \mathcal{O}_K .*

Proof. First note that since $|b| > |a| + 2$ we have that either $P(1) = 2 + a + b$ or $P(-1) = a - b$ is negative. It follows by the Intermediate Value Theorem that P has a root between -1 and 1, we will call this root u . Then let the other two roots be r_1 and r_2 . We see that at least one of $|r_1|, |r_2|$ is greater than 1 because the product $r_1 r_2 u$ is equal to -1. Furthermore, note that $|r_1|, |r_2| > 1$ because if one had absolute value less than 1, P would have two roots in the interval $[-1, 1]$ so $P(1)$ and $P(-1)$ would be the same sign, but this is not possible from the fact that $P(1) = 2 + a + b$, $P(-1) = a - b$, and $|b| > |a| + 2$.

Since P has constant coefficient 1, each of u , r_1 , and r_2 are units in \mathcal{O}_K . Since any choice of two roots from u , r_1 , and r_2 form a system of units that generate the third one, it suffices to show that r_1 and r_2 form a system of fundamental units.

A result from Cusick [Cus84] states that the regulator R of K satisfies $R \geq \frac{1}{16} \log^2(\text{Disc}(K)/4)$. Now, observe that $\text{Disc}(K) = \frac{1}{d^2} \text{Disc}(\mathbb{Z}[\alpha])$ by Proposition 3.22 from [Jar14]. It follows that

$$\text{Disc}(K) = \frac{1}{d^2} \text{Disc}(P) = \frac{1}{d^2}(-27 - 4a^3 + 18ab + a^2b^2 - 4b^3).$$

From the fact that $a^2 \gg |b| > |a| + 2$ this is greater than $\frac{1}{d^2}a^2b^2$ which is greater than $\frac{1}{d^2}b^3$ for sufficiently large a and b . Thus, we have that

$$R \geq \frac{1}{16} \log^2(\text{Disc}(P)/4) \geq \frac{1}{16} \log^2\left(\frac{b^3}{d^2}\right) \geq \frac{1}{16} \log^2\left(\frac{b^3}{D^2}\right).$$

Since D is fixed, for sufficiently large b relative to D this is greater than $(1 - \varepsilon_1) \cdot \frac{1}{16} \log^2(b^3) = (1 - \varepsilon_1) \cdot \frac{9}{16} \log^2 b$ for any fixed $\varepsilon_1 > 0$, so that $R \geq (1 - \varepsilon_1) \frac{9}{16} \log^2 b$.

At the same time, we have that the regulator R' of the system of fundamental units formed by r_1 and r_2 is

$$R' = \begin{vmatrix} \log|r_1| & \log|r_2| \\ \log|r_2| & \log|u| \end{vmatrix} = \begin{vmatrix} \log|r_1| & \log|r_2| \\ \log|r_2| & -\log|r_1r_2| \end{vmatrix} = \log^2|r_1| + \log|r_1|\log|r_2| + \log^2|r_2|.$$

Now, since $|r_1|, |r_2| > 1$, we have $\log|r_1|\log|r_2| \geq 0$ so

$$R' = \log^2|r_1| + \log|r_1|\log|r_2| + \log^2|r_2| \leq \log^2|r_1| + 2\log|r_1|\log|r_2| + \log^2|r_2| = \log^2|r_1r_2|.$$

We also have that $b = r_1r_2 + r_1u + r_2u = r_1r_2 + \frac{1}{r_2} + \frac{1}{r_1}$ so r_1r_2 is within 2 of b . Thus, for sufficiently large b we may approximate $R' \leq (1 - \varepsilon_1) \log^2 b$ using the same sufficiently small $\varepsilon_1 > 0$. Setting ε_1 to be a constant such as 0.01, we may choose $C(D, \varepsilon)$ such that all of the “sufficiently large” conditions on a and b hold. For this value of $C(D, \varepsilon)$, we conclude that $R' \leq (1 - \varepsilon_1) \log^2 b < \frac{16}{9}R < 2R$ by taking $\varepsilon_1 < 0.01$. Since $\frac{R'}{R}$ is the index of the units generated by r_1 and r_2 over the group of units in \mathcal{O}_K , it follows that $\frac{R'}{R}$ is a positive integer which is less than 2 so it must be 1, implying that r_1 and r_2 form a system of fundamental units. \square

Due to this result, it suffices to consider the following: Let $f \in \mathbb{F}_p[x]$ be the minimal polynomial of a given generator of a subgroup S of $U_{\mathbb{F}_{p^3}}$. Then there exists a Galois field K defined by the polynomial \tilde{f} reducing to f modulo p such that f has large coefficients with respect to $[\mathcal{O}_K : \mathbb{Z}[\alpha]]$, where α denotes a root of \tilde{f} .

7 Future work

In order to have the conditions of Theorem 6.1 be satisfied more often, it may be helpful to consider a weaker case in which we look not at the image of the unit group of \mathcal{O}_K , but at the unit group of an order of \mathcal{O}_K . Thus, after constructing a polynomial of the form $x^3 + ax^2 + bx + 1$ with roots r_1 and r_2 which defines a number field K , it may be helpful to consider the unit group of the order $\mathbb{Z}[r_1, r_2]$ rather than the unit group of \mathcal{O}_K . This is because we expect $[\mathcal{O}_K : \mathbb{Z}[r_1]] > [\mathbb{Z}[r_1, r_2] : \mathbb{Z}[r_1]]$, loosening the conditions on a and b .

Additionally, in order to prove the totally real cubic case from Theorem 6.1, it becomes important to consider possible ways to construct families of Galois fields, which have been studied by Shanks [Sha74] in his consideration of cubic fields defined by polynomials of the form $x^3 - ax^2 - (a+3)x - 1$. Such fields are always Galois, but it is not always true that the minimal polynomial of a generator of a subgroup of $U_{\mathbb{F}_{p^3}}$ will be of such a form. Thus, we turn to Balady [Bal16], who gives a method of

generating families of cubic fields and a result on these families similar to Theorem 6.1, conditional on the squarefreeness of a specific quantity. In combination with Poonen’s work on squarefree values of multivalued polynomials ([Poo03]), it may be possible to use Balady’s general families of polynomials to prove the cubic case.

Acknowledgments

I would like to thank my PRIMES mentor Alexander Petrov for his advice, patience, and guidance throughout this research project. I also thank the PRIMES-USA program for giving me the opportunity to conduct research on this topic.

References

[Bal16] Steve Balady. “Families of cyclic cubic fields”. In: *Journal of Number Theory* 167 (Oct. 2016), pp. 394–406. DOI: [10.1016/j.jnt.2016.03.011](https://doi.org/10.1016/j.jnt.2016.03.011).

[CKY00] Yen-Mei J. Chen, Yoshiyuki Kitaoka, and Jing Yu. “Distribution of units of real quadratic number fields”. In: *Nagoya Mathematical Journal* 158 (2000), pp. 167–184. DOI: [10.1017/S0027763000007364](https://doi.org/10.1017/S0027763000007364).

[Cona] Keith Conrad. *Dirichlet’s Unit Theorem*. URL: <https://kconrad.math.uconn.edu/blurbs/gradnumthy/unittheorem.pdf>.

[Conb] Keith Conrad. *Trace and Norm, II*. URL: <https://kconrad.math.uconn.edu/blurbs/galoistheory/tracenorm2.pdf>.

[Cus84] T. W. Cusick. “Lower bounds for regulators”. In: *Number Theory Noordwijkerhout 1983*. Ed. by Hendrik Jager. Berlin, Heidelberg: Springer Berlin Heidelberg, 1984, pp. 63–73. ISBN: 978-3-540-38906-4.

[IK98] Masaru Ishikawa and Yoshiyuki Kitaoka. “On the distribution of units modulo prime ideals in real quadratic fields”. In: *Journal für die reine und angewandte Mathematik (Crelles Journal)* 1998.494 (Jan. 1998), pp. 65–72. DOI: [10.1515/crll.1998.011](https://doi.org/10.1515/crll.1998.011).

[Jar14] Frazer Jarvis. *Algebraic Number Theory*. Springer International Publishing, 2014.

[Kit06] Yoshiyuki Kitaoka. “Distribution of units of a cubic abelian field modulo prime numbers”. In: *Journal of the Mathematical Society of Japan* 58.2 (Apr. 2006). DOI: [10.2969/jmsj/1149166789](https://doi.org/10.2969/jmsj/1149166789).

[Kit07] Yoshiyuki Kitaoka. “Distribution of units of an algebraic number field modulo an ideal”. In: *Number Theory* (July 2007), pp. 39–96. DOI: [10.1142/9789812770134_0003](https://doi.org/10.1142/9789812770134_0003).

[LN87] Rudolf Lidl and Harald Niederreiter. *Finite fields*. Cambridge Univ. Press, 1987.

[Mor12] Pieter Moree. *Artin’s primitive root conjecture -a survey -*. 2012. arXiv: [math/0412262 \[math.NT\]](https://arxiv.org/abs/math/0412262). URL: <https://arxiv.org/abs/math/0412262>.

[MP13] Gary L. Mullen and Daniel Panario. *Handbook of Finite Fields*. CRC Press, 2013.

[Nar04] Władysław Narkiewicz. *Elementary and analytic theory of algebraic numbers*. Springer, 2004.

[Poo03] Bjorn Poonen. “Squarefree values of multivariable polynomials”. In: *Duke Mathematical Journal* 118.2 (June 2003). ISSN: 0012-7094. DOI: [10.1215/S0012-7094-03-11826-8](https://doi.org/10.1215/S0012-7094-03-11826-8). URL: <http://dx.doi.org/10.1215/S0012-7094-03-11826-8>.

[Rot98] Joseph Rotman. *Galois Theory*. 2nd edition. Springer-Verlag New York, 1998.

[Sha74] Daniel Shanks. “The simplest cubic fields”. In: *Mathematics of Computation* 28.128 (Oct. 1974), p. 1137. DOI: [10.2307/2005372](https://doi.org/10.2307/2005372).