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Abstract


	 The behavior of prime elements under ring extensions is a fundamental question in 

commutative algebra. Given an extension of domains R ⊆ T and a prime element p of R, we identify 

conditions under which p remains prime in intermediate rings. Assuming that p is prime in T , we 

prove that this holds whenever T is an integral overring of a one dimensional ring R. Furthermore, we 

show that if p is coprime to the conductor of the extension R ⊆ T , then p remains prime in T and all 

intermediate rings. Finally, with the help of a result on prime behavior in minimal extensions, we 

prove that this prime stability holds for any extension satisfying the FCP condition.
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1. Introduction

In the field of commutative ring theory, the behavior of prime ideals in ring ex-
tensions has been studied extensively. Some of the most notable contributions have
been made by Anderson and Dobbs in [1] and Robson in [12]. They have determined
when rings in an extension R ⊂ T share the same prime ideals. In addition, they
were able to expand this question to intermediate rings by determining when all three
rings R ⊂ S ⊂ T share the same prime ideals.

Although prime elements correspond to principal prime ideals, treating them di-
rectly highlights arithmetic phenomena not visible at the ideal level. More recently,
prime elements have been considered in a few papers, such as [4] and [9, Lemma
4.7]. These include criteria for primality in orders of quadratic number fields and the
stability of prime elements (namely, the property that a prime element of R remains
prime in the corresponding ring extensions) in the integral closure of a Noetherian
domain.

Consider the elementary ring extensions Z ⊂ Z[3i] ⊂ Z[i]. The rational prime 3
is prime in Z and remains prime in the end ring Z[i], but it fails to be prime in
the intermediate ring Z[3i] (indeed (3i)2 = −9 = 3 · (−3) in Z[3i], yet i /∈ Z[3i] so
3 ∤ 3i in Z[3i]). Motivated by this example and the conjectures in [4], we investigate
conditions ensuring that such instability cannot arise. Concretely, given an extension
R ⊂ T , we study when an element p ∈ R that is prime in R (and possibly prime in
T ) remains prime in every intermediate ring S with R ⊆ S ⊆ T , and we determine
various extension types which exhibit such stability.

The main results of this paper are as follows. In Section 3, we prove Conjecture
1.2.5 from [4]. This asserts that in 1-dimensional domains R ⊆ T where T is an
integral overring of R, if p is prime in R and T , then p is prime in all intermediate
rings. In Section 4, we generalize a result inspired by Proposition 1.1.36 in [4]: if a
prime element p ∈ R is coprime to the conductor (R : T ), i.e. pR+(R : T ) = R, then
p remains prime in T and all intermediate rings. As an application, we show that if p
is prime in an order of a number field, then p remains prime in the ring of integers and
in all intermediate orders. This classical fact (see [3]) appears here as a special case
of our theorem, thereby linking these commutative algebra inquiries with the field of
algebraic number theory. Finally, Section 5 develops a tool for minimal extensions and
shows that the finite chain property (FCP) provides an alternative sufficient condition
for prime stability. We also combine several criteria characterizing FCP from [8] with
our results.

2. Preliminaries

Throughout this paper, all rings are assumed to be domains. To study how prime
elements behave across ring extensions, we begin by recalling some basic notions from
ring theory and dimension theory. These notions will serve as tools for formulating
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sufficient conditions with minimal restrictions. We start with the definition of the
Krull dimension.

Definition 2.1. The Krull dimension or dimension of a ring R, denoted as dimR,
is the supremum of the numbers n for which there exists a chain of prime ideals

P0 ⊂ P1 ⊂ · · · ⊂ Pn.

Consider a 1-dimensional ring R. From the definition, all nonzero prime ideals in
R are maximal. This direct consequence becomes crucial in Section 3.

Next, we define a couple of terms related to integrality.

Definition 2.2. Let R ⊆ T be domains, and let t be any element of T . We say that
t is integral over R if t is the root of some monic polynomial with coefficients in R.
In addition, we say T is an integral extension of R if every element of T is integral
over R.

The reason why integrality is crucial, specifically integral extensions, is because it
preserves many ideal-theoretic properties. We can see this happen in [13].

Proposition 2.3 ([13]). If R ⊆ T is an integral ring extension, then dim(R) =
dim(T ).

Next, we define overrings, which also play a central role in our setup.

Definition 2.4. A ring extension T of a domain R is an overring of R if T is a subring
of the quotient field of R.

Consider R ⊆ T , where T is an overring of R. The reason why overrings are
important is that they allow us to assume that all the elements of intermediate rings
are of the form a

b
where a, b ∈ R.

Finally, the conductor ideal provides information about how much of the ring ex-
tension lies “inside” the base ring.

Definition 2.5. Let R ⊆ T be an extension. The conductor ideal I = (R : T ) :=
{r ∈ R | rT ⊆ R}.

Since I is an ideal, we can easily verify that 0 ∈ I since 0 · T = 0 ∈ R.
Thus, in a domain, we can rewrite

I := {0} ∪
{
r ∈ R \ {0} | T ⊆ 1

r
R

}
.

Notice that if conductor I is nonzero, then there exists an r ∈ R \ {0} such that for
all t ∈ T , we can write t = s

r
where s ∈ R. Therefore, we have the following.

Proposition 2.6. Consider the extension R ⊆ T . If the conductor is nonzero, then
T is an overring of R.
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When analyzing the structure of extensions, in Section 5, we consider the finiteness
condition FCP, which limits the number or depth of intermediate rings.

Definition 2.7. A ring extension R ⊆ T satisfies FCP if all chains of intermediate
rings are finite.

3. Prime Element Stability in 1-dimensional Integral Overrings

Recall Conjecture 1.2.5 in [4].

Conjecture 3.1. If p is prime in R and T , then p is prime in S for all R ⊆ S ⊆ T .

Let a
b
∈ T for some a, b ∈ R. We would like to be able to assume that one of a and

b is not a multiple of p, as motivated by the following.

Remark 3.2. Let a, b ∈ T . Suppose that we have a
b
a multiple of p in T , so that

a
b
= p · c

d
for some c, d ∈ T . We would like to simplify the equation to ad = pbc. From

this we find that ad is a multiple of p in R, so a or d is a multiple of p in R. However,
this information is not useful, as for example if a and b are both multiples of p so that
a = pa′ and b = pb′ then

a

b
=

pa′

pb′
=

a′

b′

and then we have the same situation but with a and b replaced by a′ and b′, so no
information is gained.

In order to eliminate situations such as this, we will try to divide both a and b by
p whenever a and b are multiples of p. We would like this to always end. This is
equivalent to that every element of R has only finitely many factors of p, which is not
true for general rings R.

Example 3.3. Consider the ring R = Z + xQ[x]. Then, the quotient R/(2) is
isomorphic to Z/(2), which is an integral domain since 2 is prime in Z, so 2 is prime
in R. However, we see that we can factor out infinitely many factors of 2 from x, as
x = 2k · x

2k
for all integers k. However, this does not satisfy the condition that R must

be 1-dimensional, because in the ring R = Z+ xQ[x], we see that (x)Q[x] is a prime
ideal of R contained in the prime ideal (2).

We now present the class of rings for which the undesirable situation in Example
3.3 does not occur.

Definition 3.4. A ring R is Archimedean if every element a has a finite number of
factors of b for all a, b ∈ R, meaning that a

bk
/∈ R for some integer k.

Motivated by Example 3.3, we will show that if a ring is 1-dimensional, then it is
Archimedean. The following can be found in [14] without proof, thus we will also
provide a proof of the theorem.
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Lemma 3.5. [14] Any 1-dimensional ring R is Archimedean.

Proof. Assume for the sake of contradiction that there exist a, b ∈ R such that a
bd

∈ R
for all integers d and b is not a unit. Let B be any maximal ideal of R containing (b),
so that B is prime.

Now, consider the ideal

I = (a)R

[
1

b

]
which is in R by the assumption. We see that bI ⊊ bR, so as bI = I we see that
I ⊊ (b) ⊆ B.

Let S be the multiplicatively closed set{
1, b, b2, b3, · · ·

}
· (R \B) .

We claim that I avoids S. Assume for the sake of contradiction that I contains cbk for
some c ∈ R \B and some nonnegative integer k, so that cbk = ar for some r ∈ R

[
1
b

]
.

Then, we see that a
(

r
bk

)
= c is in I, so it is in B, a contradiction, proving the claim.

Now, since there exists an ideal of R avoiding S, there exists a maximal ideal J
of R with respect to avoiding S by Zorn’s lemma on the nonempty partially ordered
set under inclusion of ideals in R avoiding S. We see that J must be prime, as S is
multiplicatively closed. Now, since J avoids S, which contains R \B, we see that J is
in B, but J also cannot contain b since b ∈ S, so B strictly contains J , a contradiction
since both are prime. □

Remark 3.6. The set S naturally falls out of considering elements which are not in
I, and it is “minimal” in some sense, as in this proof we cannot replace S with any
smaller multiplicatively closed set.

Next, we provide a lemma which will be a central part of our ultimate proof in this
section but is also interesting in its own right.

Lemma 3.7. Let R ⊆ T be an extension of 1-dimensional domains and p ∈ R prime
in T . Then, the following are equivalent:

(1) p is prime in R.
(2) pT ∩R = pR.

Proof. We will show that (2) =⇒ (1) directly and (1) =⇒ (2) by contraposition.
First, assume that the second condition is true. This implies that for all r ∈ R we

have

p |T r =⇒ p |R r

Now, let a, b ∈ R be such that p |R ab. We would like to show that p |R a or p |R b.
Then, we see that p |T ab, so p |T a or p |T b. This implies that p |R a or p |R b,
implying that p is prime in R.
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Now, assume that the second condition is not true. This implies that

pT ∩R ̸= pR.

Since pR ⊆ pT ∩R, this implies that

pR ⊊ pT ∩R.

Because R is 1-dimensional and pT ∩R is a prime ideal in R, we see that pR cannot
be prime, so p is not prime in R, so we are done. □

We now provide an example of the lemma.

Example 3.8. When R = Z[pi] and T = Z[i] where p ∈ Z is a prime in T , we see that
p is not prime in R since pi ·pi = −p2 is a multiple of p in R but p ∤R pi. Furthermore,
we see that pi ∈ R but i /∈ R, so the theorem holds.

Lemma 3.7 allows us to quickly determine when p is prime in a smaller ring, a
strong tool when it comes to proving that p is prime in an intermediate ring. We now
prove Conjecture 1.2.5 from [4].

Theorem 3.9. Let R be 1-dimensional and T be an integral overring of R. If p is
prime in R and T , then p is prime in every intermediate ring S.

Proof. We see that R ⊆ S and S ⊆ T are integral extensions. From Proposition 2.3,
we know that dim(S) = dim(R) = 1. Thus, we can apply Lemma 3.7 to the extension
S ⊆ T , so that it suffices to show the following.

(*) If t ∈ T satisfies pt ∈ S, then t ∈ S.

Write

t =
b

c
for b, c ∈ R with c ̸= 0. Since R is 1-dimensional, by Lemma 3.5, it is Archimedean,
so only finitely many powers of p divide b or c. Thus we can factor

b = prb′, c = psc′,

where p ∤R b′, c′. Therefore if r ≤ s we may divide a factor of pr from both b and c
and if r ≥ s then we may divide a factor of ps from both b and c, so that we may
assume p divides at most one of b and c.

We want to prove p ∤R c. For the sake of contradiction, assume that p |R c. Then
c = pc1 with c1 ∈ R. Thus

b

p
= c1 ·

b

c
∈ T,

so

p · b
p
= b ∈ R.

Applying Lemma 3.7 to R ⊆ T implies that b
p
∈ R, contradicting p ∤R b. Thus p ∤R c.
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Notice that if there exist d, e ∈ S such that ptd + e = t, then t ∈ S since we know
pt ∈ S. This is equivalent to

b

c
(pd− 1) = −e ∈ S.

Thus, it suffices to show that there exists d ∈ S such that c |S (pd− 1). Since R ⊆ S,
it is sufficient that there exists d ∈ R such that c |R (pd− 1).

Then, since pR is maximal in the 1-dimensional domain R and c /∈ pR, we see that
pR + cR = R, so there exist k, d ∈ R with ck + pd = 1, or pd − 1 = −ck, implying
that

c |R (pd− 1).

Hence t ∈ S, establishing (∗).
By Lemma 3.7 for S ⊆ T , condition (∗) implies p is prime in S. Since S was

arbitrary, p is prime in every intermediate ring. □

Notice that we only use the integrality of T over R to make sure that S is 1-
dimensional. Thus, we have the following porism.

Corollary 3.10. Let R ⊆ T be 1-dimensional domains and T be an overring of R. If
p is prime in R and T , then p is prime in every 1-dimensional intermediate ring S.

We now provide an example of Theorem 3.9.

Example 3.11. Let F0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ . . . be field extensions. Now, consider the
ring extension R = F0 + xF1[x] + x2F2[x] + x3F3[x] + · · · ⊂ L[x] = R̄. Note that R̄ is
a 1-dimensional integral overring of R. We can see that x is prime in R and R̄, so x
must be prime in all intermediate rings between R and R̄.

The restriction to 1-dimensional domains in Theorem 3.9 is essential. If we drop
the dimension condition while retaining the assumption that T is an integral overring
of R, prime stability may fail. The following example illustrates this phenomenon.

Example 3.12. Let F be a field and set

R := F [x, y2, y3] ⊂ S := F [x, xy, y2, y3] ⊂ T := F [x, y].

Here T is an integral overring of R, since y is integral over R (satisfying t2−y2 ∈ R[t]),
and hence both S and T are integral over R. Note also that dimR = dimT = 2, so
R is not 1-dimensional.

Consider p := x ∈ R. In R we have

R/(x) ∼= F [y2, y3],

which is an integral domain, so x is prime in R. Similarly, in T = F [x, y] the ideal
(x) is prime, since

T/(x) ∼= F [y]
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is a domain. However, in the intermediate ring S we have the factorization

xy3 = (xy) · y2,

and x divides neither factor in S. Thus x is not a prime element of S.

4. Prime Element Stability via Conductor Coprimality

In light of Theorem 3.9, it is natural to ask under what other conditions would a
prime p remain “stable”. In this section, we focus on the role of the conductor in the
behavior of prime elements under extensions of domains. Specifically, we show that
when a prime element is “coprime” to the conductor of an extension, it remains prime
not only in the extension itself but also in all intermediate rings. We begin with a
motivating example that illustrates this phenomenon.

Example 4.1. Let K = Q(
√
5) and OK = Z

[
1+

√
5

2

]
. Set

R = Z+ 6OK , I = (R : OK) = 6OK ,

and for each divisor d | 6 define

Sd = Z+ dOK .

Then the only intermediate rings are S2 and S3. Let p = 7. Since gcd(7, 6) = 1, we
have 7R + I = R, and one can check that 7 remains prime in R, S2, S3, and OK .

This example suggests that coprimality governs the stability of primality across
intermediate rings. This phenomenon is not isolated; a related result appears in the
arithmetic of rings of integers.

Proposition 4.2 ([4, Proposition 1.1.36]). Let Z[ω] be a quadratic integer ring, and
consider Z ⊂ Z[nω] ⊂ Z[ω]. Let p ∈ Z be prime in both Z and Z[ω]. Then p is prime
in Z[nω] if and only if gcd(n, p) = 1.

Both Example 4.1 and Proposition 4.2 highlight the same underlying principle: a
suitable coprimality condition guarantees that a prime element remains prime in all
intermediate rings. At the same time, they arise in different contexts. Proposition 4.2
treats towers of rings of integers and provides a precise equivalence, while Example 4.1
illustrates one direction of this behavior in a more general construction.

Motivated by these parallels, we abstract the coprimality condition into the lan-
guage of conductors. This leads to the following general result.

Theorem 4.3. Let R ⊆ T be domains, p ∈ R prime, and I := (R : T ) ̸= 0 such
that pR + I = R. Then p remains prime in T and in every intermediate ring S with
R ⊆ S ⊆ T .
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Proof. Let W := R\pR and write RW , TW for the localizations at W . Since pR+I =
R, there exist v ∈ R and u ∈ I with

pv + u = 1.

Reducing modulo pR shows u /∈ pR, i.e., u ∈ W ∩ I. For any t ∈ T , we have ut ∈ R
(as u ∈ I), so

t =
ut

u
∈ RW .

Hence T ⊆ RW , thus TW ⊆ RW , and clearly RW ⊆ TW , so RW = TW .

Let a, b ∈ T with ab ∈ pT . Localize at W :

(a/1)(b/1) ∈ pTW .

As pTW is prime, assume a/1 ∈ pTW , i.e., there exist s ∈ T and w ∈ W with

(1) wa = ps.

Take u ∈ I, v ∈ R with pv + u = 1. Multiply (1) by u:

uwa = p(su).

Since u ∈ I, su ∈ R, hence uwa ∈ pR. Also u ∈ I, so ua ∈ R. Moreover, w /∈ pR
(since w ∈ W ). Because pR is prime in R and w /∈ pR, it follows that

ua ∈ pR ⇒ ua = pr for some r ∈ R.

Finally, using pv + u = 1, we write

a = a(pv + u) = apv + au = apv + pr ∈ pT.

Symmetrically, if needed, b ∈ pT . Therefore pT is prime, which implies p remains
prime in T .

Let S satisfy R ⊆ S ⊆ T . Since the conductor grows with the ring, we have

I = (R : T ) ⊆ (R : S) =: IS.

Hence the same element u ∈ I ⊆ IS satisfies the same coprimality condition, so the
argument of the above steps applies verbatim. It follows that p is prime in every
intermediate ring S. □

The preceding theorem shows that if a prime element is coprime to the conductor,
its primality is preserved across all intermediate rings. This theorem generalizes the
phenomenon observed in Example 4.1 and Proposition 4.2, showing that the conductor
plays a central role in controlling the stability of primes across intermediate rings. To
illustrate the necessity of the coprimality condition with the conductor, we conclude
with two counterexamples in which the condition fails and prime stability does not
hold, even though T is an integral overring of R.
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Example 4.4. Consider the extension

R = Z[2x] ⊂ T = Z[x].
where T is an integral overring of R. Here the conductor is

I = (R : T ) = {t ∈ T | tT ⊆ R} = 0,

so the conductor vanishes. Let
p = 2x ∈ R.

In R, element p is prime because

R/(2x) ∼= Z,
which is an integral domain. However, in T = Z[x], we can factor

2x = 2 · x,
so p is no longer prime in T .

The preceding example shows that prime stability may fail when the conductor
vanishes. For a second counterexample, we turn to a situation where the conductor
is nonzero but the prime element is not coprime to it. Specifically, we return to the
same extension

F [x, y2, y3] ⊂ F [x, xy, y2, y3] ⊂ F [x, y],

already considered in Example 3.12. In this instance, however, our emphasis is on the
conductor and the failure of coprimality.

Example 4.5. Let F be a field and set

R := F [x, y2, y3] ⊂ T := F [x, xy, y2, y3] ⊂ F [x, y].

Note that T is an integral overring of R (indeed R ⊂ T ⊂ F [x, y]).
Take p := x. The conductor I := (R : T ) is nonzero. In fact one can check precisely

that
I = (R : T ) = (y2, y3).

Notice that
R/(x, I) ∼= R/(x, y2, y3) ∼= F,

so (x, I) is a proper ideal of R. Hence xR+ I ̸= R, i.e. x and the conductor I are not
coprime. In R, the element x is prime because

R/(x) ∼= F [y2, y3]

is an integral domain. However in T we have the factorization

xy3 = (xy) · y2,
and p divides neither factor. Hence, x is not prime in T .
This demonstrates that even with a nonzero conductor in an integral overring ex-

tension, the coprimeness requirement is still essential for prime stability.
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We now illustrate how Theorem 4.3 applies in the classical setting of orders in
algebraic number theory. We first recall the standard notion of an order in that
context.

Definition 4.6. An order of an algebraic number field K is a subring O ⊆ OK which
is also a Z-module of rank n = [K : Q].

First we record the standard criterion from order theory that we will use as a
hypothesis.

Theorem 4.7. [2, Theorem 6.1] Let K be a number field, O an order in K, and
f = (O : OK) the conductor. A nonzero prime ideal p of O is invertible if and only if
p+ f = O.

Using this fact we immediately obtain the desired statement about prime elements.

Corollary 4.8. Let O be an order in a number field K with conductor f = (O : OK).
If p ∈ O is a prime element then p remains prime in OK and in every intermediate
order O ⊆ S ⊆ OK .

We give two complementary proofs. The first relies directly on Theorem 4.3, while
the second combines the 1-dimensional result from the previous section with a lemma
from the literature. In this way, we see two distinct applications of our stability
criteria converging to the same corollary.

Proof A: Any principal fractional ideal is invertible, hence pO is invertible. Since p
is a prime element, pO is a prime ideal of O. And so by Theorem 4.7, pO is coprime
to the conductor f. Applying Theorem 4.3, p is prime in OK and every intermeidate
order S.

Proof B: Invoke the standard lemma ([9, Lemma 4.7]) that: if R is a Noetherian
domain and T is the integral closure of R, then any prime element of R remains prime
in T . In our situation O is an order (hence Noetherian), OK is the integral closure of
O (hence an integral overring), and both are 1-dimensional. Thus, any prime element
p ∈ O remains prime in OK . Combining this with Theorem 3.9 shows that p remains
prime in every intermediate order S.

This corollary is not new: it also follows from the classical theory of orders (see
[3]). It shows that Theorem 4.3 together with the Theorem 3.9 generalize parts of
that theory, illustrating the broad applicability of our stability criteria to phenomena
in algebraic number theory.

5. Prime Element Stability under FCP

In this section, we will explore the finite property FCP, which states that the length
of each chain of intermediate rings is finite.

The FCP property allows us to look at finite chains, specifically the minimal ring
extensions that build them. In order to do this, we present the following lemma.
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Lemma 5.1. Let R be a domain with p ∈ R prime. Then, if R[a] is a simple extension
of R satisfying

R[pa] = R[a],

and for all r ∈ R with p |R[a] r we have that p |R r, then p is prime in R[a].

Proof. If s =
∑d

k=0 rk(pa)
k is some element of R[pa] for r0, r1, . . . , rd ∈ R, then we

note that

s− r0 = p

(
d∑

k=1

rkp
k−1ak

)
.

This is a multiple of p in R[pa], as
∑d

k=1 rkp
k−1ak ∈ R[a] and R[a] = R[pa]. Therefore,

whenever r0, r1, . . . , rd ∈ R are such that s =
∑d

k=0 rk(pa)
k, we see that s is a multiple

of p in R[pa] if and only if r0 is a multiple of p in R[pa], which occurs if and only if
r0 is a multiple of p in R by assumption.

Now if b =
∑d

k=0 bk(pa)
k and c =

∑d
k=0 ck(pa)

k are some elements of R[pa], then

bc =
∑2d

k=0 xk(pa)
k, where xk =

∑k
j=0 bjck−j where bj = cj = 0 for all j ≥ d. Now

bc is a multiple of p in R[pa] if and only if x0 = b0c0 is a multiple of p in R. Since p
is prime in R we see that b0 or c0 is a multiple of p in R, implying that b or c is a
multiple of p in R[pa]. This means that p is prime in R[pa], proving the lemma. □

Utilizing this lemma, we now get the following result on minimal ring extensions.

Theorem 5.2. Let R ⊂ T be a minimal extension of domains, and let p be a prime
element in R. Then p is prime or a unit in T .

Proof. Since T is an minimal extension of R, we see that T = R[a] for some element
a ∈ T . Then consider the ring

R[pa],

which satisfies R ⊆ R[pa] ⊆ R[a]. If R[pa] = R[a], then by Lemma 5.1 we see that
p is prime in T or there exists r ∈ R such that r

p
∈ T but r

p
/∈ R. Otherwise, we see

that R[pa] = R, in which case if we let r = pa ∈ R then r
p
∈ T but r

p
/∈ R. In either

case we get that p is prime in T or there exists r ∈ R which is not a multiple of p in R

such that T = R
[
r
p

]
. We will prove that in this case, we must have that p is a unit.

Now, consider the ring

R

[
r2

p

]
,

and note that since p is prime in R and r is not a multiple of p in R, we must have

that r2 is not a multiple of p in R. Therefore R ⊊ R
[
r2

p

]
⊆ T , so we must have
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that R
[
r2

p

]
= R

[
r
p

]
, meaning that r

p
is in R

[
r2

p

]
. Therefore we see that there exist

a0, a1, . . . , ad ∈ R such that
d∑

k=0

ak

(
r2

p

)k

=
r

p
.

Dividing by r gives that

a0
r

+

(
d∑

k=1

akr
k−1

(
r

p

)k
)

=
1

p
.

Therefore, it suffices to prove that a0
r
∈ R, as then we have that 1

p
∈ T and so p is a

unit in T .
Assume for the sake of contradiction that a0

r
is not in R. Rearranging the equation

gives that

a0
r

=
1

p
−

(
d∑

k=1

akr
2k−1

(
1

p

)k
)
,

implying that a0
r
∈ R

[
1
p

]
. Then, we see that as a0

r
is in R

[
1
p

]
but not in R, it is equal

to b
pd

for some b ∈ R which is not a multiple of p and some positive integer d. Then,

we see that a0
r
= b

pd
gives that a0p

d = br. The left hand side is a multiple of p in R

but the right hand side is not, a contradiction, so a0
r
∈ R, proving the theorem. □

Notice that this result is especially strong because it makes few assumptions about
the nature of R and T . A natural application can be seen in the proof of the fol-
lowing theorem, which presents alternate conditions that imply prime stability in all
intermediate rings.

Theorem 5.3. If an extension R ⊂ T satisfies FCP and p is prime in R and not a
unit in T , then p is prime for all intermediate rings.

Proof. Consider any intermediate ring S satisfying R ⊆ S ⊆ T . We first prove that
there exists a chain R = S0 ⊂ S1 ⊂ · · · ⊂ Sn = T such that Sk and Sk+1 are adjacent
for k = 0, 1, . . . , n− 1. Consider the partially ordered set of all chains of rings which
start at R, include S, and end at T ordered under inclusion. Notice that every chain
of chains has an upper bound given by the union of all chains in the chain. Therefore,
by Zorn’s lemma, we see that there exists a maximal element of this partially ordered
set. We claim that if this maximal element is the chain R = S0 ⊂ S1 ⊂ · · · ⊂ Sn = T ,
then Sk and Sk+1 are adjacent for k = 0, 1, . . . , n − 1. Indeed, if there exists a ring
Sk ⊂ S ′ ⊂ Sk+1, then

S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ S ′ ⊂ Sk+1 ⊂ Sk+2 ⊂ · · · ⊂ Sn

is a greater chain in the partially ordered set, a contradiction, so Sk and Sk+1 must
be adjacent.
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Now, we claim that p must be prime in Sk for all k = 0, 1, . . . , n, implying in
particular that p is prime in S. Assume for the sake of contradiction that this is not
true, and consider k minimal for which p is not prime in Sk. Note that k ̸= 0 by
assumption, and so Sk−1 must exist and p must be prime in Sk−1. Now, by Theorem
5.2 we see that p must be either prime or a unit in Sk, so p is a unit in Sk. Therefore
p−1 ∈ Sk ⊆ T , but p is not a unit in T , a contradiction, proving the theorem. □

Building on the existing literature on FCP and Theorem 5.3, we obtain a criterion
that ensures prime stability in certain rings. In particular, Theorem 4.2 in [8] char-
acterizes FCP, which allows us to deduce a corollary regarding prime stability under
these conditions.

Corollary 5.4. Let R ⊂ T be an extension with p prime in R and C := (R : T ). If T
is a finitely generated R-module and R/C is an Artinian ring, then p remains prime
in every intermediate ring extension R ⊂ S ⊂ T .
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