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Abstract. We show that by using the semisimplification functor, one can explicitly con-

struct restricted representations of gl(m|n) from restricted representations of gl(m+n(p−1)).
Therefore, by the Steinberg tensor product theorem, a solution to the character problem

for GL(m+ n(p− 1)) implies a solution to that for GL(m|n). Moreover, we show that the

semisimplification of a simple module is semisimple and provide a method of decomposing

those modules into simple modules based on highest-weight arguments. We also provide

an algorithm which decomposes the highest weight module, L(λ), into Jordan blocks to aid

with calculations. Using these theorems and algorithm, we provide explicit calculations in

low rank and characteristic.
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1. Introduction

A long-standing problem in the representation theory of GL(n) and other algebraic groups
is to compute the characters of simple modules. In characteristic zero, this problem has been
solved. In characteristic p > 0, on the other hand, this problem is notoriously difficult and
has received great attention over the past fifty years.

Therefore, the same problem for algebraic supergroups like G = GL(m|n) is even more
difficult by virtue of being a generalization, and even in characteristic zero the full story is
not known.

In positive characteristic, however, there is a silver lining. The Steinberg tensor product
theorem (see [Ste63; Kuj06]) reduces the character problem for G to understanding that for
the first Frobenius kernelG(1) ofG. Since the distribution algebra ofG(1) is finite-dimensional
isomorphic restricted enveloping algebra of the Lie (super)algebra gl(m|n) of G, this reduces
the problem to studying the finitely-many simple restricted modules over gl(m|n).

In general, however, this problem can be hard to tackle and so we need another lens to view
these gl(m|n) modules from. This is where semisimplification comes in; we can semisimplify
gl(m+ n(p− 1)) restricted representations to obtain gl(m|n) restricted representations.

More generally, consider a Lie algebra g over an algebraically closed field K with charac-
teristic p. Consider a nilpotent derivation d of order at most p. This can be realized as a
Lie algebra in the category Rep K[t]/(tp) of K[t]/(tp) by specializing d to t. The semisimpli-
fication of this category is the Verlinde category, Verp, which contains as a full subcategory
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the category of super vector spaces sVecK. Therefore, the image g of g under the semisim-
plification functor projected onto this full category is a Lie algebra in sVecK, which is a Lie
superalgebra (see [Kan22]).

1.1. Outline of paper. In §2 we review some basic theory of symmetric tensor categories
and review additional categories relevant to this paper. We finish by proving a general
theorem about the basis elements of the tensor of two indecomposable modules. The resp-
resentation theory of Lie superalgebras is covered in §3. In §4 we review how Lie algebras
behave under the semisimplification functor in Repαp. We conclude by proving that the
semisimplification of L(λ) as a gl(m + n(p − 1)) module is semisimple and also provide a
method to decompose the semisimplified module into simple modules using highest-weight
arguments. Finally, in §5 we provide a decomposition algorithm to decompose a highest
weight module into its Jordan blocks. We end by computing these semisimplifications in low
rank and characteristic. Finally, Appendix A summarizes the explicit action maps for the
gl(m|n) modules and the relevant Jordan blocks in the decomposition. The calculations in
the appendix also verify the computational results obtained in Section §5.

2. Symmetric Tensor Category

Throughout this paper, we will assume that the reader has some basic understanding
about symmetric tensor categories. Nonetheless, in this section we provide some exposition
relevant to this paper. A quick reference is [EK23], and a more comprehensive reference
is [EGNO]. In this paper we will utilize the notation in these references. In particular,
for a symmetric tensor category C, we will use ⊕ to denote direct sum, ⊗ to denote the
monoidal product, ∗ to denote the dual object, Hom to denote hom spaces, 1X to denote
the identity map on X, 1 to denote the unit object, and c,X, Y to denote the braiding map
X ⊗ Y → Y ⊗ X for any two objects X, Y ∈ C. We will always supress the associativity
morphism from diagrams and equations.

Throughout this paper, K denotes an algebraically closed field of characteristic p ≥ 0. We
are usually interested when p > 2.

2.1. Algebraic objects in symmetric tensor categories. A symmetric tensor category
can be thought of as a “home” to do algebra. For example, recall that a unital associative
algebra A is a vector space with a bilinear mapm : A×A→ A called multiplication such that
m(m(a, b), c) = m(a,m(b, c)) (the associativity property) and such that there is an element
1 ∈ A such that m(1, a) = m(a, 1) = a for all a, b, c ∈ A. Moreover, A is commutative if
m(a, b) = m(b, a) for all a, b ∈ A.
We can instead phrase the definition in the following, equivalent way. Let C = VecK denote

the category of vector spaces (see §2.3.1). A unital associative algebra is an object A ∈ C
with two maps m : A⊗ A→ A and µ : 1→ A such that the following diagrams commute.

A⊗ A⊗ A A⊗ A

A⊗ A A

m⊗idA

idA⊗m m

m
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1⊗ A A⊗ A A⊗ 1

A

∼=

µ⊗idA

m

idA⊗µ

∼=

Moreover, we can say A is commutative if m ◦ cA,A = m. The advantage of this formalism
is that this definition extends to any symmetric tensor category. For instance, if C is the
category of super vector spaces (see §2.3.2), we get the definition of a unital associative
(super-commutative) superalgebra.

In this paper, we extend this viewpoint to Lie algebras. Recall that a Lie algebra over K
is a vector space g endowed with a K-bilinear map β : g × g → g which is anti-symmetric
(assuming char K ̸= 2) and satisfies the Jacobi identity. This can be phrased categorically as
follows. The category VecK of vector spaces over K is a symmetric tensor category endowed
with the usual braiding cX,Y : X ⊗ Y → Y ⊗X given by interchanging X and Y , a natural
isomorphism in objects X and Y . Then, a Lie algebra (in the category VecK) is an object
g equipped with a morphism β : g ⊗ g → g such that the following relations of morphisms
hold:

β ◦ (1g⊗g + cg,g) = 0,

β ◦ (β ⊗ 1g) ◦ (1g⊗3 + (123)g⊗3 + (132)g⊗3) = 0,

where the permutation (123)g⊗3 : g⊗3 → g⊗3 is given by

(123)g⊗3 := (1g ⊗ cg,g) ◦ (cg,g ⊗ 1g),

and the permutation (132)g⊗3 : g⊗3 → g⊗3 is given by

(132)g⊗3 := (cg,g ⊗ 1g) ◦ (1g ⊗ cg,g).
The first relation corresponds to the anti-symmetry condition, and the second is the Jacobi
identity. Using these as defining axioms, we can extend the definition to any symmetric
tensor category C with braiding c, and call the pair (g, β) an operadic Lie algebra in C. A
Lie algebra in a symmetric tensor category is an operadic Lie algebra with further imposed
relations (see [EK23], [EGNO] ) . All operadic Lie algebras we consider in this paper will
satisfy these, so we will drop the adjective “operadic” from now on.

Given an object V ∈ C, an example of an operadic Lie algebra is the general linear Lie
algebra gl(V ) := V ⊗ V ∗, where the bracket β is given by

β = 1V ⊗ evV ⊗ 1V ∗ ◦ (1gl(V )⊗gl(V ) − cgl(V ),gl(V )),

where evV : V ∗⊗V → 1 is the evaluation map and we implicitly apply the unit isomorphism.
This just a categorical rephrasing of the statement [x, y] := xy− yx. Define the trace map

tr : gl(V )→ 1 to be the composition

tr := V ⊗ V ∗ cV,V ∗
−−−→ V ∗ ⊗ V evV−−→ 1.

It can be checked that tr is a Lie algebra homomorphism to the trivial Lie algebra, and
therefore it’s kernel is an ideal of gl(V ). This kernel is referred to as the special linear Lie
algebra sl(V ).
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One can continue in this vein to extend familiar notions to arbitrary symmetric tensor
categories. For instance, a bilinear form B : V ⊗ V → 1 is symmetric if B ◦ cV,V = B and
is skew-symmetric if B ◦ cV,V = −B. It is non-degenerate if the induced map V → V ∗ is an
isomorphism.

2.2. Semisimplification. Let C be a symmetric tensor category. For any objects V,W ∈ C,
a negligible morphism is a morphism f : V → W such that for all morphisms g : W → V ,
the trace of the composition f ◦ g is zero. The collection of negligible morphisms in C form a
tensor ideal. The symmetric tensor category obtained by quotienting out by the tensor ideal
of negligible morphisms is called the semisimplification of C, which will denote C.

Intuitively, the effect of this is forcing Schur’s lemma to hold. In other words, the semisim-
plification of a symmetric tensor category is the symmetric tensor category obtained by
declaring all indecomposable objects to be simple, except those whose categorical dimension
is zero, which are sent to zero. We then define the tensor product the same way (for more
details on semisimplification, see [EO21]).

The semisimplification is a semisimple symmetric tensor category by construction. There
is a semisimplification functor from a symmetric tensor category C to its semisimplification
C, and it is symmetric and monoidal. We will denote the images of objects and morphisms
under this functor with an overline. While this functor is neither left nor right exact in
general, it preserves isomorphisms and commutative diagrams, which means, for instance,
that the semisimplification of an operadic Lie algebra is an operadic Lie algebra. Simi-
larly, the semisimplification of a module over an operadic Lie algebra is a module over the
semisimplification of that operadic Lie algebra.

2.3. Relevant symmetric tensor categories. In this subsection, we will describe the
symmetric tensor categories that will be relevant to this paper.

2.3.1. The category of vector spaces. The category VecK of vector spaces is a symmetric
tensor category. The objects of this STC are vector spaces and morphisms are linear maps
between vector spaces. The monoidal structure is given by usual tensor product. The
braiding cV,W is given by cV,W (v ⊗ w) = w ⊗ v for all v ∈ V and w ∈ W . Notice that this is
the representation category of the trivial group.

2.3.2. The category of super vector spaces. The category sVecK is the symmetric tensor cat-
egory whose objects are Z/2Z-graded vector spaces and morphisms are gradation-preserving
linear maps. In particular, we write a super vector space V as V = V0 ⊕ V1, and let
sdimV = (dimV0| dimV1). Here 0, 1 ∈ Z/2Z and distinguish the even and odd subspaces,
respectively. Any vector lying solely in V0 or V1 is said to be homogeneous, and the parity
function | · | : V0 ∪ V1 → Z/2Z assigns a homogeneous vector its parity based on whether it
lies in the even or odd subspace. This category has a braiding cV,W given by the Koszul sign
rule:

cV,W (v ⊗ w) = (−1)|v||w|(w ⊗ v), (2.1)

where v ∈ V and w ∈ W are homogeneous.
An operadic Lie algebra in this category is simply a Lie superalgebra as we know it

(outside characteristic p = 2, 3, where certain relations need to be imposed - this will not be
a concern in this paper, as these relations are satisfied by the Lie algebras we will consider).
In this paper, we will frequently be working with Lie superalgebras, so we point the reader to
[CW12; Mus12]. Also notice that for any Lie superalgebra g its even part g0 is an ordinary
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Lie algebra (i.e. a Lie algebra in the category of vector spaces). From now on, when working
with VecK or sVecK, we will drop the adjective “operadic” when discussing operadic Lie
algebras.

Remark 2.1. Often times when working with the category of super vector spaces, we use the
adjective “super” to distinguish between ordinary algebraic objects and their super analogs.
In this paper, we will drop such adjectives because this is a benefit of working with symmetric
tensor categories. For instance, rather than saying “super-commutative superalgebra”, we
can just say “commutative algebra in sVecK”. Similarly, a Lie algebra in sVecK is just a Lie
superalgebra (modulo concerns about characteristics 2 and 3).

2.3.3. The representation category Repαp. Let αp denote the kernel of the Frobenius endo-
morphism on the additive group scheme Ga over K, whose characteristic p is strictly greater
than 0. Its coordinate ring Kαp is K[t]/(tp), which is a cocommutative Hopf algebra with
comultiplication defined by letting t be primitive (this only works in characteristic p). The
dual space Kα∗

p of Kαp has basis given by {f0, f1, . . . , fp−1}, where fi(tk) = δiki!. The an-
tipode is defined by sending t 7→ −t. The comultiplication on Kαp gives a multiplication on
Kα∗

p where f0 is the identity and fifj = fi+j (let fi = 0 for i ≥ p). Therefore, as algebras,

Kαp and Kα∗
p are isomorphic under the map ti 7→ fi. Because modules over the affine

group scheme αp are determined by Kαp-comodules, which themselves are Kα∗
p-modules,

we will describe objects in the representation category Repαp of αp as finite-dimensional
K[t]/(tp)-modules. For the remainder of this text, the symbol t will be used to refer to the
corresponding element of K[t]/(tp).

The category Repαp is a symmetric tensor category with braiding given by the usual
braiding of vector spaces (there is a forgetful functor from Repαp to VecK). Hence, an
example of a Lie algebra (g, β) in Repαp is a Lie algebra in VecK equipped with a nilpotent
element x ∈ g of order at most p; then g is a Kαp-module by letting t act as ad x, and β
is naturally a morphism in Repαp by the Jacobi identity (as a Lie algebra in VecK). More
generally, we can take t to be any nilpotent derivation of order at most p (not necessarily
inner).

The category Repαp is not semisimple; indeed, it contains non-simple indecomposable
objects. The pairwise non-isomorphic indecomposable objects are given by the modules
Jn = Kn where t acts as the nilpotent Jordan block of size n (1 ≤ n ≤ p). If v1, v2, . . . , vn is
a basis of Jn such that t · vi = vi+1, we will use the notation

v1 7→ v2 7→ · · · 7→ vn

to refer to that particular object Jn. Given such a basis of Jn, it is a straightforward exercise
to verify that

v∗n 7→ −v∗n−1 7→ · · · 7→ (−1)n−1v∗1
is a basis for J∗

n, where v
∗
i is the dual basis defined by v∗i (vj) = δij.

The following theorem will be useful in doing calculations later on (theorems of this sort
have been studied in the past; for instance, see [II06; Bar22]).

Theorem 2.2. Suppose V = Jp−1 is an indecomposable module with basis v1 7→ · · · 7→ vp−1

and W = Jk is an indecomposable module with basis w1 7→ · · · 7→ wk with 1 ≤ k ≤ p − 1.
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Then, V ⊗W = Jp−k ⊕ (k − 1)Jp, where the Jp−k is generated by

k∑
i=1

(
k

i

)
vi ⊗ wk+1−i,

where we define
(
k
i

)
= k(k−1)···(k−i+1)

i!
.

Proof. We first show that there are (k − 1) linearly independent copies of Jp generated by
v1 ⊗ wi for 1 ≤ i < k. Consider a vector of the form v1 ⊗ wi for 1 ≤ i < k. Applying
successive powers of t yields

tm(v1 ⊗ wi) =
m+1∑
j=1

(
m

j − 1

)
vj ⊗ w i+m−j+1.

Form = p−1 the term vp−1⊗wi appears with coefficient 1 (which does not vanish modulo p),
and by linear independence cannot be canceled by other terms in the summation. Therefore,
tp−1(v1 ⊗ wi) ̸= 0. For m = p, the binomial coefficients

(
p
j

)
vanish modulo p except when

j = 0 or j = p, but in those cases either the v- or w-component is zero. Thus tp(v1⊗wi) = 0.
Therefore, each v1 ⊗ wi generates a copy of Jp, yielding (k − 1) copies of Jp inside V ⊗W .
Now consider,

u =
k∑

i=1

(
k

i

)
vi ⊗ wk+1−i.

We claim that the submodule generated by u is isomorphic to Jp−k. Indeed, applying tj to
u gives

tju =
k∑

i=1

(
k + j

i+ j

)
vi+j ⊗ wk+1−i.

For j = p− k, this becomes

tp−ku =
k∑

i=1

(
p

p− k + i

)
vi+p−k ⊗ wk+1−i.

All binomial coefficients vanish modulo p except when i = k, in which case the term remaining
is vp ⊗ w1 = 0. Hence tp−ku = 0. On the other hand, tp−k−1u ̸= 0 because the surviving
terms involve vp−1⊗w1, which is nonzero. Thus u generates a Jordan block of length p− k.
Additionally, the vector u is linearly independent from vectors generated in the (k − 1)

copies of Jp. To see this, note that if u were a linear combination of tk−i(v1 ⊗ wi) for 1 ≤
i < k, then applying tp−k would yield a nontrivial linear relation among {tp−i(v1 ⊗ wi)}k−1

i=1 ,
contradicting the linear independence of these vectors. Therefore u lies outside the span of
the Jp summands, and their intersection is trivial.

□

Often times we will have a vector space V and need to view it as an object in Repαp with
respect to two different t-actions. Therefore, if x : V → V is a nilpotent endomorphism with
x[p] = 0 (p-fold composition), then we will use the notation (V, x) to refer to the object in
Repαp where t acts on V as x.

2.3.4. The Verlinde Category. The Verlinde category Verp is by definition the semisimpli-
fication of Repαp. Therefore, the simple objects in Verp are L1, . . . , Lp−1, which are the
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images of J1, . . . , Jp−1 under the semisimplification functor, respectively, i.e. Li = Ji. If
v1 7→ v2 7→ · · · 7→ vi denotes a Ji, we will refer to the corresponding copy of Li by
v1 7→ v2 7→ · · · 7→ vi (for i < p). Note that Jp is sent to the zero object as it is p-dimensional,
so its categorical dimension is 0. In terms of negligible morphisms, this is because any se-
quence of morphisms Ji → Jp → Ji and Jp → Ji → Jp for any i has trace zero, so in the
semisimplification there are no nonzero morphisms in or out of the image of Jp, meaning its
image is zero. More generally, any map Ji → Jk is negligible unless it’s an isomorphism.

It is well known that the tensor product is given by the truncated Clebsch-Gordan rule
(see [Ost20]), which is similar to the usual Clebsch-Gordan rule of sl(2,C)-modules (the
truncation comes from the terms in bold):

Lm ⊗ Ln =

min(m,n,p−m,p−n)⊕
i=1

L|m−n|+2i−1. (2.2)

In particular, 1 := L1 is the unit object with respect to tensor product. More importantly,
we have the following proposition:

Proposition 2.3. The category sVecK is symmetric tensor equivalent to the subcategory
generated by the objects L1 and Lp−1 in Verp.

Proof. This is well-known; see the proof of Proposition 3.2.1 in [Kan22] for details. That
proof, however, mainly relies on proving the fact that Jp−1 ⊗ Jp−1 = J1 ⊕ (p − 2)Jp−1 and
producing a spanning vector for the J1. This is just a specific case of the proof of Theorem
2.2 in this paper. In particular, notice that

(
p−1
i

)
= (−1)i in characteristic p. □

Notice that tensoring with Lp−1 is an autoequivalence on Verp that sends Li to Lp−i. We
will call this functor the parity shift functor, motivated by the observation that there is
an “even” sub-symmetric tensor category Ver+p spanned by the objects L1, L3, . . . , Lp−2 and

a decomposition Verp = Ver+p ⊠ sVecK, where ⊠ denotes the Deligne tensor product. The
following is a consequence of Proposition 2.3:

Corollary 2.4. Let V = n1J1⊕np−1Jp−1 be an object in Repαp. Then, its semisimplification
is a super vector space.

3. The Lie superalgebra gl(m|n)

The primary goal of this paper is study the images of simple GL(m + n(p− 1))-modules
under the semisimplifcation functor and understand the resulting GL(m|n)-modules. The
Steinberg tensor product theorem lets us relate simple GL(m|n)-modules to those of the first
Frobenius kernel GL(m|n)(1) of GL(m|n). In turn, the representation theory of GL(m|n)(1)
is equivalent to the restricted representation theory of its Lie algebra, which is gl(m|n).
Therefore, we will work with the Lie algebra gl(m + n(p − 1)) and the Lie superalgebra
gl(m|n), which is much simpler, from both a technical and expository perspective.

3.1. Definitions. Let Km|n denote the (m|n)-dimensional super vector space of column
vectors with entries inK, where column vectors whose last n entries are zero are homogeneous
and even and column vectors whose first m entries are zero are homogeneous and odd. We
will index the rows by the indexing set I = {1, 2, . . . ,m, 1, 2, . . . , n}, in that order. It will
also be convenient when indexing to let i = m + i. We assign a parity function on I, also
denoted | · |, by |i| = 0 if i ∈ {1, . . . ,m} and |i| = 1 if i ∈ {1, . . . , n}
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Let ei be the column vector with a 1 in the i-th spot and zero elsewhere. Then {ei}i∈I is
a basis for Km|n. We will let {e∗i }i∈I denote the dual basis. These give a basis

{eij := ei ⊗ e∗j}i,j∈I
of End(Km|n) = Km|n ⊗ (Km|n)∗. The space can then be identified with the space of (m +
n)× (m+ n) matrices of the form [

A B
C D

]
(3.1)

where A is m ×m, B is m × n, C is n ×m, and D is n × n. Such matrices with B,C = 0
are purely even, and those with A,D = 0 are purely odd. To emphasize this gradation, we
call this an (m|n)× (m|n) matrix. In particular, eij is the elementary matrix with 1 in the
(i, j)-entry and zero elsewhere. Notice that the parity of eij is |i| + |j|, so even if i, j have
the same parity and odd if they have different parity.

Definition 3.1. The Lie superalgebra gl(m|n) is the Lie superalgebra given by endowing
the space of (m|n)× (m|n)-matrices with the bracket

[x, y] = xy − (−1)|x||y|yx.

The key distinction is that [x, y] = xy + yx when both x, y are odd. We will simply write
gl(m) to refer to gl(m|0). Given a matrix x ∈ gl(m|n) as in 3.1, we define the supertrace
str : gl(m|n)→ K to be the map

str(x) = tr(A)− tr(D).

This is a generalization of the trace and can be checked that this is a Lie superalgebra
homomorphism, where K is the trivial Lie algebra in purely even degree. The special linear
Lie superalgebra is defined by sl(m|n) := ker str.
It will be useful to define a map called the super transpose from gl(m|n) to itself, a

generalization of the transpose. We denote the super tranpose with ST in the superscript,
and for x ∈ gl(m|n) in block form as in 3.1, it is defined by

xST :=

[
AT CT

−BT DT

]
,

where AT is the ordinary transpose of matrix A. It can be checked that the map θ(x) = −xST
is a Lie superalgebra automorphism, which is called the Chevalley automorphism.

Like the ordinary Lie algebra gl(m), the Lie superalgebra gl(m|n) admits a triangular
decomposition and root system. Let h denote the subalgebra of diagonal matrices in gl(m|n),
n+ the strictly upper-triangular matrices, and n− the strictly lower triangular matrices. A
basis for h is given by {eii}i∈I. Let {ϵi}i∈I be the dual basis of h∗. Given an element
λ =

∑
i∈I λiϵi ∈ h∗, we will often use the notation (λ1, . . . λm, λ1, . . . λn) to refer to it. Notice

that for any h ∈ h, we have [h, eij] = (ϵi − ϵj)(h)eij, and therefore the roots of gl(m|n) are
{ϵi − ϵj}i ̸=j∈I.

3.2. Representation theory. In this subsection, we discuss the restricted representation
theory of gl(m|n). In §3.2.1, we construct the simple restricted representations of gl(m|n),
and in §3.2.2 we explain how this relates to the representation theory of the affine group
scheme GL(m|n).
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3.2.1. Restricted representations. Given a matrix x ∈ gl(m|n)0, let x[p] denote its p-th power.
Let g denote a Lie subalgebra of gl(m|n) such that g0 is closed under the [p] operation, and
let U(g) denote the universal enveloping algebra of g. We define the restricted universal
enveloping algebra u(g) to be

u(g) := U(g)/⟨xp − x[p], x ∈ g0⟩,
where x[p] denote the usual p-th power of a matrix x ∈ g0. A representation of u(g) is called
a restricted representation or restricted module (with character χ = 0) of g. We only concern
ourselves with restricted modules, so we will drop the adjective “restricted” hence forth.

To construct the simple modules of gl(m|n), we can use a Verma module argument. Define
the set of weights h∗p by the collection of λ ∈ h∗ such that when written λ =

∑
i∈I λiϵi, we have

λi ∈ Z/pZ ⊂ K. Then, λ ∈ h∗ is in h∗p if and only if for any h ∈ h, λ(h[p]) = λ(h)p. Therefore,
we have a one-dimensional h-module Kλ spanned by a vector v such that h.v = λ(h)v. Then,
we can extend this to a module over h ⊕ n+ by letting n+ act trivially. Any vector n+

annihilates will be called a highest weight vector. Finally, we define the baby Verma module

M(λ) := u(gl(m|n))⊗u(h⊕n+) Kλ,

which has the usual universal property. We define L(λ) to be the quotient of M(λ) by its
unique maximal proper submodule. It is clear the collection {L(λ)}λ∈h∗p is pairwise noniso-
morphic and exhausts the simple u(g)-modules (see [Shu24]).

3.2.2. Relationship to GL(m|n) representation theory. The affine group scheme GL(m|n)
can be defined in the same way as the affine group scheme GL(m) except by changing the
underlying category from VecK to sVecK and the defining object from Km to Km|n. Its Lie
algebra is gl(m|n).

By the theory of Harish-Chandra pairs (see [Mas12]), there is a parabolic subgroup P
of GL(m|n) whose even subgroup is GL(m|n)0 = GL(m) × GL(n) and whose Lie algebra
is p := gl(m|n)0 + n+. Any simple module M over GL(m|n)0 can be trivially extended
to a simple module over P . This module can then be induced to the entirety of GL(m|n)
to construct a Kac module, which has a unique simple quotient. Because the distribution
algebra of GL(m|n) is finite over that of P , all Kac modules are finite-dimensional, and
therefore the simple GL(m|n)-modules are in bijection with those of the underlying even
subgroup GL(m|n)0.
It is well known (see [Jan03]) that the simple GL(m|n)0-modules are canonically in bijec-

tion with the set of dominant integral weights, which we can identify with the set

X(T )+ := {λ ∈ Zm+n | λ1 ≥ · · · ≥ λm, λm+1 ≥ · · · ≥ λm+n},
and we will denote the corresponding simple GL(m|n)-module as L(λ). Call λ ∈ X(T )+

restricted if the difference between adjacent entries is at most p − 1, except between λm
and λm+1, where no condition is imposed. Then, any dominant integral weight λ can be
written as ν + pµ, where ν is restricted and µ is also dominant integral. The Steinberg
tensor product theorem (see [Kuj06]), tells us that L(λ) ∼= L(ν)⊗ F ∗L0(µ), where L0(µ) is
the simple GL(m|n)0-module of highest weight µ and F ∗ denotes the Frobenius twist of a
module.

The point is that by decomposing λ ∈ X(T )+ p-adically and iteratively applying this
theorem, the character problem reduces to understanding the character problem for L(λ)
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for restricted λ. For such λ, the restriction of this module to the first Frobenius kernel
GL(m|n)(1) of GL(m|n) remains simple. And since the distribution algebra of GL(m|n)(1)
is isomorphic as Hopf algebras to u(gl(m|n)), we reduce the character problem to that for
simple restricted modules over gl(m|n).

Moreover, the modules are identified in an obvious way. Specifically, recall we defined the
gl(m|n)-module L(λ) for λ ∈ h∗p using the standard triangular decomposition on gl(m|n)
and standard basis for h∗p. This gives a triangular decomposition on GL(m|n), and this
standard basis comes from differentiating the obvious coordinate maps H → Gm, where H
is the subgroup of diagonal matrices in GL(m|n)0. If we define the GL(m|n)-module L(λ)
for λ ∈ X(T )+ with respect to these choices, then, for restricted λ, we have

L(λ1ϵ1 + · · ·λm+nϵm+n) ∼= L(λ)
as gl(m|n)-modules, where on the left-hand side each λi is projected to Z/pZ ⊂ K, and
where on the right-hand side the module structure is given by restriction.

3.2.3. The Shapovalov form. Let V be gl(m|n)-module. A bilinear form β : V ⊗ V → 1 on
V is said to be contravariant if for x ∈ gl(m|n) and v, w ∈ V , we have β(x.v ⊗ w) + β(v ⊗
θ(x).w) = 0, where θ is the Chevalley automorphism. Now, suppose that V is a rational (i.e.
one that lifts to GL(m|n)) highest weight module generated by the vector v. It can be show
that V admits a unique (up to scaling) bilinear form S called the Shapovalov form such that
S(v ⊗ v) = 1 (see [Sha79] for more details). Moreover, it can be shown that S is symmetric
and that the radical of this form is the unique maximal submodule of V . In particular, each
simple module has a non-degenerate Shapovalov form. The following proposition is easy to
see.

Proposition 3.1. Let V be a gl(m|n)-module with a non-degenerate symmetric contravariant
form β. Then V is semisimple.

Proof. Let W be a simple submodule in V , and let W⊥ be its orthogonal complement with
respect to β. Clearly W⊥ is a submodule as well. The claim follows by induction. □

3.2.4. Explicit description of simple gl(1|1)-modules. Here we explicitly describe the simple
gl(1|1)-modules. For λ = (λ1, λ1) ∈ h∗p, the baby Verma module M(λ) is (1|1)-dimensional,
spanned by the vectors 1⊗ v and e11 ⊗ v. Notice that

e11.(e11 ⊗ v) = (−e11e11 + (e11 + e11))⊗ v = (λ1 + λ1)(1⊗ v).
Therefore, L(λ) is (1|1)-dimensional and simple when λ1 + λ1 ̸= 0 and 1-dimensional and
simple when λ1+λ1 = 0 (up to parity shift). These remain simple upon restriction to sl(1|1),
and are isomorphic as sl(1|1)-modules for fixed values of λ1 + λ1 because the sl(1|1) action
cannot detect the constant λ1 − λ1.

3.2.5. Explicit description of simple gl(2|1)-modules. The Lie algebra gl(2|1) = sl(2|1) ⊕
KIm|n, where Im|n is the identity matrix. Therefore, by Schur’s lemma, any simple gl(2|1)-
module is given by a simple sl(2|1)-module and a scalar in Z/pZ specifying the action of the
center. Simple sl(2|1)-modules are described in [Zha09].
Let λ = (λ1, λ2, λ1) ∈ h∗p. Notice there is a copy of gl(2) in gl(2|1) spanned by e11, e12, e21

and e22. Let us describe its simple modules, which is classically known and will be stated
without proof. Let l be the integer such that 0 ≤ l < p and (λ1 − λ2) ≡ l (mod p). Then,
the vector space
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L′
0(λ1, λ2) = span{v, e21v, . . . , el21v}

uniquely admits the structure of a gl(2)-module where each basis vector is a weight vector, v
is a highest vector with weight (λ1, λ2), and e21 acts in the obvious way. Moreover, L′

0(λ1, λ2)
is a simple gl(2)-module and all such modules arise in this fashion.

By letting e11.(e
k
21v) = λ1e

k
21v, the module L′

0(λ1, λ2) becomes a gl(2|1)0-module which
we’ll call L0(λ1, λ2, λ1). By extending trivially, this becomes a gl(2|1)0 + n+-module, and
finally we define the Kac module

K(λ1, λ2, λ1) = u(gl(m|n))⊗u(gl(2|1)0+n+) L0(λ1, λ2, λ1).

This module has a basis {ei
11
ej
12
⊗ ek21} with 0 ≤ i, j ≤ 1 and 0 ≤ k ≤ l and is (2l+2|2l+2)-

dimensional. By the universal property of the baby Verma module, there are surjections
M(λ) ↠ K(λ) ↠ L(λ).
Now, we will state the results (rephrased for our setting) in [Zha09] to describe the struc-

ture of L(λ). Let ηi = λi + λ1 and for i = 1, 2. By Proposition 3.1 in [Zha09], L(λ) = K(λ)
is simple if η1 ̸= −1 and η2 ̸= 0. The remaining cases are handled by the following:

Theorem 3.2 (Theorem 3.7 in [Zha09]). Let J denote the unique maximal proper submodule
in K(λ). Then,

(1) if η1 = −1 and η2 ̸= −1, 0, then J is generated by the maximal vector e11⊗ v− (η2 +
1)−1e12 ⊗ e21v and dimL(λ) = 2(l + 1) + 1;

(2) if η1 = −1 and η2 = 0, then J is generated by e12 ⊗ v and dimL(λ) = 2p 1;
(3) if η1 = −1 and η2 = −1, then J = Ke11e12 ⊗ v and dimL(λ) = 3;
(4) if η1 ̸= −1 and η2 = 0, then J is generated by e12 ⊗ v and dimL(λ) = 2η1 + 1 where

η1 is interpreted as the smallest nonnegative integer whose residue class mod p is η1.

If λ is changed so that η1 and η2 do not change, then L(λ) is unchanged as an sl(2|1)-
module.

4. Applications of the semisimplification functor

In this section, we see how general linear Lie algebras behave under the semisimplification
functor in Repαp.

4.1. General considerations. Let C be a symmetric tensor category and V ∈ C and object.
Then, we have the following proposition:

Proposition 4.1. The semisimplification gl(V ) is isomorphic as Lie algebras to gl(V ) in C
(resp. sl(V ) and sl(V )).

Proof. This is a consequence of the fact that the semisimplification functor is symmetric
monoidal. □

1If there is no transcription error, then we believe this is a misprint in the original reference and maybe
should say 2p−1. For instance, consider the natural representation K2|1 of gl(2|1), which has highest weight
(1, 0, 0) and basis e1, e2, e1. In characteristic p ̸= 2, the symmetric square S2(K2|1) is simple and has highest
weight (2, 0, 0). It is 5-dimensional, with basis e21, e

2
2, e1e2, e1e3, e2e3. As an sl(2|1)-module in characteristic

3, η1 = 2 = −1 and η2 = 0, from which the theorem would suggest that this module is 2(3) = 6 dimensional.
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Now, suppose that C = Repαp, and let RepC(gl(n), T ) denote the (symmetric tensor)
category whose objects are gl(n)-modules V equipped with a t-action given an operator
T ′ such that the module map (gl(n), T ) ⊗ (V, T ′) → (V, T ′) is αp-equivariant and whose
morphisms are gl(n)-module maps that are also αp-equivariant. We will want to study
this category, because the semisimplification functor Repαp → Verp induces a functor

RepC(gl(n), T ) → RepVerp (gl(n), T ), where the target category is the representation cat-

egory of (gl(n), T ) as a Lie algebra in Verp. We have the following proposition:

Proposition 4.2. Let ρ : gl(n) → gl(V ) be a gl(n)-representation (not necessarily re-
stricted), and let x ∈ gl(n) satisfy x[p] = 0 and ρ(x)[p] = 0. Then, (V, ρ(x)) is an object
in RepC(gl(n), adx).

Proof. Let ρ also denote the module map gl(n) ⊗ V → V . Then, for any y ∈ gl(n) and
v ∈ V , we have

ρ(t.(y ⊗ V )) = ρ([x, y]⊗ v + y ⊗ x.v) = [x, y].v + y.x.v = x.y.v = t.ρ(y ⊗ v).
This shows that the module map is also αp-equivariant. □

Corollary 4.3. If λ is a restricted dominant integral weight for gl(n) with associated simple
representation ρ : gl(n) → gl(L(λ)) and x ∈ gl(n) is such that x[p] = 0, then (L(λ), ρ(x)) is
an object in RepC(gl(n), adx).

Proof. The representation factors through u(gl(n)), where xp = x[p] = 0 by the defining
relations of the restricted enveloping algebra. This means ρ(x)[p] = 0 as well. □

For the following two propositions, suppose x, y ∈ gl(n) are such that x[p] = y[p] = 0 and
are in the same nilpotent orbit with respect to the conjugation action of GLn on gl(n) i.e.
there is a g ∈ GLn such that gxg−1 = y.

Proposition 4.4. The Lie algebras (gl(n), adx) and (gl(n), ad y) in Repαp are isomorphic.
Therefore, their semisimplifications are isomorphic as Lie algebras in Verp.

Proof. Define the map ι : (gl(n), adx)→ (gl(n), ad y) by z 7→ gzg−1. Clearly, ι is a bijection,
so we just need to show it is a Lie algebra homomorphism and a αp-equivariant map. For
any w, z ∈ (gl(n), adx), we have

ι([w, z]) = ι(wz − zw) = g(wz − zw)g−1 = (gwg−1)(gzg−1)− (gzg−1)(gwg−1) = [ι(z), ι(w)],

so it is a Lie algebra homomorphism. Moreover, we have

t.ι(z) = [y, gzg−1] = [gxg−1, gzg−1] = [ι(x), ι(z)] = ι([x, z]) = ι(t.z).

Therefore, it ι is a Lie algebra isomorphism in Repαp. The statement about an isomorphism
of Lie algebras in Verp follows from the fact that the semisimplification functor is symmetric
monoidal. □

This means that if ρ : V → V is a gl(n)-representation, then (V, ρ(y)) is a module over
(gl(n), adx) via the composite map

(gl(n), adx)⊗ (V, ρ(y))
ι⊗1(V,ρ(y))−−−−−−→ (gl(n), ad y)⊗ (V, ρ(y))

ρ−→ (V, ρ(y)).

We also get an equivalence of categories between RepC(gl(n), adx) and RepC(gl(n), adx).

Proposition 4.5. Let ρ : GLn → GL(V ) be a rational representation of GLn. Then, the

semisimplifications (V, dρ(x)) and (V, dρ(y)) are isomorphic as (gl(n), adx) modules.
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Proof. Given a group G, let ch : G→ G denote conjugation by an element h ∈ G (the group
G will be clear from context). Now, for all k ∈ GLn, we have

ρ(g)−1ρ(gkg−1)ρ(g) = ρ(g)

which can be phrased as the following equality of maps:

cρ(g)−1 ◦ ρ ◦ cg = ρ.

Differentiating this map at the identity tells us that

(dcρ(g)−1) ◦ dρ ◦ dcg = dρ,

which means that for all z ∈ gl(n), we have

ρ(g)−1dρ(gzg−1)ρ(g) = dρ(z).

Now, define the map θ : (V, x) → (V, y) by v 7→ ρ(g)v. This is obviously a bijection. We
first claim that this is a Lie algebra module homomorphism. We have for all z ∈ gl(n) and
z ∈ V ,

θ(z.v) = ρ(g)dρ(z)v = dρ(gzg−1)ρ(g)v = (dρ ◦ ι)(z)θ(v) = z.θ(v).

This calculation also shows that this homomorphism is αp-equivariant, as

θ(t.v) = θ(x.v) = x.θ(v) = t.θ(v)

as the second x-action is essentially the original y-action due to the isomorphism ι. The
proposition follows from Proposition 4.4 and the semisimplification functor being symmetric
monoidal. □

Remark 4.6. The assumption that V be rational is important. For instance, consider the
baby Verma module M(λ) over gl2 for λ = 0. This is a p-dimensional module with basis
v, fv, f 2v, . . . , fp−1v, where v is the highest weight vector and f is the matrix e21. When t
is specialized to the f -action, this gives an αp-module isomorphic to Jp. However, if e is the
matrix e12, which is conjugate to f , then there are two highest weight vectors, as e.v = 0
and e.(fv) = e.f.v = f.e.v − h.v = 0. This means that when t is specialized to the e-action,
we get an αp-module isomorphic to J1 ⊕ Jp−1.

4.2. Specializing to super vector spaces. In this section, we will mainly consider ob-
jects in Repαp with indecomposable summands isomorphic to J1, Jp−1, or Jp, so that the
semisimplification is a super vector space. As such, we will remind the viewer to review
section 3 for any notation.

For context to Theorem 4.7 , let Y =
⊕p

i=1 niJi be an object in Repαp where the j-th
copy of Ji for 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ ni has basis

y
(i)
j,1 7→ y

(i)
j,2 7→ · · · 7→ y

(i)
j,i

Similarly, let X =
⊕p

i=1miJi, and Z =
⊕p

i=1 kiJi be objects in Repαp with similarly
labeled bases, using the letters ‘x’ and ‘z’ instead, respectively. Moreover, for X assume that
only m1,mp−1 and mp can be nonzero. We can write their semisimplifications in isotypic
decomposition as

X = X1 ⊗ L1 ⊕Xp−1 ⊗ Lp−1

Y =

p−1⊕
i=1

Yi ⊗ Li
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Z =

p−1⊕
i=1

Zi ⊗ Li

where X1, Xp−1, Xp, Y1, . . . , Yp−1, Z1, . . . , Zp−1 are vector spaces. Now, suppose that ϕ : X ⊗
Y → Z be a morphism in Repαp. Because for each i with 1 ≤ i ≤ p−1

2
, the set {Li, Lp−i}

is closed under tensoring with L1 or Lp−1, semisimplicity implies that the semisimplification

ϕ : X ⊗ Y → Z is determined by maps

ϕi : (X1 ⊗ L1 ⊕Xp−1 ⊗ Lp−1)⊗ (Yi ⊗ Li ⊕ Yp−i ⊗ Lp−i)→ (Zi ⊗ Li ⊕ Zp−i ⊗ Lp−i)

such that ϕ =
⊕ p−1

2
i=1 ϕi. Finally, factoring out the Li (that is, writing Yi ⊗ Li ⊕ Yp−i ⊗ Lp−i

as (Yi⊕ Yp−i⊗Lp−1)⊗Li and similarly for Z), we can interpret ϕi as a map of super vector
spaces from (X1⊕Xp−1)⊗ (Yi⊕Yp−i) to Zi⊕Zp−i, where Xp−1, Yp−i, Zp−i are in odd degree.
With this interpretation, we have the following theorem:

Theorem 4.7. There are bases {x(1)1 , x
(1)
2 , . . . , x(1)m1

} of X1 and {x(p−1)
1 , x

(p−1)
2 , . . . , x(p−1)

mp−1
} of

Xp−1 and for each i there are bases

(1) {y(i)1 , y
(i)
2 , . . . , y

(i)
ni
} of Yi and {y(p−i)

1 , y
(p−i)
2 , . . . , y(p−i)

np−i
} of Yp−i,

(2) {z(i)1 , z
(i)
2 , . . . , z

(i)
ki
} of Zi and {z(p−i)

1 , z
(p−i)
2 , . . . , z

(p−i)
kp−i
} of Zp−i,

such that ϕi : (X1 ⊕Xp−1)⊗ (Yi ⊕ Yp−i)→ Zi ⊕ Zp−i is given by

ϕi(x
(1)
q ⊗ y(i)r ) =

ki∑
s=1

asqrz
(i)
s ;

ϕi(x
(1)
q ⊗ y(p−i)

r ) =

kp−i∑
s=1

bsqrz
(p−i)
s ;

ϕi(x
(p−1)
q ⊗ y(i)r ) =

kp−i∑
s=1

csqrz
(p−i)
s ;

ϕi(x
(p−1)
q ⊗ y(p−i)

r ) =

ki∑
s=1

dsqrz
(i)
s ,

where we have four combinations listed, based on whether an even or odd vector is tensored
with an even or odd vector, and where q, r range over the appropriate ranges depending on
whether which combination of even and odd was chosen. The structure constants above are
given by:

(1) asqr is the coefficient of z
(i)
s,1 in ϕ(x

(1)
q,1 ⊗ y

(i)
r,1);

(2) bsqr is the coefficient of z
(p−i)
s,1 in ϕ(x

(1)
q,1 ⊗ y

(p−i)
r,1 );

(3) csqr is the coefficient of z
(p−i)
s,1 in

ϕ

(
i∑

l=1

(
i

l

)
x
(p−1)
q,l ⊗ y(i)r,i+1−l

)
;
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(4) dsqr is the coefficient of z
(i)
s,1 in

ϕ

(
p−i∑
l=1

(
p− i
l

)
x
(p−1)
q,l ⊗ y(p−i)

r,p−i+1−l

)
.

Proof. We can deduce the theorem by studying restrictions of ϕ to summands in X⊗Y . For
a fixed i, we have four possibilities: restricting ϕ to a J1 from X and Ji from Y , to a J1 from
X and Jp−i from Y , to a Jp−1 from X and Ji from Y , and to a Jp−1 from X and Jp−i from
Y (anything involving Jp will automatically vanish in the semisimplification).
For the first case, we have a map ϕ : J1 ⊗ Ji → Z. Since the left hand side is isomorphic

to Ji, the non-negligible piece comes from seeing where its generating vector maps to under
ϕ. Therefore, we are interested decomposing this restriction into the sum of maps into
the various the Ji terms in Z that are isomorphisms onto their image in Z plus negligible
morphisms. Semisimplification will kill the negligible morphisms, so this gives the coefficients
asqr. A similar statement proves the second case, giving the coefficients bsqr.

The last two cases are a little trickier, but are a consequence of Theorem 2.2. In particular,
when we restrict ϕ to a term of the form Jp−1 ⊗ Ji, we have Jp−1 ⊗ Ji ∼= Jp−i ⊕ (k − 1)Jp.
So the semisimplification of the map is determined by seeing where this Jp−i maps to in Z.
Theorem 4.7 gives us a generating vector for this Jp−i in a suitable decomposition, so we
just need to see which generating vectors in the given Jp−i’s in Z appear. Similarly, for the
last case, this same argument works, just replacing i with p− i and vice versa. □

We will often apply this theorem in two cases. The first is when X = Y = Z is a Lie
algebra in Repαp and ϕ is the bracket B : X ⊗ X → X. Applying the theorem in this
instance tells us the structure constants of the Lie superalgebra X. The other is when X is
again a Lie algebra in Repαp and Y = Z is a module over X and ϕ is the αp-equivariant
module map ρ : X ⊗ Y → Y . In this case, we get p−1

2
-modules over the Lie superalgebra X.

Remark 4.8. This theorem generalizes Proposition 3.4.1 in [Kan22].

Now, let’s turn to general linear Lie algebras in Repαp. Let V be an m + n(p − 1)-
dimensional vector space with the following ordered basis

{v1, v2, . . . , vm} ∪
n⋃

j=1

{vj,1, vj,2, . . . vj,p−1},

where the ordering is given by reading the elements above from left to right in the obvious
way as j increases from 1 to n. Use this basis to identify gl(V ) with gl(m+n(p− 1)). Using
the notation

Ji :=


0
1 0

. . .
. . .

1 0


i×i

,

define the matrix x ∈ gl(m+ n(p− 1)) by

x = diag
(
J1, . . . ,J1︸ ︷︷ ︸

m

,Jp−1, . . . ,Jp−1︸ ︷︷ ︸
n

)
.
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Then, (V, x) is an object in Repαp with decomposition (V, x) = mJ1 ⊕ nJp−1, with the i-th
copy of J1 spanned by vi for 1 ≤ i ≤ m, and the j-th copy of Jp−1 is given by

vj,1 7→ vj,2 7→ · · · 7→ vj,p−1

for 1 ≤ j ≤ n. It follows that (V, x)∗ is an object in Repαp with decomposition into
indecomposables as

J1 : v
∗
1, v

∗
2, . . . , v

∗
m;

Jp−1 : − v∗1,1 ←[ v∗1,2 ←[ · · · ← [ −v∗1,p−2 ←[ v∗1,p−1

− v∗2,1 ←[ v∗2,2 ←[ · · · ← [ −v∗2,p−2 ←[ v∗1,p−1

...

− v∗n,1 ←[ v∗n,2 ←[ · · · ← [ −v∗n,p−2 ←[ v∗n,p−1.

Notice that the arrows are reversed for the dual vectors and the sign alternates. It will be
useful to let the object Xi denote the i-th copy of J1 and Xj to denote the j-th copy of Jp−1

in our decomposition of V so that V =
⊕

i∈IXi, where I = {1, . . . ,m, 1, . . . n}. Putting this
together, we can see that (gl(m+ n(p− 1)), adx) is an object in Repαp as follows:

X1 ⊗X∗
1 · · · X1 ⊗X∗

m

...
. . .

...

Xm ⊗X∗
1 · · · Xm ⊗X∗

m

X1 ⊗X∗
1
· · · X1 ⊗X∗

n

...
. . .

...

Xm ⊗X∗
1
· · · Xm ⊗X∗

n

X1 ⊗X∗
1 · · · X1 ⊗X∗

1

...
. . .

...

Xn ⊗X∗
1 · · · Xn ⊗X∗

m

X1 ⊗X∗
1
· · · X1 ⊗X∗

n

...
. . .

...

Xn ⊗X∗
1
· · · Xn ⊗X∗

n


.

We can produce a partial basis for (gl(m+ n(p− 1)), adx), ignoring any Jp terms that arise
(which only happens in blocks in the lower right). Each Xi ⊗ X∗

j gives a J1 spanned by
vi ⊗ v∗j . Each Xi ⊗X∗

j
gives a Jp−1 with basis

−vi ⊗ v∗j,1 ← [ vi ⊗ v∗j,2 ←[ · · · ← [ −vi ⊗ v∗j,p−2 ←[ vi ⊗ v∗j,p−1.

Similarly, each Xi ⊗X∗
j gives a Jp−1 with basis

vi,1 ⊗ v∗j 7→ vi,2 ⊗ v∗j 7→ · · · 7→ vi,p−1 ⊗ v∗j .
Finally, each Xi ⊗ X∗

j
= J1 ⊕ (p − 2)Jp. The Jp terms and any morphisms into them will

vanish in the semisimplification, so we only care about the J1. Theorem 2.2 tells us that a
basis for this J1 is given by

p−1∑
k=1

vi,k ⊗ v∗j,k.

Assembling all of this helps us prove the following theorem:

Theorem 4.9. The semisimplification of (gl(m+ n(p− 1)), adx) is gl(m|n).

Proof. We have already established the statement in much more generality. However, it will
be useful to explicitly prove it using computations using Theorem 4.7. The key idea that
we wish to stress is that each Jp−1 merges under the semisimplification functor to give a
one-dimensional odd subspace.
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First, let’s compute what the bracket looks like in αp-equivariant fashion, before semisim-
plification and ignoring any Jp terms. We have a few cases to consider:

(1) the first case is if we are bracketing a J1 from the top left with something. We have:

B(vi ⊗ v∗j ⊗ vk ⊗ v∗l ) = δjkvi ⊗ v∗l − δlivk ⊗ v∗l ;
B((vi ⊗ v∗j )⊗ (−vk ⊗ v∗l,1 ← [ · · · ← [ vk ⊗ vl,p−1)) = −δjkvi ⊗ v∗l,1 ←[ · · · ← [ δjkvi ⊗ vl,p−1;

B((vi ⊗ v∗j )⊗ (vk,1 ⊗ v∗l 7→ · · · 7→ vk,p−1 ⊗ v∗l )) = −δlivk,1 ⊗ v∗j 7→ · · · 7→ −δlivk,p−1 ⊗ v∗j ;

B

(
(vi ⊗ v∗j )⊗

p−1∑
s=1

vk,s ⊗ v∗l,s

)
= 0.

The first line corresponds to bracketing with another J1 from the top left. The
middle two lines are from bracketing with a Jp−1 from the top right or bottom left,
respectively. The last line is from bracketing with a J1 from the bottom right.

(2) the second case is if we are bracketing a Jp−1 from the top right with something.
By skew-symmetry of the bracket and the fact that bracketing two things in the top
right will give zero (triangular decomposition property), we only need to consider
pairing with something from the bottom left or bottom right. When we pair with
the bottom left, we are looking at a bracket on Jp−1 ⊗ Jp−1. The first Jp−1 here is
given by

Jp−1 = −vi ⊗ v∗j,1 ← [ vi ⊗ v∗j,2 ←[ · · · ← [ −vi ⊗ v∗j,p−2 ←[ vi ⊗ v∗j,p−1

and the second Jp−1 is given by

Jp−1 = vk,1 ⊗ v∗l 7→ vk,2 ⊗ v∗l 7→ · · · 7→ vk,p−1 ⊗ v∗l .
By Theorem 2.2, there is a J1 in here spanned by

w :=

p−1∑
s=1

(−1)s((−1)s−1vi ⊗ v∗j,p−s)⊗ (vk,p−s ⊗ v∗l ).

Applying the bracket gives us:

B(w) = −(p− 1)δjkvi ⊗ v∗l + δli

(
p−1∑
s=1

vk,p−s ⊗ v∗j,p−s

)

= δjkvi ⊗ v∗l + δli

(
p−1∑
s=1

vk,s ⊗ v∗j,s

)
.

Notice the miraculous −(p− 1) = 1 factor, which makes this resemble like something
of the form [x, y] = xy + yx for x, y both odd, especially under the perspective that
after semisimplification a Jp−1 merges to form an odd subspace.

The other case is when we pair a Jp−1 with a J1 from the bottom left. We have:

B

(
(−vi ⊗ v∗j,1 ←[ · · · ← [ vi ⊗ v∗j,p−1)⊗

(
p−1∑
s=1

vk,s ⊗ v∗l,s

))
= −δjkvi ⊗ v∗l,1 ←[ · · · ← [ δjkvi ⊗ v∗l,p−1.
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(3) The third case is if we are bracketing a Jp−1 from the bottom left with something.
Again, by skew-symmetry and the triangular decomposition, we just need to bracket
with a J1 from the bottom right. We have

B

(
(vi,1 ⊗ v∗j 7→ · · · 7→ vi,p−1 ⊗ v∗j )⊗

(
p−1∑
s=1

vk,s ⊗ v∗l,s

))
= −δli(vk,1 ⊗ v∗j 7→ · · · 7→ vk,p−1 ⊗ v∗j )

(4) The final case is bracket a J1 from the bottom left with something. We just need to
check bracketing with another such J1. We get:

B

((
p−1∑
s=1

vi,s ⊗ v∗j,s

)
⊗

(
p−1∑
s=1

vk,s ⊗ v∗l,s

))

= δjk

(
p−1∑
s=1

vi,s ⊗ v∗l,s

)
− δli

(
p−1∑
s=1

vk,s ⊗ v∗j,s

)
By now, we see these commutation relations clearly resemble those of gl(m|n). And indeed,
if we apply Theorem 4.7, we get that the basis vector afforded by Xi ⊗ X∗

j is just eij for

i, j and the bracket is given by [eij, ekl] = δjkeil − (−1)(|i|+|j|)(|k|+|l|)δliekj, recalling the parity
function from section 3.1. This proves the theorem. □

The utility of this theorem is that we can now easily study a map involving (gl(m+n(p−
1)), adx) before and after semisimplification. Our first application will be for understanding
what happens when we semisimplify the Chevalley automorphism.

Proposition 4.10. The Chevalley automorphism θ : gl(m+ n(p− 1))→ gl(m+ n(p− 1)),
given by θ(x) = −xT is a Lie algebra isomorphism (gl(m+ n(p− 1)), adx)→ (gl(m+ n(p−
1)), ad θ(x)) in Repαp.

Proof. It suffices to show that this map is αp-equivariant. We have

θ(t.y) = θ([x, y]) = [θ(x), θ(y)] = t.θ(y).

□

Notice that this proof actually holds for any Lie algebra automorphism ψ, not just the
Chevalley automorphism.

Theorem 4.11. The semisimplification of the Chevalley automorphism θ : (gl(m + n(p −
1)), adx)→ (gl(m+n(p−1)), ad θ(x)) is the Chevalley automorphism θ : gl(m|n)→ gl(m|n).

Proof. At the level of basis vectors, we have

θ(vi ⊗ v∗j ) = −vj ⊗ v∗i ;
θ(−vi ⊗ v∗j,1 ← [ · · · ← [ vi ⊗ v∗j,p−1) = vj,1 ⊗ v∗i ← [ · · · ← [ −vj,p−1 ⊗ v∗i
θ(vi,1 ⊗ v∗j 7→ · · · 7→ vi,p−1 ⊗ v∗j ) = −vj ⊗ v∗i,1 7→ · · · 7→ −vj ⊗ v∗i,p−1

θ

(
p−1∑
s=1

(−1)svi,s ⊗ v∗j,s

)
= −

p−1∑
s=1

(−1)svj,s ⊗ v∗i,s.

(4.1)
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Now, the object (gl(m + n(p− 1)), ad θ(x)) has a decomposition into decomposables where
the J1’s are spanned by vi⊗ v∗j (top-left) and

∑p−1
s=1(−1)svi,s⊗ v∗j,s (bottom right), and where

the Jp−1’s are given by
vi,1 ⊗ v∗j ←[ · · · ← [ −vi,p−1 ⊗ v∗j

in the bottom left and by
vi ⊗ v∗j,1 7→ · · · 7→ vi ⊗ v∗j,p−1

in the top right. In a calculation similar to the one found in the proof of Theorem 4.9, the
basis of the semisimplification afforded by Theorem 4.7 when applied to this decomposition
and the bracket is also {eij}i,j∈I in the obvious way. Therefore, by looking at (4.1) line by
line we get:

θ(eij) =


−eji |i| = |j| = 0

eji |i| = 0, |j| = 1

−eji |i| = 1, |j| = 0

−eji |i| = |j| = 1

for i, j ∈ I. The map θ is then precisely the Chevalley automorphism θ(x) = −xST on
gl(m|n). This proves the theorem. □

Proposition 4.12. Let L(λ) be a simple gl(m + n(p − 1))-module with representation ρ :
gl(m+ n(p− 1))→ gl(L(λ)) so that (L(λ), ρ(x)) is a module over (gl(m+ n(p− 1)), adx),
and (L(λ), ρ(θ(x))) is a module over (gl(m+ n(p− 1)), ad θ(x)). Then, the Shapovalov form
S : L(λ)⊗L(λ)→ 1 is a αp-equivariant map S : (L(λ), ρ(x))⊗L(λ), ρ(θ(x)))→ 1, and the
semisimplification of S is a non-degenerate symmetric contravariant form.

Proof. It is clear by contravariance that S(t.(v ⊗ w)) = S(ρ(x)v ⊗ w + v ⊗ ρ(θ(x))w) = 0 =
t.S(v ⊗ w), so this proves the first statement.

For the second statement, the contravariance condition can be written categorically by
saying there is a module map W ⊗W θ → 1, where W θ is the module given by first twisting
gl(m+n(p−1)) by the automorphism θ and then acting. By Theorem 4.11 and the symmetric
monoidal property of the semisimplification functor, it follows that S is contravariant as well.
The non-degeneracy and symmetry are also obviously preserved. □

Corollary 4.13. The semisimplification of (L(λ), ρ(x)) is a semisimple gl(m|n)-module.

Proof. The semisimplification has a non-degenerate symmetric convariant form (the semisim-
plification of the Shapovalov form). Therefore, by Proposition 3.1, it is semisimple. □

We expect a totally analogous statement to hold for any nilpotent x with xp = 0 and
replacing gl(m|n) with the Lie algebra gl(V ) in the Verlinde category, and it should be
straightforward to prove. We imagine it would boil down to coming up with a categorical
definition of the transpose operator. Perhaps appealing to the theory of contragredient Lie
algebra in symmetric tensor categories, as in [APS24], might be another starting point.
Then, one can just follow the steps in the proof verbatim (maybe some care is required with
orthogonal complements. Much of the discussion in section 3.2.2 is also relevant because
there is a Steinberg tensor product theorem in the Verlinde category for GL(V ) modules
(see [Kan25]).

We use this approach because in this paper we are interested in examples of calculations
using the semisimplification functor. Such calculations are much difficult with the Verlinde
category because the objects are no longer vector spaces.
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Finally, we conclude this section with a statement about semisimplification of modules. Let
(L(λ), ρ(x)) be a module over (gl(m+n(p−1)), adx) in Repαp, where ρ : gl(m+n(p−1))→
gl(L(λ)) is the associated representation. Write

λ = λ1ϵ1 + · · ·+ λmϵm +

(
p−1∑
s=1

λ1,sϵ1,s

)
+ · · ·+

(
p−1∑
s=1

λn,sϵn,s

)
,

where ϵj,s is the dual vector in h∗ to vj,s ⊗ v∗j,s. Finally, define λ in h∗ of gl(m|n) by

λ :=

(
λ1, . . . , λm,

p−1∑
s=1

λ1,s, . . . ,

p−1∑
s=1

λn,s

)
Theorem 4.14. Suppose the highest weight v of L(λ) generates a Jr in some decomposition
of L(λ) into indecomposables under the ρ(x) action. If r ̸= p, then the semisimplification of
(L(λ), ρ(x)) contains the module L(λ)⊗ Lr as a direct summand.

Proof. This is a consequence of Theorem 4.7, Theorem 4.9, and Corollary 4.13. In particular,
the vector

∑p−1
s=1 vi,s ⊗ v∗i,s acts as a scalar on v and therefore Jr. This scalar is

∑p−1
s=1 λi,s. It

follows that the vector it yields, which is eii in gl(m|n), acts as the same scalar. It is clear
then that there is a highest weight vector with weight λ, so it must generate a simple module
by Corollary 4.13. □

More generally, our goal is to search for vectors in L(λ) such that after semisimplification
they yield highest weight vectors. By Corollary 4.13, the module generated by this highest
weight vector will be simple.

5. Explicit computations using semisimplification

In this section, we conclude by explicitly computing semisimplifications in low rank and
low characteristic. We use the Weyl modules program by Stephen Doty (for more detail see
[Dot24]). The decomposition algorithm for modules is described in Section 5.1 along with
detailed pseudocode and correctness proofs.

5.1. Decomposition algorithm. Let K be a field, M be a finite-dimensional module, and
t :M →M a fixed nilpotent operator. Let B = (b1, . . . , bN) be a basis of M , totally ordered
by weight (lowest to highest if t is a raising operator; reverse if t is lowering). A Jordan
chain (or block) of length i is a sequence

Ji(v) : v, tv, . . . , ti−1v with tiv = 0, ti−1v ̸= 0.

We maintain a set of chains J = {J (1), . . . , J (r)} and a multiset BJ of the vectors in the set
J :

BJ :=
⊔
J∈J

⊔
u∈J

{u} ⊆M,

i.e. BJ contains every vector from every chain in J . The algorithm iterates over the ordered
basis B. Whenever the current seed v = bi already lies in span(BJ ) we skip it. Otherwise,
we attempt to extend v to a chain by repeatedly applying t until either we hit 0 (success,
in which case this new chain in included in J ) or we encounter the first dependency against



SEMISIMPLIFICATIONS OF αp-EQUIVARIANT GLn-MODULES 21

span(BJ ). Let this dependency be expressed as

tℓv =
m∑
j=1

ej t
αjaj

(
tαjaj ∈ BJ

)
.

The algorithm records the precise form of this dependence in a container called Relation.
This container stores information on the first dependency encountered, the dependent vector,
the coefficients, and the specific earlier chain nodes it depends on.

We then resolve this first dependency by one of two cases, determined by the minimum
index δmin := minj αj.

• Case 1 (δmin > ℓ): All right-hand-side nodes lie strictly ahead of tℓv. We reseed with
w := v−

∑
j ej t

αj−ℓaj, whose chain terminates at length ℓ and whose earlier nodes remain
independent of BJ . We ignore the partial chain from v and add the chain from w.
• Case 2 (δmin ≤ ℓ): Some right-hand-side node is not ahead of tℓv. We exchange one
earlier shortest chain for the greedy chain from v, then include the chain from the auxiliary
seed w := tℓ−δminv −

∑
j ej t

αj−δminaj, which produces an additional chain of length δmin

to include in J .
Proceeding through all bi in order yields a set J of Jordan chains which represent a decom-
position of M whose concatenated nodes BJ form a basis of M .

Remark 5.1 (Importance of ordering B). The correctness of the algorithm requires that
the basis B is totally ordered by weight. Let us consider the case when t is a raising
operator, and the basis is ordered starting from the lowest weight vector. If the basis elements
are not processed in increasing order, then consider the first vector in the ordered basis,
blw that is not processed. Since subsequent vectors are higher weight, blw will never be
included in subsequent Jordan chains. Therefore, processing basis elements in increasing
order guarantees that when the algorithm terminates, BJ is a valid basis of M .

We now describe the routines GreedyChain, Resolve, and the main loop JordanDecompose,
along with the correctness proof.

Algorithm 1 GreedyChain(v)

Require: Seed v ∈M , current concatenated set BJ .
Ensure: A chain S = [v, tv, . . . ] until zero or first dependency. If a first dependency occurs

at step i, also return its linear relation.
1: S ← [ ]; u← v
2: loop
3: Append u to S
4: if tu = 0 then
5: return (S, NoRelation)
6: else if tu ∈ span(BJ ) then ▷ first dependency detected
7: Find coefficients ej and nodes tαjaj ∈ BJ s.t. tu =

∑m
j=1 ej t

αjaj.

8: return (S, Relation({(ej, αj, aj)}mj=1))
9: else
10: u← tu
11: end if
12: end loop
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Algorithm 2 Resolve(S, Relation)

Require: Chain S = [v, tv, . . . , ti−1v]; first dependency tiv =
∑m

j=1 ej t
αjaj, with each tαjaj

a node inside a prior chain J
(j)
kj

= (aj, taj, . . . , t
kj−1aj).

1: Let δj ← αj and δmin ← minj δj.
2: if δmin > i then ▷ Case 1: earlier nodes are strictly behind the RHS nodes
3: Set oj ← δj − i > 0 for all j.
4: Define w ← v −

∑m
j=1 ej t

ojaj.

5: return Case1(w) ▷ Discard S; add chain from w
6: else ▷ Case 2: some RHS node not ahead of tiv
7: Let j∗ be an index with δj∗ = δmin.
8: Set o← i− δmin ≥ 0, and oj ← δj − δmin ≥ 0.
9: Define w ← tov −

∑m
j=1 ej t

ojaj.

10: return Case2(j∗, S, w) ▷ Replace prior J (j∗) with S, then add chain from w
11: end if

Algorithm 3 JordanDecompose(B, t)
Require: Ordered basis B = (b1, . . . , bN), nilpotent t.
Ensure: A set of Jordan chains J whose concatenated vectors BJ form a basis of M .
1: J ← ∅, BJ ← ∅
2: for i = 1 to N do ▷ iterate in weight order (reverse for lowering operators)
3: v ← bi
4: if v ∈ span(BJ ) then
5: continue
6: end if
7: (S, Rel)← GreedyChain(v)
8: if Rel = NoRelation then
9: Add chain S to J ; update BJ ← BJ ⊔ S
10: else
11: Outcome← Resolve(S, Rel)
12: if Outcome = Case1(w) then
13: (Snew, )← GreedyChain(w)
14: Add Snew to J ; update BJ ← BJ ⊔ Snew

15: else ▷ Case2(j∗, S, w)
16: Replace the prior chain J (j∗) ∈ J by S; update BJ accordingly
17: (Snew, )← GreedyChain(w)
18: Add Snew to J ; update BJ ← BJ ⊔ Snew

19: end if
20: end if
21: end for
22: return J

In order to prove the correctness of Algorithm 3 we establish the following lemmas.

Lemma 5.2 (First dependency implies earlier independence). If trv /∈ span(BJ ) for 0 ≤
r ≤ ℓ− 1 and tℓv ∈ span(BJ ), then the chain (v, tv, . . . , tℓ−1v) is independent of BJ .
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Proof. If a nontrivial linear dependence existed using some trv with r < ℓ, we would contra-
dict minimality of ℓ as the first dependent index. □

Lemma 5.3 (Extension for Case 1). With δmin > ℓ, the seed w = v −
∑

j ejt
δj−ℓaj satisfies

tℓw = 0, and its earlier nodes avoid span(BJ ). Moreover, v ∈ span(BJ new).

Proof. Since the relation at index ℓ is exactly tℓv =
∑

j ejt
δjaj, we have by construction,

tℓw = tℓv −
m∑
j=1

ej t
δjaj = 0,

for 0 ≤ r < ℓ,

trw = trv −
m∑
j=1

ej t
δj−ℓ+raj.

Since δj ≥ δmin > ℓ, we have 1 ≤ δj − ℓ+ r < δj. Therefore, each correction term tδj−ℓ+raj ∈
J (j) ∈ BJ . Because ℓ is minimal, every trv with r < ℓ is nonzero and independent of BJ .
Subtracting additional correction terms from BJ cannot create a new dependency at these
indices. Thus the chain (w, tw, . . . , tℓ−1w) is nonzero and independent of BJ . Finally,

v = w +
m∑
j=1

ej t
δj−ℓaj,

where the summation lies in span(BJ ). Hence v ∈ span(BJ new = BJ ⊔Snew), as required. □

Lemma 5.4 (Exchange + extension for Case 2). With δmin ≤ ℓ, replacing the earlier chain
J (j∗) by the greedy chain S and then adding the chain from w preserves independence and
increases coverage of BJ new to include v.

Proof. By Lemma 5.2, the greedy chain S = (v, tv, . . . , tℓ−1v) is independent of BJ up to its
first dependency. Now consider

w = tov −
m∑
j=1

ej t
ojaj, o = ℓ− δmin, oj = αj − δmin.

Then
trw = trtov −

∑
j

ejt
oj+raj = tℓ+r−δminv −

∑
j

ejt
αj+r−δminaj,

For r = δmin, we have trw = 0. So the chain from w terminates at height δmin.
For 0 ≤ r < δmin we compute

oj + r = (αj − δmin) + r ≤ αj − 1 < αj.

Thus each correction term toj+raj lies strictly before the node tαjaj from the relation in
its respective chain J (j). Furthermore, ℓ + r − δmin < ℓ. Therefore, the minimality of ℓ
guarantees that tℓ+r−δminv is non zero and the newly generated chain from w is independent
of the previously established vectors in BJ . This also implies linear independence from
BJ \ J (j∗). Therefore, the replacement step

BJ ′ := (BJ \ J (j∗)) ⊔ {v, tv, . . . , tℓ−1v}
preserves linear independence and also spans v. Now, consider the chain

Snew := {w, tw, . . . , tδmin−1w}.
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If there was a nontrivial linear dependence of trw (1 ≤ r < δmin) and the vectors in BJ ′,
then from the definition of w, this would force a dependence in BJ ′. This contradicts the
independence of BJ ′. Therefore, Snew is independent of BJ ′, implying that

BJ new = BJ ′ ⊔ Snew

preserves linear independence and also spans v. Furthermore, consider the terms in J j∗ that
have been removed from BJ . We have for i < δnew

tiw = titov −
∑
j

ejt
oj+iaj.

Since for the minimum index j∗, oj∗ + i = αj∗ − δmin + i = i, we have tiaj∗ is linearly
dependent on tiw, ti+ov and terms from J (j ̸=j∗). Therefore, the terms from J j∗ are still
spanned by BJ new. Therefore, the removal and extension operation on BJ does not affect
the vectors spanned originally by BJ . This concludes the proof that vectors covered by BJ
are still covered by BJ new. Furthermore, BJ new is independent and spans v. □

We now prove the correctness for Algorithm 3 using three invariants:

(I1) Independence: BJ is linearly independent at every loop head,
(I2) Coverage of processed seeds: For all j < i, bj ∈ span(BJ ),
(I3) Chain-closure: Each J ∈ J is a valid Jordan block terminating at zero.

Initialization: Before the first iteration, J = ∅, BJ = ∅: (I1)–(I3) hold trivially.

Maintenance: Assume (I1)–(I3) hold at the start of iteration i. If bi ∈ span(BJ ) then no
changes are made. (I1)–(I3) remain true, and (I2) extends to j = i. We now consider the
case when bi /∈ span(BJ ). Algorithm 1 gives us two subcases.

If we encounter a terminal zero before any dependency, then Then S = (bi, . . . , t
ℓ−1bi) has

all nodes outside span(BJ ), hence adding S preserves (I1). By construction tℓbi = 0, so (I3)
holds. Since bi ∈ span(S) ⊆ span(BJ ∪ S), (I2) holds for index i.

If we encounter the first dependency at tℓbi =
∑

j ejt
αjaj, then by minimality of ℓ, the

nodes bi, tbi, . . . , t
ℓ−1bi are independent from BJ . Let δj = αj and δmin = minj δj. If (δmin > ℓ)

then from Lemma 5.3 the chain from w is independent of BJ , preserving (I1). Furthermore,
each chain terminates at zero, so (I3) holds. Also, bi ∈ span(BJ ∪ {w, tw, . . . }, tℓ−1w),
resulting in (I2) holding. For the case when (δmin ≤ ℓ, from Lemma 5.4, (I1) holds. Since
all chains still terminate at zero, (I3) holds. Furthermore bi lies in the updated span, so (I2)
holds.

Hence (I1)–(I3) are maintained.

Termination: The loop runs forN iterations and terminates. At exit, (I2) implies span(BJ ) =
M and combined with (I1) we have that BJ is a basis of M . Together with (I3), this proves
that J is a valid Jordan decomposition under the action of t.

Time complexity. LetN = dimM , and let L be the maximal chain length (in characteristic
p, L ≤ p). Each seed advances at most L steps before zero or first dependency. With
standard GAP linear algebra routines, membership tests/solves are O(N3), yielding a worst
case complexity of O(LN4).

5.2. Semisimplifications of gl(3)-modules in characteristic 3. In this section we com-
pute the semisimplification of simple sl(3) modules, L(λ) giving sl(1|1) modules which can



SEMISIMPLIFICATIONS OF αp-EQUIVARIANT GLn-MODULES 25

then be lifted to gl(1|1) modules. The simple sl(3) modules are given by the 32 = 9 re-
stricted dominant integral weights. We first use the algorithm provided in Section 5.1 to
decompose each L(λ) into Jordan blocks (w.r.t e32) before semisimplification. The relevant
decompositions and actions maps are shown in the Appendix (see A.1).

Case λ Decomposition
1 (2, 2, 2) J1
2 (2, 2, 1) J1 ⊕ J2
3 (2, 2, 0) J1 ⊕ J2 ⊕ J3
4 (2, 1, 1) J1 ⊕ J2
5 (2, 1, 0) 2J2 ⊕ J3
6 (2, 1,−1) J1 ⊕ J2 ⊕ 4J3
7 (2, 0, 0) J1 ⊕ J2 ⊕ J3
8 (2, 0,−1) J1 ⊕ J2 ⊕ 4J3
9 (2, 0,−2) 9J3

Table 1. Decomposition of L(λ) for n = 3, p = 3

1. λ = (2, 2, 2)
In this case we see that the semisimplification is obviously simple as it is (1|0) di-

mensional. Therefore, L(λ) = L(λ).
2. λ = (2, 2, 1)

We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(λ) = L(λ).

3. λ = (2, 2, 0)
We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(λ) = L(λ).

4. λ = (2, 1, 1)
We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(λ) = L(λ).

5. λ = (2, 1, 0)
We can examine the action maps and note that there are two submodules. The
two submodules have highest weight λ1 = (2, 1, 0) and λ2 = (0, 2, 1). Therefore,

L(λ) = L(λ1)⊕ L(λ2).
6. λ = (2, 1,−1)

We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(λ) = L(λ).

7. λ = (2, 0, 0)
We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(λ) = L(λ).

8. λ = (2, 0,−1)
We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(λ) = L(λ).

9. λ = (2, 0,−2)
In this case the decomposition consists of only J3 meaning the semisimplification is
the zero-map.
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5.3. Semisimplifications of gl(4)-modules in characteristic 3. We use a similar ap-
proach of computing the semisimplification of simple sl(4) modules giving sl(2|1) modules.
Additionally, we make extensive use of Theorem 3.2 when possible and the highest weight
vector strategy from Theorem 4.14. The simple sl(4) modules are given by the restricted
dominant integral weights of which there are 33 = 27. We again use the decomposition
algorithm in 5.1 to decompose each L(λ) into Jordan blocks (w.r.t e34) to help determine
the semisimplification. The relevant decompositions and actions maps are described in Ap-
pendix A.2 while the semisimplified module structure is described below.

1. λ = (2, 2, 2, 2)
We have (L(λ), e34) = J1 which means the semisimplification is (1|0)-dimensional.
The highest weight vector has semisimplified weight λ = (2, 2, 4) and by virtue of the
semisimplification being (1|0)-dimensional it is obviously simple. Therefore, we can

conclude that L(λ) = L(2, 2, 4).
2. λ = (2, 2, 2, 1)

We have (L(λ), e34) = 2J1⊕J2 which means the semisimplification is (2|1)-dimensional.
Using the algorithm we see there is a unique highest weight vector with semisimplified
weight λ = (2, 2, 3). Using Theorem 3.2 tells us the dimension of the module gener-

ated by λ must be 3 as needed. Therefore, we can conclude that L(λ) = L(2, 2, 3).
3. λ = (2, 2, 2, 0)

We have (L(λ), e34) = 3J1 ⊕ 2J2 ⊕ J3 which means the semisimplification is (3|2)-
dimensional. Using the algorithm we see there is a unique highest weight vector with
semisimplified weight λ′ = (2, 1, 3). Using Theorem 3.2 tells us that the dimension
of the module generated by λ′ is 5 as needed. Therefore, we can conclude that
L(λ) = L(2, 1, 3).

4. λ = (2, 2, 1, 1)
We have (L(λ), e34) = 2J1⊕2J2 which means the semisimplification is (2|2)-dimensional.
Using the algorithm we see there is a unique highest weight vector with semisimpli-
fied weight λ = (2, 2, 2). Using Theorem 3.2 tells us the dimension of the module

generated by λ is 4 as needed. Therefore, we can conclude that L(λ) = L(2, 2, 2).
5. λ = (2, 2, 1, 0)

We have (L(λ), e34) = 2J1 ⊕ 4J2 ⊕ 2J3 which means the semisimplification is (2|4)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights λ1 = (2, 2, 1) and λ2 = (2, 0, 3). Using Theorem 3.2 tells us that
dim L(λ1) = 1 and dim L(λ2) = 5. Combining this with Theorem 4.14 allows us to

conclude that L(λ) = L(2, 2, 1)⊕ L(2, 0, 3).
6. λ = (2, 2, 1,−1)

We have (L(λ), e34) = 6J1 ⊕ 6J2 ⊕ 9J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semsimplified weight λ′ = (2, 0, 2). Using Theorem 3.2 tells us the dimension
of the module generated by λ′ is 12 as needed. Therefore, we can conclude that
L(λ) = L(2, 0, 2).

7. λ = (2, 2, 0, 0)
We have (L(λ), e34) = 2J1 ⊕ 4J2 ⊕ 3J3 which means the semisimplification is (2|4)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights λ1 = (2, 2, 0) and λ2 = (1, 0, 3). Using Theorem 3.2 tells us that
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dim L(λ1) = 3 and dim L(λ2) = 3. Combining this with Theorem 4.14 allows us to

conclude that L(λ) = L(2, 2, 0)⊕ L(1, 0, 3).
8. λ = (2, 2, 0,−1)

We have (L(λ), e34) = 6J1 ⊕ 6J2 ⊕ 14J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights λ1 = (2, 2,−1) and λ2 = (1, 0, 2). Using Theorem 3.2 tells us that
dim L(λ1) = 4 and dim L(λ2) = 8. Combining this with Theorem 4.14 allows us to

conclude that L(λ) = L(2, 2,−1)⊕ L(1, 0, 2).
9. λ = (2, 2, 0,−2)

We have (L(λ), e34) = 6J1 ⊕ 6J2 ⊕ 36J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight λ′ = (1,−1, 2). Using Theorem 3.2 tells us the dimension
of the module generated by λ′ is 12 as needed. Therefore, we can conclude that
L(λ) = L(1,−1, 2).

10. λ = (2, 1, 1, 1)
We have (L(λ), e34) = 2J1⊕J2 which means the semisimplification is (2|1)-dimensional.
Using the algorithm we see there is a unique highest weight vector with semisimpli-
fied weight λ = (2, 1, 2). Using Theorem 3.2 tells us the dimension of the module

generated by λ is 3 as needed. Therefore, we can conclude that L(λ) = L(2, 1, 2).
11. λ = (2, 1, 1, 0)

We have (L(λ), e34) = 4J1 ⊕ 4J2 ⊕ J3 which means the semisimplification is (4|4)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight λ = (2, 1, 1). Using Theorem 3.2 tells us the dimension
of the module generated by λ is 8 as needed. Therefore, we can conclude that
L(λ) = L(2, 1, 1)

12. λ = (2, 1, 1,−1)
We have (L(λ), e34) = 6J1 ⊕ 6J2 ⊕ 6J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight λ′ = (2, 0, 1). Using Theorem 3.2 tells us the dimension
of the module generated by λ′ is 12 as needed. Therefore, we can conclude that
L(λ) = L(2, 0, 1).

13. λ = (2, 1, 0, 0)
We have (L(λ), e34) = 2J1 ⊕ 4J2 ⊕ 2J3 which means the semisimplification is (2|4)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights λ1 = (2, 1, 0) and λ2 = (0, 0, 3). Using Theorem 3.2 tells us that
dim L(λ1) = 5 and dim L(λ2) = 1. Combining this with Theorem 4.14 allows us to

conclude that L(λ) = L(2, 1, 0)⊕ L(0, 0, 3).
14. λ = (2, 1, 0,−1)

We have (L(λ), e34) = 2J1 ⊕ 6J2 ⊕ 10J3 which means the semisimplification is
(2|6)-dimensional. Using the algorithm we can see four highest weight vectors with
semisimplified weights λ1 = (2, 1,−1), λ2 = (−1, 2, 1), λ3 = (2,−1, 1) and λ4 =
(0, 0, 2). Using Theorem 3.2 tells us that dim L(λ1) = 3, dim L(λ2) = 1, dim L(λ3) =
1 and dim L(λ4) = 3. Combining this with Theorem 4.14 allows us to conclude that

L(λ) = L(2, 1,−1)⊕ L(−1, 2, 1)⊕ L(2,−1, 1)⊕ L(0, 0, 2).
15. λ = (2, 1, 0,−2)

We have (L(λ), e34) = 4J1 ⊕ 8J2 ⊕ 32J3 which means the semisimplification is
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(4|8)-dimensional. Using the algorithm we can see four highest weight vectors with
semisimplified weights λ1 = (1, 1,−1), λ2 = (2,−1, 0), λ3 = (−1, 2, 0), and λ4 =
(0,−1, 2). Using Theorem 3.2 tells us that dim L(λ1) = 1, dim L(λ2) = 3, dim L(λ3) =
3 and dim L(λ4) = 5. Combining this with Theorem 4.14 allows us to conclude that

L(λ) = L(1, 1,−1)⊕ L(2,−1, 0)⊕ L(−1, 2, 0)⊕ L(0,−1, 2).
16. λ = (2, 1,−1,−1)

We have (L(λ), e34) = 6J1 ⊕ 6J2 ⊕ 14J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights λ1 = (2, 1,−2) and λ2 = (0, 0, 1). Using Theorem 3.2 tells us that
dim L(λ1) = 8 and dim L(λ2) = 4. Combining this with Theorem 4.14 allows us to

conclude that L(λ) = L(2, 1,−2)⊕ L(0, 0, 1).
17. λ = (2, 1,−1,−2)

We have (L(λ), e34) = 7J1 ⊕ 4J2 ⊕ 47J3 which means the semisimplification is (7|4)-
dimensional. Using the algorithm we can see three highest weight vectors with
semisimplified weights λ1 = (2, 1,−3), λ2 = (0, 0, 0), λ3 = (0,−2, 2). Using The-
orem 3.2 tells us that dim L(λ1) = 5, dim L(λ2) = 1 and dim L(λ3) = 5. Combining

this with Theorem 4.14 allows us to conclude that L(λ) = L(2, 1,−3) ⊕ L(0, 0, 0) ⊕
L(0,−2, 2).

18. λ = (2, 1,−1,−3)
We have (L(λ), e34) = 6J1⊕ 6J2⊕ 114J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight λ′ = (0,−2, 1). Using Theorem 3.2 tells us the dimension
of the module generated by λ′ is 12 as needed. Therefore, we can conclude that
L(λ) = L(0,−2, 1).

19. λ = (2, 0, 0, 0)

This is S2(V ) and must be simple. In particular, we have L(λ) = L(2, 0, 0).
20. λ = (2, 0, 0,−1)

We have (L(λ), e34) = 6J1 ⊕ 6J2 ⊕ 6J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight λ = (2, 0,−1). Using Theorem 3.2 tells us the dimension
of the module generated by λ is 12 as needed. Therefore, we can conclude that
L(λ) = L(2, 0,−1).

21. λ = (2, 0, 0,−2)
We have (L(λ), e34) = 4J1 ⊕ 4J2 ⊕ 19J3 which means the semisimplification is (4|4)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights λ1 = (2,−1,−1) and λ2 = (−1, 2,−1). Using Theorem 3.2 tells us
that dim L(λ1) = 4 and dim L(λ2) = 4. Combining this with Theorem 4.14 allows

us to conclude that L(λ) = L(2,−1,−1)⊕ L(−1, 2,−1).
22. λ = (2, 0,−1,−1)

We have (L(λ), e34) = 6J1 ⊕ 6J2 ⊕ 9J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight λ = (2, 0,−2). Using Theorem 3.2 tells us the dimension
of the module generated by λ is 12 as needed. Therefore, we can conclude that
L(λ) = L(2, 0,−2).
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23. λ = (2, 0,−1,−2)
We have (L(λ), e34) = 4J1 ⊕ 8J2 ⊕ 32J3 which means the semisimplification is
(4|8)-dimensional. Using the algorithm we can see four highest weight vectors with
semisimplified weights λ1 = (2, 0,−3), λ2 = (−1, 1,−1), λ3 = (−1,−1, 1), λ4 =
(2,−2,−1). Using Theorem 3.2 tells us that dim L(λ1) = 5, dim L(λ2) = 3,
dim L(λ3) = 1, and dim L(λ4) = 3. Combining this with Theorem 4.14 allows

us to conclude that L(λ) = L(2, 0,−3)⊕L(−1, 1,−1)⊕L(−1,−1, 1)⊕L(2,−2,−1).
24. λ = (2, 0,−1,−3)

We have (L(λ), e34) = 8J1 ⊕ 8J2 ⊕ 90J3 which means the semisimplification is (8|8)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights λ1 = (2,−2,−2) and λ2 = (−1, 1,−2). Using Theorem 3.2 tells us
that dim L(λ1) = 8 and dim L(λ2) = 8. Combining this with Theorem 4.14 allows

us to conclude that L(λ) = L(2,−2,−2)⊕ L(−1, 1,−2).
25. λ = (2, 0,−2,−2)

We have (L(λ), e34) = 6J1 ⊕ 6J2 ⊕ 36J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we see there is a unique highest weight vector with
semisimplified weight λ = (2, 0,−4). Using Theorem 3.2 tells us the dimension of the

module generated by λ is 12. Therefore, we can conclude that L(λ) = L(2, 0,−4).
26. λ = (2, 0,−2,−3)

We have (L(λ), e34) = 6J1⊕ 6J2⊕ 114J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we see there is a unique highest weight vector with
semisimplified weight λ = (2, 0,−5). Using Theorem 3.2 tells us the dimension of the

module generated by λ is 12, Therefore, we can conclude that L(λ) = L(2, 0,−5).
27. λ = (2, 0,−2,−4)

We have (L(λ), e34) = 243J3 which means the semisimplification is the zero-map.
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Appendix A. Action Maps

GAP Generator Matrix Element
x1 e12
x2 e23
x3 e13
y1 e21
y2 e32
y3 e31
h7 e11 − e22
h8 e22 − e33

Table 2. Standard Basis Generators for sl3

A.1. Semisimplifications of gl(3)-modules in characteristic 3. As seen in Table 2, the
8-dimensional Lie algebra sl(3), of type A2, is built from two simple root vectors (x1, x2)
and their negatives (y1, y2). The Lie brackets among these generates the remaining positive
root (x3) and negative roots (y3). The Cartan subalgebra is 2-dimensional, spanned by
h7 = e11− e22, and h8 = e22− e33. Under the action of e32, sl(3) decomposes as J1⊕ 2J2⊕J3
where the copy of J1 is h7 − h8 and the copies of J2 are y1 → −y3 and x3 → x1. We now
enumerate the action maps for each of the 8 restricted integral weights. Since J3 vanishes
after semisimplification we omit listing the J3 modules in the decomposition.

1. Dominant Weight: λ = [2, 2, 2]

• Weyl module : V [0, 0] of dimension 1.
• L(λ) is a 1−dimensional quotient of V [0, 0].

Decomposition of L(λ) under action of e32 : J1

J1 : v0 (u1)

Action map

u1

h7 − h8 0
y1 → −y3 0
x3 → x1 0

2. Dominant Weight: λ = [2, 2, 1]

• Weyl module : V [0, 1] of dimension 3.
• L(λ) is a 3−dimensional quotient of V [0, 1].

Decomposition of L(λ) under action of e32 : J1 ⊕ J2
J1 : y3v0 (u1)
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J2 : v0 → y2v0 (w1)

Action map

u1 w1

h7 − h8 2u1 2w1

y1 → −y3 0 2u1
x3 → x1 w1 0

3. Dominant Weight: λ = [2, 2, 0]

• Weyl module : V [0, 2] of dimension 6.
• L(λ) is a 6−dimensional quotient of V [0, 2].

Decomposition of L(λ) under action of e32 : J1 ⊕ J2 ⊕ J3
J1 : y

(2)
3 v0 (u1)

J2 : y3v0 → y2y3v0 (w1)

Action map

u1 w1

h7 − h8 u1 w1

y1 → −y3 0 u1
x3 → x1 w1 0

4. Dominant Weight: λ = [2, 1, 1]

• Weyl module : V [1, 0] of dimension 3.
• L(λ) is a 3−dimensional quotient of V [1, 0].

Decomposition of L(λ) under action of e32 : J1 ⊕ J2
J1 : v0 (u1)

J2 : y1v0 → 2y3v0 (w1)

Action map

u1 w1

h7 − h8 u1 w1

y1 → −y3 w1 0
x3 → x1 0 u1

5. Dominant Weight: λ = [2, 1, 0]

• Weyl module : V [1, 1] of dimension 8.
• L(λ) is a 7−dimensional quotient of V [1, 1].
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Decomposition of L(λ) under action of e32 : 2J2 ⊕ J3
J2 : v0 → y2v0 (w1)

J2 : y1y3v0 → 2y
(2)
3 v0 (w2)

Action map

w1 w1

h7 − h8 0 0
y1 → −y3 0 0
x3 → x1 0 0

6. Dominant Weight: λ = [2, 1,−1]
• Weyl module : V [1, 2] of dimension 15.
• L(λ) is a 15−dimensional quotient of V [1, 2].

Decomposition of L(λ) under action of e32 : J1 ⊕ J2 ⊕ 4J3

J1 : y1y2y3v0 (u1)

J2 : y1y
(2)
3 v0 → 2y

(3)
3 v0 (w1)

Action map

u1 w1

h7 − h8 2u1 0
y1 → −y3 w1 0
x3 → x1 0 2u1

7. Dominant Weight: λ = [2, 0, 0]

• Weyl module : V [2, 0] of dimension 6.
• L(λ) is a 6−dimensional quotient of V [2, 0].

Decomposition of L(λ) under action of e32 : J1 ⊕ J2 ⊕ J3
J1 : v0 (u1)

J2 : y1v0 → 2y3v0 (w1)

Action map

u1 w1

h7 − h8 2u1 2w1

y1 → −y3 w1 0
x3 → x1 0 2u1
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8. Dominant Weight: λ = [2, 0,−1]
• Weyl module : V [2, 1] of dimension 15.
• L(λ) is a 15−dimensional quotient of V [2, 1].

Decomposition of L(λ) under action of e32 : J1 ⊕ J2 ⊕ 4J3

J1 : y1y2v0 + y3v0 (u1)

J2 : v0 → y2v0 (w1)

Action map

u1 w1

h7 − h8 u1 w1

y1 → −y3 0 u1
x3 → x1 w1 0

9. Dominant Weight: λ = [2, 0,−2]
• Weyl module : V [2, 2] of dimension 27.
• L(λ) is a 27−dimensional quotient of V [2, 2].

Decomposition of L(λ) under action of e32 : 9J3
Semisimplification is the zero map as all J3 vanish after semisimplification.

GAP Generator Matrix Element
x1 e12
x2 e23
x3 e34
x4 e13
x5 e24
x6 e14
y1 e21
y2 e32
y3 e43
y4 e31
y5 e42
y6 e41
h13 e11 − e22
h14 e22 − e33
h15 e33 − e44

Table 3. Standard Basis Generators for sl4

A.2. Semisimplifications of gl(4)-modules in characteristic 3. As seen in Table 3,
the 15-dimensional Lie algebra sl(4), of type A3, is built from three simple root vectors
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(x1, x2, x3) and their negatives (y1, y2, y3). The Lie brackets among these generates the
remaining positive roots (x4, x5, x6) and negative roots (y4, y5, y6). The Cartan subalgebra
is 3-dimensional, spanned by h13 = e11− e22, h14 = e22− e33, and h15 = e33− e44. Under the
action of e43, sl(4) decomposes as 4J1⊕4J2⊕J3 where the copies of J1 are x1, y1, h13−h14+
h15, h14 − h15 and the copies of J2 are y4 → −y6, y2 → −y5, x5 → x2 and x6 → x4. We now
enumerate the action maps for the key subcases for the 27 restricted integral weights. Since
J3 vanishes after semisimplification we omit listing the J3 modules in the decomposition.

1. Dominant Weight: λ = [2, 2, 2, 2]

• Weyl module, V [0, 0, 0] Dim=1
• L(λ) is 1-dimensional quotient of V[ 0, 0, 0 ]

Decomposition of L(λ) under action of e43 : J1

J1 : v0 (u1)

Action map

u1
y1 0
x1 0
h13 − h14 + h15 0
h14 − h15 0
y4 → −y6 0
y2 → −y5 0
x5 → x2 0
x6 → x4 0

2. Dominant Weight: λ = [2, 2, 2, 1]

• Weyl module V [0, 0, 1] Dim=4
• L(λ) is 4-dimensional quotient of V[ 0, 0, 1 ]

Decomposition of L(λ) under action of e43 : 2J1 ⊕ J2
J1 : y5v0 (u1)

J1 : y6v0 (u2)

J2 : v0 → y3v0(w1)

Action map
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u1 u2 w1

y1 u2 0 0
x1 0 u1 0
h13 − h14 + h15 2u1 2u2 w1

h14 − h15 2u1 0 2w1

y4 → −y6 0 0 u2
y2 → −y5 0 0 u1
x5 → x2 w1 0 0
x6 → x4 0 w1 0

3. Dominant Weight: λ = [2, 2, 2, 0]

• Weyl module V [0, 0, 2] Dim=10
• L(λ) is 10-dimensional quotient of V [0, 0, 2]

Decomposition of L(λ) under action of e43 : 3J1 ⊕ 2J2 ⊕ J3
J1 : y

(2)
5 v0 (u1)

J1 : y5y6v0 (u2)

J1 : y
(2)
6 v0 (u3)

J2 : y5v0 → 2y3y5v0 (w1)

J2 : y6v0 → 2y3y6v0 (w2)

Action map

u1 u2 u3 w1 w2

y1 u2 2u3 0 w2 0
x1 0 2u1 u2 0 w1

h14 − h15 u1 2u2 0 w1 2w2

h13 − h14 + h15 u1 u2 u3 0 0
y4 → −y6 0 0 0 u2 2u3
y2 → −y5 0 0 0 2u1 u2
x5 → x2 w1 w2 0 0 0
x6 → x4 0 w1 w2 0 0

4. Dominant Weight: λ = [2, 2, 1, 1]

• Weyl module : V [0, 1, 0] of dimension 6.
• L(λ) is a 6−dimensional quotient of V [0, 1, 0].

Decomposition of L(λ) under action of e43 : 2J1 ⊕ 2J2

J1 : v0 (u1)

J1 : y2y6v0 (u2)

J2 : y2v0 → 2y5v0 (w1)

J2 : y4v0 → y6v0 (w2)
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Action map

u1 u2 w1 w2

y1 0 0 w2 0
x1 0 0 0 w1

h14 − h15 u1 2u2 w1 2w2

h13 − h14 + h15 2u1 u2 0 0
y2 → −y5 w1 0 0 2u2
y4 → −y6 w2 0 u2 0
x5 → x2 0 2w2 2u1 0
x6 → x4 0 w1 0 2u1

5. Dominant Weight: λ = [2, 2, 1, 0]

• Weyl module : V [0, 1, 1] of dimension 20.
• L(λ) is a 16−dimensional quotient of V [0, 1, 1].

Decomposition of L(λ) under action of e43 : 2J1 ⊕ 4J2 ⊕ 2J3

J1 : y2y5y6v0 (u1)

J1 : y2y
(2)
6 v0 (u2)

J2 : v0 → 2y3v0 (w1)

J2 : y2y5v0 → 2y
(2)
5 v0 (w2)

J2 : y2y6v0 → 2y2y3y6v0 (w3)

J2 : y4y6v0 → 2y
(2)
6 v0 (w4)

Action map

u1 u2 w1 w2 w3 w4

y1 u2 0 0 2w3 w4 0
x1 0 u1 0 0 w2 2w3

h14 − h15 u1 2u2 0 0 w3 2w4

h13 − h14 + h15 0 0 0 2w2 2w3 2w4

y2
↓
y5

0 0 0 0 u1 2u2

y4
↓
y6

0 0 0 u1 2u2 0

x5
↓
−x2

2w3 2w4 0 0 0 0

x6
↓
−x4

w2 w3 0 0 0 0
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6. Dominant Weight: λ = [2, 2, 1,−1]
• Weyl module : V [0, 1, 2] of dimension 45.
• L(λ) is a 45−dimensional quotient of V [0, 1, 2].

Decomposition of L(λ) under action of e43 : 6J1 ⊕ 6J2 ⊕ 9J3

J1 : y2y3y5v0 (u1)

J1 : y2y3y6v0 + y3y4y5v0 + y5y6v0 (u2)

J1 : y3y4y6v0 + 2y
(2)
6 v0 (u3)

J1 : y2y
(2)
5 y6v0 (u4)

J1 : y2y5y
(2)
6 v0 (u5)

J1 : y2y
(3)
6 v0 (u6)

J2 : y2y
(2)
5 v0 → 2y

(3)
5 v0 (w1)

J2 : y2y5y6v0 → y2y3y5y6v0 + y
(2)
5 y6v0 (w2)

J2 : y4y
(2)
5 v0 → 2y2y3y5y6v0 + y

(2)
5 y6v0 (w3)

J2 : y2y
(2)
6 v0 → y2y3y

(2)
6 v0 + 2y5y

(2)
6 v0 (w4)

J2 : y4y5y6v0 → 2y2y3y
(2)
6 v0 (w5)

J2 : y4y
(2)
6 v0 → 2y

(3)
6 v0 (w6)

Action map

u1 u2 u3 u4 u5 u6 w1 w2 w3 w4 w5 w6

y1 u2 2u3 0 u5 2u6 0 w2 + w3 2w4 + w5 w5 w6 2w6 0
x1 0 2u1 u2 0 2u4 u5 0 2w1 w1 w2 w2 + 2w3 w4 + w5

h14 − h15 2u1 0 u3 0 u5 2u6 2w1 0 0 w4 w5 2w6

h13 − h14 + h15 0 0 0 2u4 2u5 2u6 w1 w2 w3 w4 w5 w6

y2 → −y5 w1 2w3 2w4 + w5 0 0 0 0 u4 0 u5 u5 2u6
y4 → −y6 w2 + 2w3 2w4 w6 0 0 0 u4 2u5 2u5 0 u6 0
x5 → x2 0 0 0 2w3 2w5 2w6 u1 u2 0 u3 0 0
x6 → x4 0 0 0 w1 w2 w4 0 0 u1 0 u2 u3

7. Dominant Weight: λ = [2, 2, 0, 0]

• Weyl module : V [0, 2, 0] of dimension 20.
• L(λ) is a 19−dimensional quotient of V [0, 2, 0].

Decomposition of L(λ) under action of e43 : 2J1 ⊕ 4J2 ⊕ 3J3.

J1 : v0 (u1)

J1 : y
(2)
2 y

(2)
6 v0 (u2)

J2 : y2v0 → 2y5v0 (w1)
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J2 : y4v0 → 2y6v0 (w2)

J2 : y
(2)
2 y6v0 → 2y2y5y6v0 (w3)

J2 : y2y4y6v0 → 2y2y
(2)
6 v0 (w4)

Action map

u1 u2 w1 w2 w3 w4

y1 0 0 w2 0 w4 0
x1 0 0 0 w1 0 w3

h14 − h15 2u1 u2 2w1 0 0 w4

h13 − h14 + h15 u1 2u2 2w1 2w2 w3 w4

y2 → −y5 w1 0 0 0 0 u2
y4 → −y6 w2 0 0 0 2u2 0
x5 → x2 0 2w4 u1 0 0 0
x6 → x4 0 w3 0 1v0 0 0

8. Dominant Weight: λ = [2, 2, 0,−1]

• Weyl module : V [0, 2, 1] of dimension 60.
• L(λ) is a 60−dimensional quotient of V [0, 2, 1].

Decomposition of L(λ) under action of e43 : 6J1 ⊕ 6J2 ⊕ 14J3.

J1 : y2y3v0 + y5v0 (u1)

J1 : y3y4v0 + 2y6v0 (u2)

J1 : y
(2)
2 y3y6v0 + 2y4y

(2)
5 v0 (u3)

J1 : 2y2y3y4y6v0 + y2y
(2)
6 v0 + y4y5y6v0 (u4)

J1 : y
(2)
2 y5y

(2)
6 v0 (u5)

J1 : y
(2)
2 y

(3)
6 v0 (u6)

J2 : v0 → y3v0 (w1)

J2 : y2y3y4v0 + 2y2y6v0 → 2y3y4y5v0 + y5y6v0 (w2)

J2 : y
(2)
2 y5y6v0 → 2y2y

(2)
5 y6v0 (w3)

J2 : y2y4y5y6v0 → y2y5y
(2)
6 v0 + y

(2)
2 y3y

(2)
6 v0 (w4)

J2 : y
(2)
2 y

(2)
6 v0 → 2y2y5y

(2)
6 v0 + y

(2)
2 y3y

(2)
6 v0 (w5)

J2 : y2y4y
(2)
6 v0 → 2y2y

(3)
6 v0 (w6)

Action map



40 APPENDIX

u1 u2 u3 u4 u5 u6 w1 w2 w3 w4 w5 w6

y1 u2 0 2u4 0 u6 0 0 0 w4 + 2w5 0 w6 0
x1 0 u1 0 2u3 0 u5 0 0 0 0 w3 w4 + 2w5

h14 − h15 u1 2u2 2u3 0 0 u6 w1 2w2 2w3 0 0 w6

h13 − h14 + h15 0 0 2u3 2u4 u5 u6 w1 w2 0 0 0 0
y2 → −y5 0 w2 w3 2w4 + 2w5 0 0 2u1 0 0 2u5 u5 u6
y4 → −y6 2w2 0 w5 2w6 0 0 2u2 0 2u5 2u6 0 0
x5 → x2 w1 0 2w2 0 2w4 + 2w5 2w6 0 u2 u3 u4 2u4 0
x6 → x4 0 w1 0 0 w3 w5 0 2u1 0 u3 0 2u4

9. Dominant Weight: λ = [2, 2, 0,−2]
• Weyl module : V [0, 2, 2] of dimension 126.
• L(λ) is a 126−dimensional quotient of V [0, 2, 2].

Decomposition of L(λ) under action of e43 : 6J1 ⊕ 6J2 ⊕ 36J3.

J1 : 2y2y
(2)
5 y6v0 + y

(2)
2 y3y5y6v0 + 2y4y

(3)
5 v0 (u1)

J1 : y2y3y4y5y6v0 + 2y
(2)
2 y3y

(2)
6 v0 + y4y

(2)
5 y6v0 (u2)

J1 : 2y2y3y4y
(2)
6 v0 + y2y

(3)
6 v0 + y4y5y

(2)
6 v0 (u3)

J1 : y
(2)
2 y

(2)
5 y

(2)
6 v0 (u4)

J1 : y
(2)
2 y5y

(3)
6 v0 (u5)

J1 : y
(2)
2 y

(4)
6 v0 (u6)

J2 : y
(2)
2 y

(2)
5 y6v0 → 2y2y

(3)
5 y6v0 (w1)

J2 : y2y4y
(2)
5 y6v0 → y

(2)
2 y3y5y

(2)
6 v0 (w2)

J2 : y
(2)
2 y5y

(2)
6 v0 → y2y

(2)
5 y

(2)
6 v0 + y

(2)
2 y3y5y

(2)
6 v0 (w3)

J2 : y2y4y5y
(2)
6 v0 → y2y5y

(3)
6 v0 + y

(2)
2 y3y

(3)
6 v0 (w4)

J2 : y
(2)
2 y

(3)
6 v0 → 2y2y5y

(3)
6 v0 + y

(2)
2 y3y

(3)
6 v0 (w5)

J2 : y2y4y
(3)
6 v0 → 2y2y

(4)
6 v0 (w6)

Action map

u1 u2 u3 u4 u5 u6 w1 w2 w3 w4 w5 w6

y1 u2 u3 0 u5 2u6 0 w2 + w3 w5 w4 w6 w6 0
x1 0 2u1 2u2 0 2u4 u5 0 2w1 2w1 w2 + w3 w3 w4 + 2w5

h14 − h15 u1 2u2 0 2u4 0 u6 w1 2w2 2w3 0 0 w6

h13 − h14 + h15 u1 u2 u3 0 0 0 2w1 2w2 2w3 2w4 2w5 2w6

y2 → −y5 2w1 2w2 2w4 + w5 0 0 0 0 0 2u4 2u5 u5 u6
y4 → −y6 w3 w4 w6 0 0 0 2u4 2u5 0 0 u6 0
x5 → x2 0 0 0 2w2 + 2w3 2w4 + w5 2w6 u1 2u2 u2 u3 2u3 0
x6 → x4 0 0 0 w1 w3 w5 0 u1 0 u2 0 2u3

10. Dominant Weight: λ = [2, 1, 1, 1]

• Weyl module : V [1, 0, 0] of dimension 4.
• L(λ) is a 4−dimensional quotient of V [1, 0, 0].
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Decomposition of L(λ) under action of e43 : 2J1 ⊕ J2.
J1 : v0 (u1)

J1 : y1v0 (u2)

J2 : y4v0 → 2y6v0 (w1)

u1 u2 w1

y1 u2 0 0
x1 0 u1 0
h14 − h15 0 u2 w1

h13 − h14 + h15 u1 u2 2w1

y2 → −y5 0 2w1 0
y4 → −y6 w1 0 0
x5 → x2 0 0 u2
x6 → x4 0 0 2u1

11. Dominant Weight: λ = [2, 1, 1, 0]

• Weyl module : V [1, 0, 1] of dimension 15.
• L(λ) is a 15−dimensional quotient of V [1, 0, 1].

Decomposition of L(λ) under action of e43 : 4J1 ⊕ 4J2 ⊕ J3.
J1 : y5v0 (u1)

J1 : y1y5v0 (u2)

J1 : y3y4v0 + 2y6v0 (u3)

J1 : y1y6v0 (u4)

J2 : v0 → y3v0 (w1)

J2 : y1v0 → y1y3v0 (w2)

J2 : y4y5v0 → 2y5y6v0 (w3)

J2 : y4y6v0 → 2y
(2)
6 v0 (w4)

Action map

u1 u2 u3 u4 w1 w2 w3 w4

y1 u2 2u4 2u4 0 w2 0 w4 0
x1 0 2u1 2u1 u2 0 w1 0 w3

h14 − h15 2u1 0 0 u4 2w1 0 0 w4

h13 − h14 + h15 0 0 0 0 2w1 2w2 w3 w4

y2 → −y5 0 2w3 w3 2w4 u1 u2 + u3 0 0
y4 → −y6 w3 w4 0 0 2u3 u4 0 0
x5 → x2 w1 w2 2w2 0 0 0 u2 + u3 u4
x6 → x4 0 w1 0 w2 0 0 2u1 u3



42 APPENDIX

12. Dominant Weight: λ = [2, 1, 1,−1]

• Weyl module : V [1, 0, 2] of dimension 36.
• L(λ) is a 36−dimensional quotient of V [1, 0, 2].

Decomposition of L(λ) under action of e43 : 6J1 ⊕ 6J2 ⊕ 6J3.

J1 : y
(2)
5 v0 (u1)

J1 : y1y
(2)
5 v0 (u2)

J1 : y3y4y5v0 + 2y5y6v0 (u3)

J1 : 2y1y5y6v0 + y3y4y6v0 (u4)

J1 : y3y4y6v0 + 2y
(2)
6 v0 (u5)

J1 : y1y
(2)
6 v0 (u6)

J2 : y5v0 → y3y5v0 (w1)

J2 : y1y5v0 → y1y3y5v0 (w2)

J2 : y1y6v0 → y1y3y6v0 (w3)

J2 : y4y
(2)
5 v0 → 2y

(2)
5 y6v0 (w4)

J2 : y4y5y6v0 → 2y5y
(2)
6 v0 (w5)

J2 : y4y
(2)
6 v0 → 2y

(3)
6 v0 (w6)

u1 u2 u3 u4 u5 u6 w1 w2 w3 w4 w5 w6

y1 u2 u1 u4 2u6 2u6 0 w2 2w3 0 w5 2w6 0
x1 0 0 u1 u2 + u3 u3 2u4 + u5 0 2w1 w2 0 2w4 w5

h14 − h15 u1 2u2 2u3 0 0 u6 w1 2w2 0 2w4 0 w6

h13 − h14 + h15 2u1 2u2 2u3 2u4 2u5 2u6 w1 w2 w3 0 0 0
y2 → −y5 0 2w4 2w4 2w5 w5 2w6 2u1 2u2 + u3 2u4 + 2u5 0 0 0
y4 → −y6 w4 w5 0 0 w6 0 2u3 2u4 2u6 0 0 0
x5 → x2 w1 w2 2w2 w3 2w3 0 0 0 0 u2 + u3 2u4 + 2u5 u6
x6 → x4 0 w1 0 2w2 0 w3 0 0 0 2u1 u3 u5

13. Dominant Weight: λ = [2, 1, 0, 0]

• Weyl module : V [1, 1, 0] of dimension 20.
• L(λ) is a 16−dimensional quotient of V [1, 1, 0].

Decomposition of L(λ) under action of e43 : 2J1 ⊕ 4J2 ⊕ 2J3.

J1 : v0 (u1)

J1 : y1v0 (u2)

J2 : y2v0 → 2y5v0 (w1)

J2 : y1y2v0 → 2y1y5v0 (w2)

J2 : y1y4v0 → 2y1y6v0 (w3)
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J2 : y2y4y6v0 → 2y2y
(2)
6 v0 (w4)

Action map

u1 u2 w1 w2 w3 w4

y1 u2 0 w2 2w3 0 0
x1 0 u1 0 2w1 w2 0
h14 − h15 u1 2u2 w1 2w2 0 0
h13 − h14 + h15 0 0 w1 w2 w3 0
y2 → −y5 w1 2w2 0 0 0 0
y4 → −y6 2w2 w3 0 0 0 0
x5 → x2 0 0 2u1 2u2 0 0
x6 → x4 0 0 0 2u1 2u2 0

14. Dominant Weight: λ = [2, 1, 0,−1]

• Weyl module : V [1, 1, 1] of dimension 64.
• L(λ) is a 44−dimensional quotient of V [1, 1, 1].

Decomposition of L(λ) under action of e43 : 2J1 ⊕ 6J2 ⊕ 10J3.

J1 : y1y2y3v0 + 2y6v0 (u1)

J1 : 2y1y2y5y6v0 + 2y2y3y4y6v0 (u2)

J2 : v0 → y3v0 (w1)

J2 : y1v0 → y1y3v0 (w2)

J2 : y2y5v0 → 2y
(2)
5 v0 (w3)

J2 : y1y4y6v0 → 2y1y
(2)
6 v0 (w4)

J2 : y2y4y5y6v0 → 2y2y5y
(2)
6 v0 (w5)

J2 : y2y4y
(2)
6 v0 → 2y2y

(3)
6 v0 (w6)

Action Map

u1 u2 w1 w2 w3 w4 w5 w6

y1 0 0 w2 0 0 0 w6 0
x1 0 0 0 w1 0 0 0 w5

h14 − h15 u1 2u2 0 w2 0 0 2w5 0
h13 − h14 + h15 2u1 2u2 w1 w2 0 0 2w5 2w6

y2 → −y5 0 2w5 0 u1 0 0 0 0
y4 → −y6 0 2w6 2u1 0 0 0 0 0
x5 → x2 2w2 0 0 0 0 0 2u2 0
x6 → x4 w1 0 0 0 0 0 0 2u2

15. Dominant Weight: λ = [2, 1, 0,−2]

• Weyl module : V [1, 1, 2] of dimension 140.
• L(λ) is a 116−dimensional quotient of V [1, 1, 2].
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Decomposition of L(λ) under action of e43 : 4J1 ⊕ 8J2 ⊕ 32J3.

J1 : y1y2y5y
(2)
6 v0 + y2y3y4y

(2)
6 v0 + 2y2y

(3)
6 v0 (u1)

J1 : 2y1y2y
(2)
5 y6v0 + y2y3y4y5y6v0 + y2y5y

(2)
6 v0 (u2)

J1 : y1y3y4y6v0 + 2y1y
(2)
6 v0 (u3)

J1 : y2y3y5v0 (u4)

J2 : 2y1y2y3v0 + 2y6v0 → y1y2y
(2)
3 v0 + y1y3y5v0 + 2y3y6v0 (w8)

J2 : y2y
(2)
5 v0 → 2y

(3)
5 v0 (w7)

J2 : y1y2y
(2)
5 v0 → 2y1y

(3)
5 v0 (w6)

J2 : y1y4y5y6v0 → 2y1y5y
(2)
6 v0 + 2y

(3)
6 v0 (w5)

J2 : y1y4y
(2)
6 v0 → 2y1y

(3)
6 v0 (w4)

J2 : y2y4y
(2)
5 y6v0 → 2y2y

(2)
5 y

(2)
6 v0 (w3)

J2 : y2y4y5y
(2)
6 v0 → 2y2y5y

(3)
6 v0 (w2)

J2 : y2y4y
(3)
6 v0 → 2y2y

(4)
6 v0 (w1)

Action Map

u4 u3 u2 u1 w8 w7 w6 w5 w4 w3 w2 w1

y1 0 0 u1 0 0 w6 0 w4 0 w2 2w1 0
x1 0 0 0 u2 0 0 w7 0 w5 0 2w3 w2

h14 − h15 2u4 2u3 u2 2u1 0 2w7 0 2w5 0 w3 2w2 0
h13 − h14 + h15 u4 u3 0 0 0 2w7 2w6 2w5 2w4 w3 w2 w1

y2 → −y5 w7 w5 2w3 w2 0 0 0 0 0 0 0 0
y4to− y6 w6 w4 w2 2w1 0 0 0 0 0 0 0 0
x5 → x2 0 0 0 0 0 u4 0 u3 0 u2 u1 0
x6 → x4 0 0 0 0 0 0 u4 0 u3 0 u2 u1

16. Dominant Weight: λ = [2, 1,−1,−1]
• Weyl module : V [1, 2, 0] of dimension 60.
• L(λ) is a 60−dimensional quotient of V [1, 2, 0].

Decomposition of L(λ) under action of e43 : 6J1 ⊕ 6J2 ⊕ 14J3.

J1 : v0 (u6)

J1 : y1v0 (u5)

J1 : y2y6v0 + 2y4y5v0 (u4)

J1 : y1y2y6v0 + 2y1y4y5v0 (u3)

J1 : y2y4y5y6v0 (u2)

J1 : 2y1y
(2)
2 y

(2)
6 v0 + 2y2y4y

(2)
6 v0 (u1)
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J2 : y2v0 → 2y5v0 (w6)

J2 : y1y2v0 → 2y1y5v0 (w5)

J2 : y4v0 → 2y6v0 (w4)

J2 : y1y4v0 → 2y1y6v0 (w3)

J2 : 2y1y
(2)
2 y6v0 + 2y2y4y6v0 → y1y2y5y6v0 + y2y

(2)
6 v0 + y4y5y6v0 (w2)

J2 : y
(2)
2 y4y

(2)
6 v0 → 2y

(2)
2 y

(3)
6 v0 (w1)

Action Map

u6 u5 u4 u3 u2 u1 w6 w5 w4 w3 w2 w1

y1 u5 0 u3 0 2u1 0 w5 2w3 w3 0 0 0
x1 0 u6 0 u4 0 2u2 0 2w6 w6 w5 0 0
h14 − h15 2u6 0 0 u3 u2 2u1 2w6 0 0 w3 w2 2w1

h13 − h14 + h15 2u6 2u5 u4 u3 0 0 0 0 0 0 2w2 w1

y2 → −y5 w6 2w4 + w5 0 0 0 2w1 0 u4 0 u3 u2 0
y4 → −y6 w4 w3 0 0 2w1 0 2u4 2u3 0 0 2u1 0
x5 → x2 0 0 w4 + 2w5 2w3 2w2 0 u6 u5 u5 0 0 2u1
x6 → x4 0 0 w6 w4 0 w2 0 u6 0 u5 0 2u2

17. Dominant Weight: λ = [2, 1,−1,−2]

• Weyl module : V [1, 2, 1] of dimension 175.
• L(λ) is a 156−dimensional quotient of V [1, 2, 1].

Decomposition of L(λ) under action of e43 : 7J1 ⊕ 4J2 ⊕ 47J3.

J1 : y2y3v0 + y5v0 (u7)

J1 : y1y2y3v0 + y1y5v0 (u6)

J1 : y1y3y4v0 + 2y1y6v0 (u5)

J1 : y1y2y5y6v0 + y1y
(2)
2 y3y6v0 + y1y4y

(2)
5 v0 + y2y3y4y6v0 + 2y2y

(2)
6 v0 + 2y3y

(2)
4 y5v0 (u4)

J1 : y2y4y
(2)
5 y6v0 (u3)

J1 : 2y1y
(2)
2 y5y

(2)
6 v0 + 2y2y4y5y

(2)
6 v0 + y

(2)
2 y

(3)
6 v0 (u2)

J1 : 2y1y
(2)
2 y

(3)
6 v0 + 2y2y4y

(3)
6 v0 (u1)

J2 : 1v0 → y3v0 (w4)

J2 : y1v0 → y1y3v0 (w3)

J2 : y
(2)
2 y4y5y

(2)
6 v0 → 2y

(2)
2 y5y

(3)
6 v0 (w2)

J2 : y
(2)
2 y4y

(3)
6 v0 → 2y

(2)
2 y

(4)
6 v0 (w1)

Action Map
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u7 u6 u5 u4 u3 u2 u1 w4 w3 w2 w1

y1 u6 2u5 0 0 2u2 2u1 0 w3 0 w1 0
x1 0 2u7 u6 0 0 u3 u2 0 w4 0 w2

h14 − h15 u7 2u6 0 0 0 u2 2u1 w4 2w3 w2 2w1

h13 − h14 + h15 u7 u6 u5 0 2u3 2u2 2u1 0 0 0 0
y2 → −y5 0 0 0 0 0 2w2 2w1 2u7 u6 0 0
y4 → −y6 0 0 0 0 2w2 w1 0 u6 2u5 0 0
x5 → x2 w4 w3 0 0 0 0 0 0 0 u2 2u1
x6 → x4 0 w4 w3 0 0 0 0 0 0 2u3 2u2

18. Dominant Weight: λ = [2, 1,−1,−3]
• Weyl module : V [1, 2, 2] of dimension 360.
• L(λ) is a 360−dimensional quotient of V [1, 2, 2].

Decomposition of L(λ) under action of e43 : 6J1 ⊕ 6J2 ⊕ 1147J3.

J1 : y2y4y
(3)
5 y6v0 (u6)

J1 : 2y1y
(2)
2 y

(2)
5 y

(2)
6 v0 + 2y2y4y

(2)
5 y

(2)
6 v0 + y

(2)
2 y5y

(3)
6 v0 (u5)

J1 : y2y4y
(2)
5 y

(2)
6 v0 + y

(2)
2 y3y4y5y

(2)
6 v0 + 2y

(2)
2 y5y

(3)
6 v0 (u4)

J1 : 2y1y
(2)
2 y5y

(3)
6 v0 + y2y4y5y

(3)
6 v0 + y

(2)
2 y3y4y

(3)
6 v0 + y

(2)
2 y

(4)
6 v0 (u3)

J1 : 2y2y4y5y
(3)
6 v0 + y

(2)
2 y3y4y

(3)
6 v0 + 2y

(2)
2 y

(4)
6 v0 (u2)

J1 : 2y1y
(2)
2 y

(4)
6 v0 + 2y2y4y

(4)
6 v0 (u1)

J2 : 2y1y
(2)
2 y

(2)
5 y6v0 + 2y2y4y

(2)
5 y6v0 → y1y2y

(3)
5 y6v0 + 2y2y3y4y

(2)
5 y6v0 (w6)

J2 : y1y
(2)
2 y5y

(2)
6 v0 + 2y2y3y

(2)
4 y5y6v0 + 2y2y4y5y

(2)
6 v0 →

y1y2y
(2)
5 y

(2)
6 v0 + y1y

(2)
2 y3y5y

(2)
6 v0 + 2y2y3y4y5y

(2)
6 v0 + y

(2)
2 y

(2)
3 y4y

(2)
6 v0 + 2y4y

(2)
5 y

(2)
6 v0 (w5)

J2 : y1y
(2)
2 y

(3)
6 v0 + 2y2y3y

(2)
4 y

(2)
6 v0 → 2y1y2y5y

(3)
6 v0 + y1y

(2)
2 y3y

(3)
6 v0 + y2y

(4)
6 v0 + 2y4y5y

(3)
6 v0 (w4)

J2 : y
(2)
2 y4y

(2)
5 y

(2)
6 v0 → 2y

(2)
2 y

(2)
5 y

(3)
6 v0 (w3)

J2 : y
(2)
2 y4y5y

(3)
6 v0 → 2y

(2)
2 y5y

(4)
6 v0 (w2)

J2 : y
(2)
2 y4y

(4)
6 v0 → 2y

(2)
2 y

(
65)v0 (w1)

Action map

u6 u5 u4 u3 u2 u1 w6 w5 w4 w3 w2 w1

y1 2u5 u3 + 2u2 u3 u1 u1 0 2w5 w4 0 w2 2w1 0
x1 0 0 u6 u4 + u5 u4 u2 0 w6 w5 0 2w3 w2

h14 − h13 2u6 0 0 u3 u2 2u1 2w6 0 w4 0 w2 2w1

h13 − h14 + h15 u6 u5 u4 u3 u2 u1 0 0 0 2w3 2w2 2w1

y2 → −y5 0 2w3 2w3 0 w2 2w1 2u6 u5 2u3 0 0 0
y4 → −y6 2w3 w2 2w2 w1 0 0 2u5 u2 2u1 0 0 0
x5 → x2 2w6 2w5 0 w4 w4 0 0 0 0 2u5 u3 2u1
x6 → x4 0 w6 0 2w5 0 0 0 0 0 2u6 u4 u2
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19. Dominant Weight: λ = [2, 0, 0, 0]

• Weyl module : V [2, 0, 0] of dimension 10.
• L(λ) is a 10−dimensional quotient of V [2, 0, 0].

Decomposition of L(λ) under action of e43 : 3J1 ⊕ 2J2 ⊕ J3.
J1 : v0 (u3)

J1 : y1v0 (u2)

J1 : y
(2)
1 v0 (u1)

J2 : y4v0 → y6v0 (w2)

J2 : y1y4v0 → y1y6v0 (w1)

Action Map

u3 u2 u1 w2 w1

y1 u2 2u1 0 w1 0
x1 0 21v0 u2 0 w2

h14 − h15 0 u2 2u1 w2 2w1

h13 − h14 + h15 2u3 2u2 2u1 0 0
y2 → −y5 0 2w2 2w1 0 0
y4 → −y6 w2 w1 0 0 0
x5 → x2 0 0 0 u2 2u1
x6 → x4 0 0 0 u3 2u2

20. Dominant Weight: λ = [2, 0, 0,−1]
• Weyl module : V [2, 0, 1] of dimension 36.
• L(λ) is a 36−dimensional quotient of V [2, 0, 1].

Decomposition of L(λ) under action of e43 : 6J1 ⊕ 6J2 ⊕ 6J3.

J1 : y5v0 (u6)

J1 : y1y5v0 (u5)

J1 : y3y4v0 + 2y6v0 (u4)

J1 : y1y3y4v0 + 2y1y6v0 (u3)

J1 : y
(2)
1 y5v0 (u2)

J1 : y
(2)
1 y6v0 (u1)

J2 : 1v0 → y3v0 (w6)

J2 : y1v0 → y1y3v0 (w5)

J2 : y
(2)
1 v0 → y

(2)
1 y3v0 (w4)

J2 : y4y5v0 → 2y5y6v0 (w3)

J2 : y1y4y5v0 → 2y1y5y6v0 (w2)

J2 : y1y4y6v0 → 2y1y
(2)
6 v0 (w1)
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Action Map

u6 u5 u4 u3 u2 u1 w6 w5 w4 w3 w2 w1

y1 u5 2u2 u3 u1 0 0 w5 2w4 0 w2 2w1 0
x1 0 0 2u6 u5 + u4 2u5 u2 0 2w6 w5 0 2w3 w2

h14 − h15 2u6 0 0 u3 u2 2u1 2w6 0 w4 0 w2 2w1

h13 − h14 + h15 u6 u5 u4 u3 u2 u1 0 0 0 2w3 2w2 2w1

y2 → −y5 0 2w3 w3 w2 2w2 2w1 u6 u5 + u4 u3 + u2 0 0 0
y4 → −y6 w3 w2 0 0 w1 0 2u4 2u3 u1 0 0 0
x5 → x2 w6 w5 2w5 w4 w4 0 0 0 0 u5 + u4 u3 + 2u2 2u1
x6 → x4 0 w6 w6 0 w5 w4 0 0 0 u6 2u5 + u4 u3

21. Dominant Weight: λ = [2, 0, 0,−2]

• Weyl module : V [2, 0, 2] of dimension 84.
• L(λ) is a 69−dimensional quotient of V [2, 0, 2].

Decomposition of L(λ) under action of e43 : 4J1 ⊕ 4J2 ⊕ 19J3.

J1 : y
(2)
5 v0

J1 : y1y
(2)
5 v0

J1 : y1y3y4y6v0 + 2y1y
(2)
6 v0

J1 : y
(2)
1 y

(2)
6 v0

J2 : y5v0 → y3y5v0

J2 : y
(2)
1 y6v0 → y

(2)
1 y3y6v0

J2 : y4y
(2)
5 v0 → 2y

(2)
5 y6v0

J2 : y1y4y
(2)
6 v0 → 2y1y

(3)
6 v0

Action Map

u4 u3 u2 u1 w4 w3 w2 w1

y1 u3 0 u1 0 0 0 0 0
x1 0 u4 0 u2 0 0 0 0
h14 − h15 u4 2u3 u2 2u1 w4 w3 2w2 2w1

h13 − h14 + h15 0 0 0 0 2w4 2w3 w2 w1

y2 → −y5 0 2w2 0 2w1 2u4 2u2 0 0
y4 → −y6 w2 0 w1 0 2u3 2u1 0 0
x5 → x2 w4 0 w3 0 0 0 2u3 2u1
x6 → x4 0 w4 0 w3 0 0 u4 u2

22. Dominant Weight: λ = [2, 0,−1,−1]

• Weyl module : V [2, 1, 0] of dimension 45.
• L(λ) is a 45−dimensional quotient of V [2, 1, 0].
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Decomposition of L(λ) under action of e43 : 6J1 ⊕ 6J2 ⊕ 9J3.

J1 : v0 (u6)

J1 : y1v0 (u5)

J1 : y
(2)
1 v0 (u4)

J1 : y2y6v0 + 2y4y5v0 (u3)

J1 : y1y2y6v0 + 2y1y4y5v0 (u2)

J1 : 2y1y4y6v0 + 2y
(2)
1 y2y6v0 (u1)

J2 : y2v0 → 2y5v0 (w6)

J2 : y1y2v0 → 2y1y5v0 (w5)

J2 : y4v0 → 2y6v0 (w4)

J2 : y1y4v0 → 2y1y6v0 (w3)

J2 : y
(2)
1 y2v0 → 2y

(2)
1 y5v0 (w2)

J2 : y
(2)
1 y4v0 → 2y

(2)
1 y6v0 (w1)

Action Map
u6 u5 u4 u3 u2 u1 w6 w5 w4 w3 w2 w1

y1 u5 2u4 0 u2 2u1 0 w5 2w2 w3 2w1 0 0
x1 0 2u6 u5 0 2u3 u2 0 0 w6 w4 + w5 2w5 w2

h14 − h15 u6 2u5 0 2u3 0 u1 w6 2w5 2w4 0 0 w1

h13 − h14 + h15 u6 u5 u4 0 0 0 2w6 2w5 2w4 2w3 2w2 2w1

y2 → −y5 w6 2w4 + w5 2w3 + w2 0 0 0 0 u3 u3 u2 u2 u1
y4 → −y6 w4 w3 w1 0 0 0 2u3 2u2 0 0 2u1 0
x5 → x2 0 0 0 2w4 + 2w5 2w3 + w2 2w1 2u6 2u5 u5 2u4 2u4 0
x6 → x4 0 0 0 w6 2w4 2w3 + 2w2 0 2u6 0 u5 2u5 2u4

23. Dominant Weight: λ = [2, 0,−1,−2]
• Weyl module : V [2, 1, 1] of dimension 140.
• L(λ) is a 116−dimensional quotient of V [2, 1, 1].

Decomposition of L(λ) under action of e43 : 4J1 ⊕ 8J2 ⊕ 32J3.

J1 : y3y4v0 + 2y6v0 (u4)

J1 : y1y3y4v0 + 2y1y6v0 (u3)

J1 : y2y5y6v0 + 2y4y
(2)
5 v0 (u2)

J1 : 2y1y4y
(2)
6 v0 + 2y

(2)
1 y2y

(2)
6 v0 (u1)

J2 : v0 → y3v0 (w8)

J2 : y1v0 → y1y3v0 (w7)

J2 : y
(2)
1 v0 → y

(2)
1 y3v0 (w6)

J2 : y2y5v0 → 2y
(2)
5 v0 (w5)

J2 : y1y2y5v0 → 2y1y
(2)
5 v0 (w4)

J2 : 2y1y4y6v0 + 2y
(2)
1 y2y6v0 → 2y1y3y4y6v0 + y

(2)
1 y2y3y6v0 (w3)
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J2 : y
(2)
1 y4y6v0 → 2y

(2)
1 y

(2)
6 v0 (w2)

J2 : y1y2y4y5y6v0 + 2y2y3y
(2)
4 y6v0 → 2y1y2y5y

(2)
6 v0 + 2y2y3y4y

(2)
6 v0 (w1)

Action Map

u4 u3 u2 u1 w8 w7 w6 w5 w4 w3 w2 w1

y1 u3 0 0 0 w7 2w6 0 w4 0 w2 0 0
x1 0 u4 0 0 0 2w8 w7 0 w5 0 0 0
h14 − h15 u4 2u3 u2 u1 0 w7 2w6 0 w4 0 w2 0
h13 − h14 + h15 0 0 2u2 2u1 2w8 2w7 2w6 w5 w4 w3 w2 0
y2 → −y5 0 0 0 0 0 u4 u3 0 u2 0 u1 0
y4 → −y6 0 0 0 0 2u4 2u3 0 2u2 0 0 0 0
x5 → x2 2w7 w6 2w4 2w2 0 0 0 0 0 0 0 0
x6 → x4 2w8 w7 w5 w3 0 0 0 0 0 0 0 0

24. Dominant Weight: λ = [2, 0,−1,−3]

• Weyl module : V [2, 1, 2] of dimension 300.
• L(λ) is a 294−dimensional quotient of V [2, 1, 2].

Decomposition of L(λ) under action of e43 : 8J1 ⊕ 8J2 ⊕ 90J3.

J1 : y2y3y5v0 (u8)

J1 : y1y2y3y5v0 (u7)

J1 : 2y1y3y4y6v0 + y1y
(2)
6 v0 + y

(2)
1 y2y3y6v0 + y

(2)
1 y3y4y5v0 + y

(2)
1 y5y6v0 (u6)

J1 : y
(2)
1 y3y4y6v0 + 2y

(2)
1 y

(2)
6 v0 (u5)

J1 : y2y
(2)
5 y6v0 + 2y4y

(3)
5 v0 (u4)

J1 : y1y2y
(2)
5 y6v0 + 2y1y4y

(3)
5 v0 (u3)

J1 : 2y1y4y5y
(2)
6 v0 + 2y

(2)
1 y2y5y

(2)
6 v0 + y3y

(2)
4 y

(2)
6 v0 (u2)

J1 : 2y1y4y
(3)
6 v0 + 2y

(2)
1 y2y

(3)
6 v0 (u1)

J2 : y2y
(2)
5 v0 → 2y

(3)
5 v0 (w8)

J2 : y1y2y
(2)
5 v0 → 2y1y

(3)
5 v0 (w7)

J2 : 2y2y3y4y5v0 + 2y2y5y6v0 → y2y3y5y6v0 (w6)

J2 : 2y1y2y3y4y5v0 + 2y1y2y5y6v0 → y1y2y3y5y6v0 (w5)

J2 : y1y2y3y4y6v0+y1y2y
(2)
6 v0+y

(2)
1 y2y5y6v0+2y4y

(2)
6 v0 →

y1y2y3y
(2)
6 v0+2y1y2y

(2)
3 y4y6v0+2y1y3y4y5y6v0+2y1y5y

(2)
6 v0+y

(2)
1 y2y3y5y6v0+y

(2)
1 y

(2)
5 y6v0+2y3y4y

(2)
6 v0 (w4)

J2 : 2y1y4y
(2)
6 v0 + 2y

(2)
1 y2y

(2)
6 v0 → 2y1y3y4y

(2)
6 v0 + 2y

(2)
1 y2y3y

(2)
6 v0 + y

(2)
1 y5y

(2)
6 v0 (w3)

J2 : y
(2)
1 y4y5y6v0 → 2y1y3y4y

(2)
6 v0 + 2y1y

(3)
6 v0 + 2y

(2)
1 y2y3y

(2)
6 v0 (w2)

J2 : y
(2)
1 y4y

(2)
6 v0 → 2y

(2)
1 y

(3)
6 v0 (w1)
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u8 u7 u6 u5 u4 u3 u2 u1 w8 w7 w6 w5 w4 w3 w2 w1

y1 u7 0 u5 0 u3 0 u1 0 w7 0 w5 0 w2 + w3 w1 0 0
x1 0 u8 0 u6 0 u4 0 u2 0 2w8 2w8 2w7 0 2w4 0 w2 + 2w3

h14 − h15 2u8 0 2u6 0 0 u3 0 u1 2w8 0 0 w5 2w4 0 0 w1

h13 − h14 + h15 2u8 2u7 2u6 2u5 u4 u3 u2 u1 0 0 0 0 0 0 0 0
y2 → −y5 w8 w7 + w8 w4 w2 + w3 0 0 0 0 0 u4 2u4 2u3 0 u2 2u2 u1
y4 → −y6 2w6 2w5 w3 w1 0 0 0 0 2u4 2u3 0 0 u2 0 2u1 0
x5 → x2 0 0 0 0 2w7 + 2w8 0 2w2 + 2w3 2w1 u8 u7 0 0 2u6 u5 2u5 0
x6 → x4 0 0 0 0 w8 2w6 2w4 w3 0 u8 0 2u7 0 0 u6 u5

25. Dominant Weight: λ = [2, 0,−2,−2]
• Weyl module : V [2, 2, 0] of dimension 126.
• L(λ) is a 126−dimensional quotient of V [2, 2, 0].

Decomposition of L(λ) under action of e43 : 6J1 ⊕ 6J2 ⊕ 36J3.

J1 : v0 (u6)

J1 : y1v0 (u5)

J1 : y
(2)
1 v0 (u4)

J1 : y2y6v0 + 2y4y5v0 (u3)

J1 : y1y2y6v0 + 2y1y4y5v0 (u2)

J1 : y
(2)
1 y2y6v0 + 2y

(2)
1 y4y5v0 (u1)

J2 : y2v0 → 2y5v0 (w6)

J2 : y1y2v0 → 2y1y5v0 (w5)

J2 : y4v0 → 2y6v0 (w4)

J2 : y1y4v0 → 2y1y6v0 (w3)

J2 : y
(2)
1 y2v0 → 2y

(2)
1 y5v0 (w2)

J2 : y
(2)
1 y4v0 → 2y

(2)
1 y6v0 (w1)

Action Map
u6 u5 u4 u3 u2 u1 w6 w5 w4 w3 w2 w1

y1 u5 2u4 0 u2 2u1 0 w5 2w2 w3 2w1 0 0
x1 0 2u6 u5 0 2u3 u2 0 0 w6 w4 + w5 2w5 w2

h14 − h15 2u6 0 u4 0 u2 2u1 2w6 0 0 w3 w2 2w1

h13 − h14 + h15 0 0 0 2u3 2u2 2u1 w6 w5 w4 w3 w2 w1

y2 → −y5 w6 2w4 + w5 w2 + w3 0 0 0 0 u3 u3 u2 u2 u1
y4 → −y6 w4 w3 w1 0 0 0 2u3 2u2 0 0 2u1 0
x5 → x2 0 0 0 w4 + 2w5 w2 + w3 w1 u6 u5 u5 2u4 u4 0
x6 → x4 0 0 0 2w6 w4 + w5 w3 0 u6 2u6 0 u5 u4

26. Dominant Weight: λ = [2, 0,−2,−3]
• Weyl module : V [2, 2, 1] of dimension 360.
• L(λ) is a 360−dimensional quotient of V [2, 2, 1].

Decomposition of L(λ) under action of e43 : 6J1 ⊕ 6J2 ⊕ 114J3.

J1 : y2y3v0 + y5v0 (u6)

J1 : y1y2y3v0 + y1y5v0 (u5)
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J1 : y3y4v0 + 2y6v0 (u4)

J1 : y1y3y4v0 + 2y1y6v0 (u3)

J1 : y
(2)
1 y2y3v0 + y

(2)
1 y5v0 (u2)

J1 : y
(2)
1 y3y4v0 + 2y

(2)
1 y6v0 (u1)

J2 : v0 → 2y3v0 (w6)

J2 : y1v0 → 2y1y3v0 (w5)

J2 : y
(2)
1 v0 → 2y

(2)
1 y3v0 (w4)

J2 : y2y3y4v0 + 2y2y6v0 → y3y4y5v0 + 2y5y6v0 (w3)

J2 : y1y2y3y4v0 + 2y1y2y6v0 → y1y3y4y5v0 + 2y1y5y6v0 (w2)

J2 : y
(2)
1 y2y3y4v0 + 2y

(2)
1 y2y6v0 → y

(2)
1 y3y4y5v0 + 2y

(2)
1 y5y6v0 (w1)

Action Map

u6 u5 u4 u3 u2 u1 w6 w5 w4 w3 w2 w1

y1 u5 2u2 u3 2u1 0 0 w5 2w4 0 w2 2w1 0
x1 0 0 u6 u4 + u5 2u5 u2 0 2w6 w5 0 2w3 w2

h14 − h15 u6 2u5 2u4 0 0 u1 w6 2w5 0 2w3 0 2w1

h13 − h14 + h15 2u6 2u5 2u4 2u3 2u2 2u1 w6 w5 w4 0 0 0
y2 → −y5 0 2w3 w3 w2 2w2 w1 2u6 2u5 + u4 u3 + 2u2 0 0 0
y4 → −y6 w3 w2 0 0 w1 0 2u4 2u3 2u1 0 0 0
x5 → x2 w6 w5 2w5 w4 w4 0 0 0 0 2u4 + 2u5 u2 + 2u3 2u1
x6 → x4 0 w6 0 2w5 w5 w4 0 0 0 u6 2u4 2u2 + 2u3

27. Dominant Weight: λ = [2, 0,−2,−4]
• Weyl module : V [2, 2, 2] of dimension 729.
• L(λ) is a 729−dimensional quotient of V [2, 2, 2].

Decomposition of L(λ) under action of e43 : 243J3.
Semisimplification is the zero map as all J3 vanish after semisimplification.
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