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ABSTRACT. We show that by using the semisimplification functor, one can explicitly con-
struct restricted representations of gl(m|n) from restricted representations of gl(m-+n(p—1)).
Therefore, by the Steinberg tensor product theorem, a solution to the character problem
for GL(m + n(p — 1)) implies a solution to that for GL(m|n). Moreover, we show that the
semisimplification of a simple module is semisimple and provide a method of decomposing
those modules into simple modules based on highest-weight arguments. We also provide
an algorithm which decomposes the highest weight module, L()), into Jordan blocks to aid
with calculations. Using these theorems and algorithm, we provide explicit calculations in

low rank and characteristic.
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1. INTRODUCTION

A long-standing problem in the representation theory of GL(n) and other algebraic groups
is to compute the characters of simple modules. In characteristic zero, this problem has been
solved. In characteristic p > 0, on the other hand, this problem is notoriously difficult and
has received great attention over the past fifty years.

Therefore, the same problem for algebraic supergroups like G = GL(m|n) is even more
difficult by virtue of being a generalization, and even in characteristic zero the full story is
not known.

In positive characteristic, however, there is a silver lining. The Steinberg tensor product
theorem (see [Ste63}; [Kujo6]) reduces the character problem for G to understanding that for
the first Frobenius kernel G';) of G. Since the distribution algebra of G(y) is finite-dimensional
isomorphic restricted enveloping algebra of the Lie (super)algebra gl(m|n) of G, this reduces
the problem to studying the finitely-many simple restricted modules over gl(m|n).

In general, however, this problem can be hard to tackle and so we need another lens to view
these gl(m|n) modules from. This is where semisimplification comes in; we can semisimplify
gl(m + n(p — 1)) restricted representations to obtain gl(m|n) restricted representations.

More generally, consider a Lie algebra g over an algebraically closed field K with charac-
teristic p. Consider a nilpotent derivation d of order at most p. This can be realized as a
Lie algebra in the category Rep K[t]/(t?) of K[t]/ (") by specializing d to ¢. The semisimpli-
fication of this category is the Verlinde category, Ver,, which contains as a full subcategory
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the category of super vector spaces sVeckg. Therefore, the image g of g under the semisim-
plification functor projected onto this full category is a Lie algebra in sVeck, which is a Lie
superalgebra (see [Kan22|).

1.1. Outline of paper. In §2| we review some basic theory of symmetric tensor categories
and review additional categories relevant to this paper. We finish by proving a general
theorem about the basis elements of the tensor of two indecomposable modules. The resp-
resentation theory of Lie superalgebras is covered in §3] In §4] we review how Lie algebras
behave under the semisimplification functor in Rep «r,. We conclude by proving that the
semisimplification of L(\) as a gl(m + n(p — 1)) module is semisimple and also provide a
method to decompose the semisimplified module into simple modules using highest-weight
arguments. Finally, in §5 we provide a decomposition algorithm to decompose a highest
weight module into its Jordan blocks. We end by computing these semisimplifications in low
rank and characteristic. Finally, Appendix [A] summarizes the explicit action maps for the
gl(m|n) modules and the relevant Jordan blocks in the decomposition. The calculations in
the appendix also verify the computational results obtained in Section §5]

2. SYMMETRIC TENSOR CATEGORY

Throughout this paper, we will assume that the reader has some basic understanding
about symmetric tensor categories. Nonetheless, in this section we provide some exposition
relevant to this paper. A quick reference is [EK23|, and a more comprehensive reference
is [EGNO]. In this paper we will utilize the notation in these references. In particular,
for a symmetric tensor category C, we will use @ to denote direct sum, ® to denote the
monoidal product, * to denote the dual object, Hom to denote hom spaces, 1x to denote
the identity map on X, 1 to denote the unit object, and ¢, X, Y to denote the braiding map
X®Y —- Y ®X for any two objects X,Y € C. We will always supress the associativity
morphism from diagrams and equations.

Throughout this paper, K denotes an algebraically closed field of characteristic p > 0. We
are usually interested when p > 2.

2.1. Algebraic objects in symmetric tensor categories. A symmetric tensor category
can be thought of as a “home” to do algebra. For example, recall that a unital associative
algebra A is a vector space with a bilinear map m : Ax A — A called multiplication such that
m(m(a,b),c) = m(a,m(b,c)) (the associativity property) and such that there is an element
1 € A such that m(1,a) = m(a,1) = a for all a,b,¢c € A. Moreover, A is commutative if
m(a,b) = m(b,a) for all a,b € A.

We can instead phrase the definition in the following, equivalent way. Let C = Veck denote
the category of vector spaces (see . A unital associative algebra is an object A € C
with two maps m: A® A — A and p : 1T — A such that the following diagrams commute.

ARAQA T8, Ao A

idg ®mJ/ lm
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Moreover, we can say A is commutative if m o c4 4 = m. The advantage of this formalism
is that this definition extends to any symmetric tensor category. For instance, if C is the
category of super vector spaces (see , we get the definition of a unital associative
(super-commutative) superalgebra.

In this paper, we extend this viewpoint to Lie algebras. Recall that a Lie algebra over K
is a vector space g endowed with a K-bilinear map S : g X g — g which is anti-symmetric
(assuming char K # 2) and satisfies the Jacobi identity. This can be phrased categorically as
follows. The category Veck of vector spaces over K is a symmetric tensor category endowed
with the usual braiding cxy : X ® Y — Y ® X given by interchanging X and Y, a natural
isomorphism in objects X and Y. Then, a Lie algebra (in the category Veck) is an object
g equipped with a morphism (8 : g ® g — g such that the following relations of morphisms
hold:

1R
1R

Bo(lggg + o)
o (B®1y)o (lges + (123)4es + (132)49s)
where the permutation (123)ges : g% — g®* is given by
(123)ges = (15 ® cq) © (cgq ® 1g),
and the permutation (132)ges : g% — g®3 is given by

=0,
=0,

(132)ges = (cg,g @ 1g) © (15 @ Cqpg)-

The first relation corresponds to the anti-symmetry condition, and the second is the Jacobi
identity. Using these as defining axioms, we can extend the definition to any symmetric
tensor category C with braiding ¢, and call the pair (g, 3) an operadic Lie algebra in C. A
Lie algebra in a symmetric tensor category is an operadic Lie algebra with further imposed
relations (see [EK23], [EGNO]| ) . All operadic Lie algebras we consider in this paper will
satisfy these, so we will drop the adjective “operadic” from now on.

Given an object V' € C, an example of an operadic Lie algebra is the general linear Lie
algebra gl(V) .=V @ V*, where the bracket [ is given by

B =1y ®evy @ Ly« o (Lgv)ag(v) — Cal(V).al(V))
where evy : V*®@V — 1 is the evaluation map and we implicitly apply the unit isomorphism.
This just a categorical rephrasing of the statement [z, y| := xy — yx. Define the trace map
tr: gl(V) — 1 to be the composition
r=vVeV: 25 viev &%,
It can be checked that tr is a Lie algebra homomorphism to the trivial Lie algebra, and

therefore it’s kernel is an ideal of gl(V'). This kernel is referred to as the special linear Lie
algebra sl(V').
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One can continue in this vein to extend familiar notions to arbitrary symmetric tensor
categories. For instance, a bilinear form B : V ® V' — 1 is symmetric if B o cyy = B and
is skew-symmetric if B o cyy = —B. It is non-degenerate if the induced map V' — V* is an
isomorphism.

2.2. Semisimplification. Let C be a symmetric tensor category. For any objects V, W € C,
a negligible morphism is a morphism f : V' — W such that for all morphisms g : W — V|
the trace of the composition f o g is zero. The collection of negligible morphisms in C form a
tensor ideal. The symmetric tensor category obtained by quotienting out by the tensor ideal
of negligible morphisms is called the semisimplification of C, which will denote C.

Intuitively, the effect of this is forcing Schur’s lemma to hold. In other words, the semisim-
plification of a symmetric tensor category is the symmetric tensor category obtained by
declaring all indecomposable objects to be simple, except those whose categorical dimension
is zero, which are sent to zero. We then define the tensor product the same way (for more
details on semisimplification, see [EO21]).

The semisimplification is a semisimple symmetric tensor category by construction. There
is a semisimplification functor from a symmetric tensor category C to its semisimplification
C, and it is symmetric and monoidal. We will denote the images of objects and morphisms
under this functor with an overline. While this functor is neither left nor right exact in
general, it preserves isomorphisms and commutative diagrams, which means, for instance,
that the semisimplification of an operadic Lie algebra is an operadic Lie algebra. Simi-
larly, the semisimplification of a module over an operadic Lie algebra is a module over the
semisimplification of that operadic Lie algebra.

2.3. Relevant symmetric tensor categories. In this subsection, we will describe the
symmetric tensor categories that will be relevant to this paper.

2.3.1. The category of vector spaces. The category Veck of vector spaces is a symmetric
tensor category. The objects of this STC are vector spaces and morphisms are linear maps
between vector spaces. The monoidal structure is given by usual tensor product. The
braiding cyw is given by cyw (v @ w) = w @ v for all v € V and w € W. Notice that this is
the representation category of the trivial group.

2.3.2. The category of super vector spaces. The category sVeck is the symmetric tensor cat-
egory whose objects are Z/27Z-graded vector spaces and morphisms are gradation-preserving
linear maps. In particular, we write a super vector space V as V = V5 @ V4, and let
sdimV = (dim V5| dim V§). Here 0,1 € Z/27Z and distinguish the even and odd subspaces,
respectively. Any vector lying solely in Vg or V5 is said to be homogeneous, and the parity
function | - | : Vg U V§ — Z /27 assigns a homogeneous vector its parity based on whether it
lies in the even or odd subspace. This category has a braiding ¢y given by the Koszul sign
rule:

cvw (v @w) = (=) (w @ v), (2.1)
where v € V and w € W are homogeneous.

An operadic Lie algebra in this category is simply a Lie superalgebra as we know it
(outside characteristic p = 2, 3, where certain relations need to be imposed - this will not be
a concern in this paper, as these relations are satisfied by the Lie algebras we will consider).
In this paper, we will frequently be working with Lie superalgebras, so we point the reader to
[CW12; Musl12|. Also notice that for any Lie superalgebra g its even part gg is an ordinary
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Lie algebra (i.e. a Lie algebra in the category of vector spaces). From now on, when working
with Vecg or sVeck, we will drop the adjective “operadic” when discussing operadic Lie
algebras.

Remark 2.1. Often times when working with the category of super vector spaces, we use the
adjective “super” to distinguish between ordinary algebraic objects and their super analogs.
In this paper, we will drop such adjectives because this is a benefit of working with symmetric
tensor categories. For instance, rather than saying “super-commutative superalgebra”, we
can just say “commutative algebra in sVeck”. Similarly, a Lie algebra in sVeck is just a Lie
superalgebra (modulo concerns about characteristics 2 and 3).

2.3.3. The representation category Rep atp,. Let oy, denote the kernel of the Frobenius endo-
morphism on the additive group scheme G, over K, whose characteristic p is strictly greater
than 0. Its coordinate ring Key, is K[t]/(#?), which is a cocommutative Hopf algebra with
comultiplication defined by letting ¢ be primitive (this only works in characteristic p). The
dual space Ko, of Kay, has basis given by {fo, f1...., f—1}, where f;(t*) = d;i!. The an-
tipode is defined by sending ¢t — —t. The comultiplication on Kex,, gives a multiplication on
Koy where fy is the identity and fif; = fiy; (let f; = 0 for @ > p). Therefore, as algebras,
Kea, and Ko, are isomorphic under the map ¢ — f;. Because modules over the affine
group scheme a, are determined by Kay,-comodules, which themselves are Kay-modules,
we will describe objects in the representation category Rep ay, of «, as finite-dimensional
K[t]/(t?)-modules. For the remainder of this text, the symbol ¢ will be used to refer to the
corresponding element of K[t]/ (7).

The category Rep ay, is a symmetric tensor category with braiding given by the usual
braiding of vector spaces (there is a forgetful functor from Rep e, to Veck). Hence, an
example of a Lie algebra (g, ) in Rep ¢, is a Lie algebra in Vecg equipped with a nilpotent
element x € g of order at most p; then g is a Ka,-module by letting ¢ act as ad z, and 3
is naturally a morphism in Rep ay, by the Jacobi identity (as a Lie algebra in Vecg). More
generally, we can take ¢ to be any nilpotent derivation of order at most p (not necessarily
inner).

The category Rep oy, is not semisimple; indeed, it contains non-simple indecomposable
objects. The pairwise non-isomorphic indecomposable objects are given by the modules
J, = K™ where t acts as the nilpotent Jordan block of size n (1 <n <p). If v, v9,...,0, is
a basis of J, such that t - v; = v;,1, we will use the notation

V1> Vg b= - = Uy

to refer to that particular object J,. Given such a basis of J,, it is a straightforward exercise
to verify that
(S TSP ) (N B L
is a basis for J, where v} is the dual basis defined by v} (v;) = ¢;;.
The following theorem will be useful in doing calculations later on (theorems of this sort
have been studied in the past; for instance, see [L106; Bar22]).

Theorem 2.2. Suppose V' = J,_; is an indecomposable module with basis vy — -+ - — vp_4
and W = Jy is an indecomposable module with basis wy — -+ +— wyp with 1 < k < p—1.
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Then, V@ W = J,_ & (k — 1)J,, where the J,_ is generated by

bk
Z ; Vi @ Wrt1-4,

i=1

where we define (’:) = kel (k=itl)

3!

Proof. We first show that there are (k — 1) linearly independent copies of .J, generated by
vy @ w; for 1 < ¢ < k. Consider a vector of the form v; ® w; for 1 < ¢ < k. Applying
successive powers of t yields
m+1 m
tm(’Ul &® wz) = ; (] _ 1) (% & Witm—j+1-

For m = p—1 the term v,_; ®w; appears with coefficient 1 (which does not vanish modulo p),
and by linear independence cannot be canceled by other terms in the summation. Therefore,
tP~1(vy ® w;) # 0. For m = p, the binomial coefficients (?) vanish modulo p except when
j =0or j = p, but in those cases either the v- or w-component is zero. Thus t*(v; ® w;) = 0.
Therefore, each v, ® w; generates a copy of J,, yielding (k — 1) copies of J, inside V ® W.

Now consider,
L (k
U = Z (Z)Uz & W41

i=1
We claim that the submodule generated by w is isomorphic to J,_. Indeed, applying #/ to

u gives
k .
; k+j
tu = o) Vi ® Wit
> (517 v e

For 7 = p — k, this becomes

k
- Z p
tP k’u = (p _ I Z) Vitp—k X Wh41—i-

i=1
All binomial coefficients vanish modulo p except when ¢ = k, in which case the term remaining
is v, ® w; = 0. Hence t*"u = 0. On the other hand, =" 'y # 0 because the surviving
terms involve v, 1 ® w;, which is nonzero. Thus u generates a Jordan block of length p — k.

Additionally, the vector u is linearly independent from vectors generated in the (k — 1)
copies of J,. To see this, note that if u were a linear combination of t*~/(v; ® w;) for 1 <
i < k, then applying #*~* would yield a nontrivial linear relation among {t*~#(v; ® w;)}*=!,
contradicting the linear independence of these vectors. Therefore u lies outside the span of

the J, summands, and their intersection is trivial.
O

Often times we will have a vector space V' and need to view it as an object in Rep o, with
respect to two different ¢-actions. Therefore, if x : V' — V is a nilpotent endomorphism with
xlPl = 0 (p-fold composition), then we will use the notation (V,z) to refer to the object in
Rep o, where t acts on V' as z.

2.3.4. The Verlinde Category. The Verlinde category Ver, is by definition the semisimpli-
fication of Rep a,. Therefore, the simple objects in Ver, are Ly,..., L, 1, which are the



SEMISIMPLIFICATIONS OF o,-EQUIVARIANT GL,-MODULES 7

images of Ji,...,.J, 1 under the semisimplification functor, respectively, i.e. L; = J;. If
vy — vy — .-+ — v; denotes a J;, we will refer to the corresponding copy of L; by
Uy — vy — - = y; (for i < p). Note that .J, is sent to the zero object as it is p-dimensional,
so its categorical dimension is 0. In terms of negligible morphisms, this is because any se-
quence of morphisms J; — J, — J; and J, — J; — J, for any ¢ has trace zero, so in the
semisimplification there are no nonzero morphisms in or out of the image of J,, meaning its
image is zero. More generally, any map J; — Ji is negligible unless it’s an isomorphism.

It is well known that the tensor product is given by the truncated Clebsch-Gordan rule
(see |Ost20]), which is similar to the usual Clebsch-Gordan rule of s[(2,C)-modules (the
truncation comes from the terms in bold):

min(m,n,p—m,p—n)
Lm ® Ln = @ L|m—n\+2i—1- (22)
i=1
In particular, 1 := L; is the unit object with respect to tensor product. More importantly,
we have the following proposition:

Proposition 2.3. The category sVeck is symmetric tensor equivalent to the subcategory
generated by the objects Ly and L,_; in Ver,.

Proof. This is well-known; see the proof of Proposition 3.2.1 in [Kan22| for details. That
proof, however, mainly relies on proving the fact that J,_1 ® J,_; = J1 & (p — 2).J,_1 and
producing a spanning vector for the J;. This is just a specific case of the proof of Theorem
in this paper. In particular, notice that (? ;1) = (—1)" in characteristic p. O

Notice that tensoring with L,_; is an autoequivalence on Ver, that sends L; to L,_;. We
will call this functor the parity shift functor, motivated by the observation that there is
an “even” sub-symmetric tensor category Ver; spanned by the objects Ly, L3, ..., L, 2 and
a decomposition Ver, = Ver; M sVeck, where X denotes the Deligne tensor product. The
following is a consequence of Proposition [2.3}

Corollary 2.4. LetV = n,1J;®n,_1J,-1 be an object in Rep av,. Then, its semisimplification
s a super vector space.

3. THE LIE SUPERALGEBRA gl(m/|n)

The primary goal of this paper is study the images of simple GL(m + n(p — 1))-modules
under the semisimplifcation functor and understand the resulting GL(m|n)-modules. The
Steinberg tensor product theorem lets us relate simple G L(m|n)-modules to those of the first
Frobenius kernel GL(m|n)@y of GL(m|n). In turn, the representation theory of GL(m|n)q)
is equivalent to the restricted representation theory of its Lie algebra, which is gl(m|n).
Therefore, we will work with the Lie algebra gl(m + n(p — 1)) and the Lie superalgebra
gl(m|n), which is much simpler, from both a technical and expository perspective.

3.1. Definitions. Let K™ denote the (m|n)-dimensional super vector space of column
vectors with entries in K, where column vectors whose last n entries are zero are homogeneous
and even and column vectors whose first m entries are zero are homogeneous and odd. We
will index the rows by the indexing set I = {1,2,...,m,1,2,...,7}, in that order. It will
also be convenient when indexing to let i = m + i. We assign a parity function on I, also
denoted |- |, by |i| =0if i € {1,...,m} and |i| = 1if i € {1,...,7}
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Let e; be the column vector with a 1 in the i-th spot and zero elsewhere. Then {e; };cy is
a basis for K™". We will let {e}};c1 denote the dual basis. These give a basis

{eij = e ® €] }ijer

of End(K™") = K™" @ (K™")*. The space can then be identified with the space of (m -+

n) X (m 4+ n) matrices of the form
A|B
{%W} (3.1)

where Aism x m, Bis m xn, C isn xm, and D is n X n. Such matrices with B,C =0
are purely even, and those with A, D = 0 are purely odd. To emphasize this gradation, we
call this an (m|n) x (m|n) matrix. In particular, e;; is the elementary matrix with 1 in the
(i, j)-entry and zero elsewhere. Notice that the parity of e;; is |i| + |j], so even if 4, j have
the same parity and odd if they have different parity.

Definition 3.1. The Lie superalgebra gl(m|n) is the Lie superalgebra given by endowing
the space of (m|n) x (m|n)-matrices with the bracket

[z,y] = zy — (—1)"Wlya.

The key distinction is that [x,y] = xy + yz when both z,y are odd. We will simply write
gl(m) to refer to gl(m|0). Given a matrix = € gl(m|n) as in 3.1, we define the supertrace
str : gl(m|n) — K to be the map

str(z) = tr(A) — tr(D).

This is a generalization of the trace and can be checked that this is a Lie superalgebra
homomorphism, where K is the trivial Lie algebra in purely even degree. The special linear
Lie superalgebra is defined by sl(m|n) := ker str.

It will be useful to define a map called the super transpose from gl(m|n) to itself, a
generalization of the transpose. We denote the super tranpose with ST in the superscript,
and for € gl(m|n) in block form as in [3.1] it is defined by

ST .__ AT CT
T =BT DT

where AT is the ordinary transpose of matrix A. It can be checked that the map 6(z) = —x
is a Lie superalgebra automorphism, which is called the Chevalley automorphism.

Like the ordinary Lie algebra gl(m), the Lie superalgebra gl(m|n) admits a triangular
decomposition and root system. Let b denote the subalgebra of diagonal matrices in gl(m|n),
n't the strictly upper-triangular matrices, and n~ the strictly lower triangular matrices. A
basis for b is given by {e;}icr. Let {€}icr be the dual basis of h*. Given an element
A= A€ € b*, we will often use the notation (Ay,... Ay, Aq, ... Ay) to refer to it. Notice
that for any h € b, we have [h, e;;] = (&, — €;)(h)e;;, and therefore the roots of gl(m|n) are

{ei — € tizjer

ST

3.2. Representation theory. In this subsection, we discuss the restricted representation
theory of gl(m|n). In §3.2.1] we construct the simple restricted representations of gl(m|n),
and in we explain how this relates to the representation theory of the affine group
scheme GL(m|n).
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3.2.1. Restricted representations. Given a matrix z € gl(m|n)g, let #/P! denote its p-th power.
Let g denote a Lie subalgebra of gl(m|n) such that gy is closed under the [p] operation, and
let U(g) denote the universal enveloping algebra of g. We define the restricted universal
enveloping algebra u(g) to be

u(g) = Ul(g)/ (2" — ¥,z € g5),

where zlP denote the usual p-th power of a matrix = € gg. A representation of u(g) is called
a restricted representation or restricted module (with character x = 0) of g. We only concern
ourselves with restricted modules, so we will drop the adjective “restricted” hence forth.

To construct the simple modules of gl(m|n), we can use a Verma module argument. Define
the set of weights b by the collection of A € h* such that when written A = > ic1 Ai€i, we have
A\i € Z/pZ C K. Then, A € b* is in b if and only if for any h € b, A(RPPY) = X\(R)P. Therefore,
we have a one-dimensional h-module K, spanned by a vector v such that h.v = A(h)v. Then,
we can extend this to a module over h @ n* by letting n™ act trivially. Any vector n*
annihilates will be called a highest weight vector. Finally, we define the baby Verma module

M(A) = u(gl(m|n)) @upent) K,
which has the usual universal property. We define L(\) to be the quotient of M(\) by its
unique maximal proper submodule. It is clear the collection {L()}xep; is pairwise noniso-
morphic and exhausts the simple u(g)-modules (see [Shu24]).

3.2.2. Relationship to GL(m|n) representation theory. The affine group scheme GL(m|n)
can be defined in the same way as the affine group scheme GL(m) except by changing the
underlying category from Veck to sVeckg and the defining object from K™ to K™™. Its Lie
algebra is gl(m|n).

By the theory of Harish-Chandra pairs (see [Mas12|), there is a parabolic subgroup P
of GL(m|n) whose even subgroup is GL(m|n); = GL(m) x GL(n) and whose Lie algebra
is p == gl(m|n); + n*. Any simple module M over GL(m|n)g can be trivially extended
to a simple module over P. This module can then be induced to the entirety of GL(m|n)
to construct a Kac module, which has a unique simple quotient. Because the distribution
algebra of GL(m|n) is finite over that of P, all Kac modules are finite-dimensional, and
therefore the simple GL(m|n)-modules are in bijection with those of the underlying even
subgroup GL(m/|n)g.

It is well known (see [Jan03]) that the simple G L(m|n)g-modules are canonically in bijec-
tion with the set of dominant integral weights, which we can identify with the set

X(T)+ = {/\ € Zm+n ’ /\1 > 2 /\ma)‘m-f—l > 2 )‘m-‘rn}a

and we will denote the corresponding simple G L(m|n)-module as £(\). Call A € X(T)*
restricted if the difference between adjacent entries is at most p — 1, except between A\,
and A, 11, where no condition is imposed. Then, any dominant integral weight A can be
written as v + pu, where v is restricted and p is also dominant integral. The Steinberg
tensor product theorem (see [Kuj06]), tells us that L(A) = L(v) @ F*Lo(u), where Lo(p) is
the simple GL(m|n)g-module of highest weight p and F* denotes the Frobenius twist of a
module.

The point is that by decomposing A € X(T)* p-adically and iteratively applying this
theorem, the character problem reduces to understanding the character problem for £(\)
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for restricted A. For such A, the restriction of this module to the first Frobenius kernel
GL(m|n)ay of GL(m|n) remains simple. And since the distribution algebra of G L(m|n)q)
is isomorphic as Hopf algebras to u(gl(m|n)), we reduce the character problem to that for
simple restricted modules over gl(m|n).

Moreover, the modules are identified in an obvious way. Specifically, recall we defined the
gl(m|n)-module L(\) for A € b; using the standard triangular decomposition on gl(m|n)
and standard basis for hy. This gives a triangular decomposition on G'L(m|n), and this
standard basis comes from differentiating the obvious coordinate maps H — G,,, where H
is the subgroup of diagonal matrices in GL(m|n)g. If we define the GL(m|n)-module £(\)
for A € X(T)" with respect to these choices, then, for restricted A, we have

L()\lel + - )\m—l—nem—i-n) = ﬁ()\)
as gl(m|n)-modules, where on the left-hand side each \; is projected to Z/pZ C K, and
where on the right-hand side the module structure is given by restriction.

3.2.3. The Shapovalov form. Let V be gl(m|n)-module. A bilinear form f: V ® V — 1 on
V' is said to be contravariant if for x € gl(m|n) and v,w € V, we have f(z.v @ w) + f(v ®
0(z).w) = 0, where 6 is the Chevalley automorphism. Now, suppose that V' is a rational (i.e.
one that lifts to GL(m|n)) highest weight module generated by the vector v. It can be show
that V' admits a unique (up to scaling) bilinear form S called the Shapovalov form such that
S(v®wv) =1 (see [Sha79| for more details). Moreover, it can be shown that S is symmetric
and that the radical of this form is the unique maximal submodule of V. In particular, each
simple module has a non-degenerate Shapovalov form. The following proposition is easy to
see.

Proposition 3.1. Let V' be a gl(m|n)-module with a non-degenerate symmetric contravariant
form B. Then V is semisimple.

Proof. Let W be a simple submodule in V, and let W+ be its orthogonal complement with
respect to 3. Clearly W+ is a submodule as well. The claim follows by induction. O

3.2.4. Ezxplicit description of simple gl(1|1)-modules. Here we explicitly describe the simple
gl(1]1)-modules. For A = (A, A1) € bj, the baby Verma module M ()) is (1|1)-dimensional,
spanned by the vectors 1 ® v and eg; ® v. Notice that

erp-(er1 ®v) = (—epert + (en +emp)) @ v = (M + Ap)(1 ®@0).
Therefore, L(A) is (1|1)-dimensional and simple when A\; + Ay # 0 and 1-dimensional and
simple when A\; + Ay = 0 (up to parity shift). These remain simple upon restriction to s[(1]1),

and are isomorphic as s[(1|1)-modules for fixed values of \; + Ay because the s[(1]|1) action
cannot detect the constant A\; — Ag.

3.2.5. Ezxplicit description of simple gl(2|1)-modules. The Lie algebra gl(2|1) = sl(2[1) &
KZpnjn, where I, is the identity matrix. Therefore, by Schur’s lemma, any simple gl(2|1)-
module is given by a simple s[(2|1)-module and a scalar in Z/pZ specifying the action of the
center. Simple s[(2|1)-modules are described in [Zha09].

Let A = (A1, A2, A7) € by. Notice there is a copy of gl(2) in gl(2|1) spanned by e11, €12, €21
and egy. Let us describe its simple modules, which is classically known and will be stated
without proof. Let [ be the integer such that 0 <1 < p and (A — A2) = (mod p). Then,
the vector space
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Liy(A1, A2) = span{v, eg10, .. ., eb v}
uniquely admits the structure of a gl(2)-module where each basis vector is a weight vector, v
is a highest vector with weight (A1, A2), and e acts in the obvious way. Moreover, Lj(A1, A2)
is a simple gl(2)-module and all such modules arise in this fashion.
By letting eg7.(e5,v) = Ageh v, the module Lj(A1, \2) becomes a gl(2|1)5-module which
we'll call Lo(Ai, A2, A\7). By extending trivially, this becomes a gl(2|1); + n*-module, and
finally we define the Kac module

K (A1, A2, A1) = u(gl(m|n)) @ugizi)g+nt) Lo(A1, Az, AT).

This module has a basis {6%16%2 ®ek} with0<4,j <1land 0 <k <l andis (20 + 2|2l + 2)-

dimensional. By the universal property of the baby Verma module, there are surjections
M(X) = K(A) = L(X).

Now, we will state the results (rephrased for our setting) in [Zha09| to describe the struc-
ture of L(A). Let n; = \; + A7 and for ¢ = 1,2. By Proposition 3.1 in [Zha09], L(\) = K(\)
is simple if n; # —1 and 7y # 0. The remaining cases are handled by the following:

Theorem 3.2 (Theorem 3.7 in [Zha09]). Let J denote the unique mazximal proper submodule
in K(X). Then,

(1) if ;m = —1 and ny # —1,0, then J is generated by the mazimal vector ez, @ v — (12 +
1) ter, ® eqv and dim L(A\) = 2(1 + 1) + 1;

(2) if ;m = —1 and ny = 0, then J is generated by ey @ v and dim L(\) = 2p EL

(3) if ;m = —1 and ny = —1, then J = Keqjeqa ® v and dim L(\) = 3;

(4) if ;m # —1 and ny = 0, then J is generated by ey, ® v and dim L(X) = 2n; + 1 where
1 1S interpreted as the smallest nonnegative integer whose residue class mod p is 1.

If A is changed so that 7, and 7, do not change, then L(\) is unchanged as an sl(2|1)-
module.

4. APPLICATIONS OF THE SEMISIMPLIFICATION FUNCTOR

In this section, we see how general linear Lie algebras behave under the semisimplification
functor in Rep oy,

4.1. General considerations. Let C be a symmetric tensor category and V' € C and object.
Then, we have the following proposition:

Proposition 4.1. The semisimplification gl(V') is isomorphic as Lie algebras to gl(V') in C

(resp. sl(V) and sl(V)).

Proof. This is a consequence of the fact that the semisimplification functor is symmetric
monoidal. 0

1f there is no transcription error, then we believe this is a misprint in the original reference and maybe
should say 2p — 1. For instance, consider the natural representation K2I* of gl(2|1), which has highest weight
(1,0,0) and basis e, ez, er. In characteristic p # 2, the symmetric square SQ(KQH) is simple and has highest
weight (2,0,0). It is 5-dimensional, with basis €%, 3, e1ea, e1€3, €2e3. As an sl(2|1)-module in characteristic
3,m = 2= —1and 1y =0, from which the theorem would suggest that this module is 2(3) = 6 dimensional.
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Now, suppose that C = Rep v, and let Repe(gl(n),T') denote the (symmetric tensor)
category whose objects are gl(n)-modules V' equipped with a t-action given an operator
T" such that the module map (gl(n),T) ® (V,T") — (V,T") is ay-equivariant and whose
morphisms are gl(n)-module maps that are also ay-equivariant. We will want to study
this category, because the semisimplification functor Repa, — Ver, induces a functor

Repe(gl(n),T) — Repye, (gl(n), T), where the target category is the representation cat-
egory of (gl(n),T) as a Lie algebra in Ver,. We have the following proposition:
Proposition 4.2. Let p : gl(n) — gl(V') be a gl(n)-representation (not necessarily re-
stricted), and let x € gl(n) satisfy 2! = 0 and p(x)P) = 0. Then, (V, p(z)) is an object
in Repe(gl(n),adz).

Proof. Let p also denote the module map gl(n) ® V. — V. Then, for any y € gl(n) and
v €V, we have

plt-ly@V))=p(lz,y]@v+y@zv)=[z,ylv+yzv=2yv="1tpYy ).
This shows that the module map is also ay,-equivariant. 0

Corollary 4.3. If X\ is a restricted dominant integral weight for gl(n) with associated simple
representation p : gl(n) — gl(L(\)) and = € gl(n) is such that ) = 0, then (L(\), p(z)) is
an object in Repq(gl(n),ad z).

Proof. The representation factors through u(gl(n)), where 27 = 2! = 0 by the defining
relations of the restricted enveloping algebra. This means p(z)P = 0 as well. U

For the following two propositions, suppose x,y € gl(n) are such that zlP) = ylPl = 0 and
are in the same nilpotent orbit with respect to the conjugation action of GL,, on gl(n) i.e.
there is a ¢ € GL,, such that grg™! = y.

Proposition 4.4. The Lie algebras (gl(n),ad z) and (gl(n),ady) in Rep v, are isomorphic.
Therefore, their semisimplifications are isomorphic as Lie algebras in Ver,.

Proof. Define the map ¢ : (gl(n),adz) — (gl(n),ady) by z — gzg~'. Clearly, ¢ is a bijection,
so we just need to show it is a Lie algebra homomorphism and a ay-equivariant map. For
any w, z € (gl(n),ad x), we have
U([w, 2]) = w2z — zw) = glwz — zw)g™" = (qwg™)(g297") = (929~ ") (gwg™") = [t(2), e(w)],
so it is a Lie algebra homomorphism. Moreover, we have

tu(2) =y, 9297 = 9297, 9297"] = [1(2), 1(2)] = o([w, 2]) = e(t.2).
Therefore, it ¢ is a Lie algebra isomorphism in Rep «,,. The statement about an isomorphism

of Lie algebras in Ver, follows from the fact that the semisimplification functor is symmetric
monoidal. 0

This means that if p : V' — V is a gl(n)-representation, then (V, p(y)) is a module over
(gl(n),ad x) via the composite map
®L(v,p(y
(gl(n), adz) ® (V; p(y)) ——=2 (gl(n), ady) ® (V, p(y)) = (V; p(y)).
We also get an equivalence of categories between Rep,(gl(n),ad z) and Repq(gl(n), ad x).

Proposition 4.5. Let p : GL, — GL(V) be a rational representation of GL,. Then, the
semisimplifications (V,dp(x)) and (V,dp(y)) are isomorphic as (gl(n),ad x) modules.
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Proof. Given a group G, let ¢;, : G — G denote conjugation by an element h € G (the group
G will be clear from context). Now, for all k € GL,,, we have

p(9)" plakg™")p(g) = pl9)
which can be phrased as the following equality of maps:

Cp(g)=t PO Cg = P-
Differentiating this map at the identity tells us that
(deyg)-—1) o dp o dey = dp,
which means that for all z € gl(n), we have

p(9) " dp(gzg~")p(g) = dp(2).
Now, define the map 6 : (V,z) — (V,y) by v — p(g)v. This is obviously a bijection. We
first claim that this is a Lie algebra module homomorphism. We have for all z € gl(n) and
zeV,
0(zv) = p(g)dp(2)v = dp(gzg~")p(g)v = (dp o 1)(2)0(v) = 2.0(v).

This calculation also shows that this homomorphism is a,-equivariant, as
O(tw) =0(xz.v) =x.0(v) =t.0(v)

as the second z-action is essentially the original y-action due to the isomorphism ¢. The
proposition follows from Proposition .4 and the semisimplification functor being symmetric
monoidal. 0

Remark 4.6. The assumption that V' be rational is important. For instance, consider the
baby Verma module M () over gl, for A = 0. This is a p-dimensional module with basis
v, fv, f2v,..., fP~v, where v is the highest weight vector and f is the matrix e;;. When ¢
is specialized to the f-action, this gives an o,-module isomorphic to .J,. However, if e is the
matrix ejs, which is conjugate to f, then there are two highest weight vectors, as e.v = 0
and e.(fv) = e.f.v = f.e.v — h.v = 0. This means that when ¢ is specialized to the e-action,
we get an ay-module isomorphic to J; @ J,_;.

4.2. Specializing to super vector spaces. In this section, we will mainly consider ob-
jects in Rep o, with indecomposable summands isomorphic to Ji, J,_1, or J,, so that the
semisimplification is a super vector space. As such, we will remind the viewer to review
section [3] for any notation.

For context to Theorem ,let Y = @@Y_, n;J; be an object in Rep oy, where the j-th
copy of J; for 1 <¢ < p—1and 1 < j < n; has basis

yid = Yy e )

j’/[:
Similarly, let X = @Y m;J;, and Z = @!_, k;J; be objects in Rep ar, with similarly
labeled bases, using the letters ‘z” and ‘2’ instead, respectively. Moreover, for X assume that
only my,m,_1 and m, can be nonzero. We can write their semisimplifications in isotypic

decomposition as

)

X=X10L ®X, 1®L,

p—1
Y = @Yi ® L;
=1
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p—1
Z=PzeL
i=1
where X, X1, X,,Y1,...,Y,_1,24,..., Z,_1 are vector spaces. Now, suppose that ¢ : X ®
Y — Z be a morphism in Rep «,,. Because for each ¢ with 1 < ¢ < p%l, the set {L;, L,—;}
is closed under tensoring with L, or L,_;, semisimplicity implies that the semisimplification
6: X®Y — 7 is determined by maps

G (X ®Li®Xy 1 QL) @(YVi®Li®Ypi ® Ly—i) = (Zi® Li ® Zpy ® Lyi)

—1
such that ¢ = @;Tl ¢,;. Finally, factoring out the L; (that is, writing V; ® L; ® Y,_; ® L,
as (Y; @Y, ;®L,_1) ® L; and similarly for Z), we can interpret ¢; as a map of super vector
spaces from (X; & X,1)® (Y;®Y,—;) to Z;® Z,_;, where X,,_,Y,_;, Z,_; are in odd degree.
With this interpretation, we have the following theorem:

Theorem 4.7. There are bases {z\",7,..., MY of Xy and R e ,ZF DY of
Xp—1 and for each i there are bases

(1) {y?’%y&'%... O} of Y; and {77 g, e} of Yo,

2) 210,20, —“} of Z; and {0V 2Y70, 20V} of 2,

such that ¢; : (X1 ® X, 1) ® (Y ®Y,i) = Z; ® Z,_; is given by

B ) = S )

s=1
kp_i

GE@) @yP ) = bz
s=1

Q_bz( - ® yr Z Cf]rzsp l)u

(= 1) i) s =(i
¢z( (o= ®yp qur 5)7

where we have four combinations listed, based on whether an even or odd vector is tensored
with an even or odd vector, and where q,r range over the appropriate ranges depending on
whether which combination of even and odd was chosen. The structure constants above are
given by:

(1) a,,. is the coefficient ofz ' in ¢($((11 ® yﬁf))’.

(2) b, is the coefficient ofz ") in (2N @y p*i))}-

q,1 r,1
(3) c;, is the coefficient of 25,1 ) in

~ (I\ 1) @) .
¢ (Z (l) Tgr  © yr,iﬂl) ;
=1
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(4) d,. is the coefficient of zS{ in

p—1i .
p—1 -1 (p—i
¢ (Z ( l >x$l '® yrﬁa?ﬂl) :

=1

Proof. We can deduce the theorem by studying restrictions of ¢ to summands in X ® Y. For
a fixed 7, we have four possibilities: restricting ¢ to a J; from X and J; from Y, to a J; from
X and J,_; from Y, to a J,_; from X and J; from Y, and to a J,_; from X and J,_; from
Y (anything involving J, will automatically vanish in the semisimplification).

For the first case, we have a map ¢ : J; ® J; — Z. Since the left hand side is isomorphic
to J;, the non-negligible piece comes from seeing where its generating vector maps to under
¢. Therefore, we are interested decomposing this restriction into the sum of maps into
the various the J; terms in Z that are isomorphisms onto their image in Z plus negligible
morphisms. Semisimplification will kill the negligible morphisms, so this gives the coefficients
ag,.- A similar statement proves the second case, giving the coefficients by,..

The last two cases are a little trickier, but are a consequence of Theorem 2.2 In particular,
when we restrict ¢ to a term of the form J, 1 ® J;, we have J,_; ® J; = J,_; & (k — 1)J,.
So the semisimplification of the map is determined by seeing where this J,_; maps to in Z.
Theorem gives us a generating vector for this J,_; in a suitable decomposition, so we
just need to see which generating vectors in the given J,_;’s in Z appear. Similarly, for the
last case, this same argument works, just replacing ¢ with p — ¢ and vice versa. 0

We will often apply this theorem in two cases. The first is when X =Y = Z is a Lie
algebra in Rep ay, and ¢ is the bracket B : X ® X — X. Applying the theorem in this
instance tells us the structure constants of the Lie superalgebra X. The other is when X is
again a Lie algebra in Repa, and Y = Z is a module over X and ¢ is the ay-equivariant
module map p: X ® Y — Y. In this case, we get ’%l-modules over the Lie superalgebra X.

Remark 4.8. This theorem generalizes Proposition 3.4.1 in [Kan22].

Now, let’s turn to general linear Lie algebras in Repay,. Let V be an m + n(p — 1)-
dimensional vector space with the following ordered basis

n
{o, 02, v} U {050,052, - 01 ),
j=1

where the ordering is given by reading the elements above from left to right in the obvious
way as j increases from 1 to n. Use this basis to identify gl(V') with gl(m +n(p—1)). Using
the notation

define the matrix = € gl(m + n(p — 1)) by
:E:diag(gl,...,jl,gp_l,...,jp_l).

v~
n

~~
m
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Then, (V,x) is an object in Rep e, with decomposition (V,x) = mJ; & nJ,_;, with the i-th
copy of J; spanned by v; for 1 <7 < m, and the j-th copy of J,_; is given by
Vj1 > Vj2 = =2 Ujp1

for 1 < j < n. It follows that (V,z)* is an object in Rep ey, with decomposition into
indecomposables as

FERE S *
Ji 1,05, ..0,0,0;

. * * * *
prl . U171 H ,0172 H A <_| _/U].,p72 H ,U].,pf].

* * * *
T U9 S Ugg S K U, o Uy

*

* * *
- 'Un71 (_{ ,UTL,Q (_{ R <_‘ _U,n7p_2 <_‘ Un7p_1.

Notice that the arrows are reversed for the dual vectors and the sign alternates. It will be
useful to let the object X; denote the i-th copy of J; and X7 to denote the j-th copy of J, 1
in our decomposition of V so that V' = @, X;, where I = {1,...,m,1,...n}. Putting this
together, we can see that (gl(m + n(p — 1)),ad x) is an object in Rep e, as follows:

Xi®X; - X19X, | X19X: - X, @X;
X;@X; - X;®X{ | X;@X: - Xr® Xz
Xe®@X{ - Xg®X), Xe®X: -+ Xg®X; |

We can produce a partial basis for (gl(m +n(p —1)),ad z), ignoring any J, terms that arise
(which only happens in blocks in the lower right). Each X; ® X7 gives a J; spanned by
v; ® vj. Each X; ® in gives a J,_; with basis

—U; @V 4V R Vg 4 4 =V @V, o U V), .
Similarly, each X; ® X7 gives a J, 1 with basis
Vi ® U;-‘ = V2 ® v;f o U1 ® U;.
Finally, each X; ® X]if =.J1® (p—2)J,. The J, terms and any morphisms into them will

vanish in the semisimplification, so we only care about the J;. Theorem tells us that a

basis for this J; is given by
p—1
Z /Ui’k ® Ujvk
k=1
Assembling all of this helps us prove the following theorem:

Theorem 4.9. The semisimplification of (gl(m +n(p — 1)),ad z) is gl(m|n).

Proof. We have already established the statement in much more generality. However, it will
be useful to explicitly prove it using computations using Theorem 1.7 The key idea that
we wish to stress is that each J,_; merges under the semisimplification functor to give a
one-dimensional odd subspace.
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First, let’s compute what the bracket looks like in o,-equivariant fashion, before semisim-
plification and ignoring any .J, terms. We have a few cases to consider:

(1) the first case is if we are bracketing a J; from the top left with something. We have:

B(vi ® v; @ v, @ vy) = 60; @ v — 010 @ V[

B((v; @ 0}) @ (—0p @ v 47 A 0 @y p1)) = =00 @ Uy 4 4 050 @ Vg1
B((vi ® v]) @ (g1 @[ = -+ = Vg p 1 @ V))) = —013Vk1 @ V] > -+ > =0V p1 @ V]
p—1
B ((Uz ®v}) ® ka,s ® Ul*,s> = 0.
s=1

The first line corresponds to bracketing with another J; from the top left. The
middle two lines are from bracketing with a J,_; from the top right or bottom left,
respectively. The last line is from bracketing with a J; from the bottom right.

(2) the second case is if we are bracketing a J,_; from the top right with something.
By skew-symmetry of the bracket and the fact that bracketing two things in the top
right will give zero (triangular decomposition property), we only need to consider
pairing with something from the bottom left or bottom right. When we pair with
the bottom left, we are looking at a bracket on J, 1 ® J,_1. The first J,_; here is
given by

Jp1= =0 QUi U @ Ujo 4 =V QU 5 0 QU
and the second J,_; is given by
Jp,1 = Vg,1 ® Ul* = Vg2 ® Ul* = Upp1 ® Ul*.
By Theorem there is a J; in here spanned by
p—1
wi= Y (=1 (=10 @ 0},) ® (ks @ 07).
s=1

Applying the bracket gives us:

p—1
B(w) = —(p — 1)0jxv; @ v} + 6y (Z Ukp—s & Uip*)

s=1

p—1
= 05kV; ® Ul* + 511' (Z Vg, s & U;:S> .

s=1
Notice the miraculous —(p — 1) = 1 factor, which makes this resemble like something
of the form [z,y] = xy + yx for x,y both odd, especially under the perspective that
after semisimplification a J,_; merges to form an odd subspace.
The other case is when we pair a J,_; with a J; from the bottom left. We have:

p—1
B ((—Uz‘ QUi - U QU ) ® <Z Uk,s @ UZS))
s=1

* *
= —O04kY; (9 Vi1 e < 5jkvi ® UVip—1-
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(3) The third case is if we are bracketing a J,_; from the bottom left with something.
Again, by skew-symmetry and the triangular decomposition, we just need to bracket
with a J; from the bottom right. We have

p—1
B <(Uz',1 ®U;k o Vi ®U;) X (ka”g ® Ul*,s>>
s=1

= —01i(Vg 1 @ V] > Vg D U))

(4) The final case is bracket a .J; from the bottom left with something. We just need to
check bracketing with another such J;. We get:

p—1 p—1
B <<Z Vis ® v;ﬁs) ® (Z Vs @ v;js) )
s=1 s=1

p—1 p-1
= Ojk <Z Vis & Ul*,s> — O (Z Ukys @ Uis)

s=1 s=1
By now, we see these commutation relations clearly resemble those of gl(m|n). And indeed,
if we apply Theorem @, we get that the basis vector afforded by X; ® X7 is just e;; for

i,7 and the bracket is given by [e;, ex] = &neq — (—1)FIDURHID S e, . recalling the parity
function from section 3.1} This proves the theorem. U

The utility of this theorem is that we can now easily study a map involving (gl(m + n(p —
1)),ad x) before and after semisimplification. Our first application will be for understanding
what happens when we semisimplify the Chevalley automorphism.

Proposition 4.10. The Chevalley automorphism 0 : gl(m +n(p — 1)) — gl(m +n(p — 1)),
given by O(z) = —zT is a Lie algebra isomorphism (gl(m +n(p—1)),adz) — (gl(m +n(p —
1)),ad6(z)) in Rep a,.

Proof. It suffices to show that this map is o-equivariant. We have

0(t.y) = 0([z,y]) = [0(x),6(y)] = t.0(y)-
[

Notice that this proof actually holds for any Lie algebra automorphism ¢, not just the
Chevalley automorphism.

Theorem 4.11. The semisimplification of the Chevalley automorphism 0 : (gl(m + n(p —
1)),adz) — (gl(m+n(p—1)),ad 0(x)) is the Chevalley automorphism 6 : gl(m|n) — gl(m|n).
Proof. At the level of basis vectors, we have

0(vs @ V) = —v; @ vj;
) :Uj71®1);( e —Uj,p_1®?J;k

O(—v; @Uiy =y QU7

O(0ig @V - = 0 1 ®U)) = =V, @V o =0 QU (4.1)

p—1 p—1
0 (Z(—l)svi,s ® UL) = — Z(—l)svj,s R v

s=1 s=1
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Now, the object (gl(m + n(p —1)),ad #(x)) has a decomposition into decomposables where
the .J;’s are spanned by v; ® v} (top-left) and "~} (—1)*v;, ® v, (bottom right), and where
the J,_1’s are given by
Vig @ U] - 4 = 1 QU
in the bottom left and by
Vi QU 0 QU

in the top right. In a calculation similar to the one found in the proof of Theorem [4.9] the
basis of the semisimplification afforded by Theorem [.7] when applied to this decomposition
and the bracket is also {e;;}i jer in the obvious way. Therefore, by looking at line by

line we get:

—esi |il =131 =0
_ . i|=0,j] =1
Bes) = 4 il =0, 7]
—eji |if=1,[j|=0
—eji il =1j]=1
for i, € I. The map 6 is then precisely the Chevalley automorphism O(xr) = —2°T on
gl(m|n). This proves the theorem. O

Proposition 4.12. Let L(\) be a simple gl(m + n(p — 1))-module with representation p :
gl(m +n(p — 1)) = gl(L(N)) so that (L(X), p(x)) is a module over (gl(m +n(p —1)),ad z),
and (L(X), p(6(z))) is a module over (gl(m +n(p—1)),adé(z)). Then, the Shapovalov form
S LA ® LX) — 1 is a ap-equivariant map S : (L(N), p(z)) @ L(N), p(6(x))) — 1, and the
semisimplification of S is a non-degenerate symmetric contravariant form.

Proof. 1t is clear by contravariance that S(t.(v ® w)) = S(p(x)v @ w + v @ p(f(z))w) =0 =
t.S(v ® w), so this proves the first statement.

For the second statement, the contravariance condition can be written categorically by
saying there is a module map W ® W% — 1, where W? is the module given by first twisting
gl(m+n(p—1)) by the automorphism 6 and then acting. By Theorem[4.11]and the symmetric
monoidal property of the semisimplification functor, it follows that S is contravariant as well.
The non-degeneracy and symmetry are also obviously preserved. 0

Corollary 4.13. The semisimplification of (L(X), p(x)) is a semisimple gl(m|n)-module.

Proof. The semisimplification has a non-degenerate symmetric convariant form (the semisim-
plification of the Shapovalov form). Therefore, by Proposition , it is semisimple. 0

We expect a totally analogous statement to hold for any nilpotent z with 2 = 0 and
replacing gl(m|n) with the Lie algebra gl(V) in the Verlinde category, and it should be
straightforward to prove. We imagine it would boil down to coming up with a categorical
definition of the transpose operator. Perhaps appealing to the theory of contragredient Lie
algebra in symmetric tensor categories, as in [APS24], might be another starting point.
Then, one can just follow the steps in the proof verbatim (maybe some care is required with
orthogonal complements. Much of the discussion in section [3.2.2] is also relevant because
there is a Steinberg tensor product theorem in the Verlinde category for GL(V) modules
(see [Kan25|).

We use this approach because in this paper we are interested in examples of calculations
using the semisimplification functor. Such calculations are much difficult with the Verlinde

category because the objects are no longer vector spaces.
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Finally, we conclude this section with a statement about semisimplification of modules. Let
(L(N), p(x)) be a module over (gl(m+n(p—1)),adz) in Rep e, where p : gl(m+n(p—1)) —
gl(L()N)) is the associated representation. Write

p—1 p—1
A= )\161 +-+ >\m€m + (Z )\1,561,s> +-+ (Z An,s£n,s> s
s=1 s=1

where ¢;, is the dual vector in b* to v, ® v},. Finally, define X in b* of gl(m|n) by

p—1 p—1
XI: (}\17...,)\m,z/\l,sw"az)‘n,s>
s=1 s=1

Theorem 4.14. Suppose the highest weight v of L(\) generates a J,. in some decomposition
of L(\) into indecomposables under the p(x) action. If r # p, then the semisimplification of

(L(A), p(x)) contains the module L(\) ® L, as a direct summand.

Proof. This is a consequence of Theorem [4.7, Theorem [4.9] and Corollary [4.13] In particular,
the vector Zﬁ;l Vi s @7 acts as a scalar on v and therefore J,. This scalar is Z?;i Ais- It
follows that the vector it yields, which is ez in gl(m|n), acts as the same scalar. It is clear

then that there is a highest weight vector with weight A, so it must generate a simple module

by Corollary [4.13] O

More generally, our goal is to search for vectors in L(\) such that after semisimplification
they yield highest weight vectors. By Corollary [4.13] the module generated by this highest
weight vector will be simple.

5. EXPLICIT COMPUTATIONS USING SEMISIMPLIFICATION

In this section, we conclude by explicitly computing semisimplifications in low rank and
low characteristic. We use the Weyl modules program by Stephen Doty (for more detail see
[Dot24]). The decomposition algorithm for modules is described in Section along with
detailed pseudocode and correctness proofs.

5.1. Decomposition algorithm. Let K be a field, M be a finite-dimensional module, and
t: M — M a fixed nilpotent operator. Let B = (by,...,by) be a basis of M, totally ordered
by weight (lowest to highest if ¢ is a raising operator; reverse if t is lowering). A Jordan
chain (or block) of length 7 is a sequence

Ji(v): v, tu, .., T with te =0, 7 £ 0.
We maintain a set of chains J = {J®, ..., J™} and a multiset B of the vectors in the set
J:
By = |_| |_|{u} C M,
JeJ uel

i.e. Bs contains every vector from every chain in 7. The algorithm iterates over the ordered
basis B. Whenever the current seed v = b; already lies in span(B;) we skip it. Otherwise,
we attempt to extend v to a chain by repeatedly applying ¢ until either we hit 0 (success,
in which case this new chain in included in J) or we encounter the first dependency against
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span(B7). Let this dependency be expressed as
thy = Zej 1% a; (t*a; € By).
j=1

The algorithm records the precise form of this dependence in a container called Relation.
This container stores information on the first dependency encountered, the dependent vector,
the coefficients, and the specific earlier chain nodes it depends on.

We then resolve this first dependency by one of two cases, determined by the minimum
index Opin 1= min; ;.

e Case 1 (Opin > ¢): All right-hand-side nodes lie strictly ahead of tfv. We reseed with
wi=v—) et ~*a;, whose chain terminates at length ¢ and whose earlier nodes remain
independent of B;. We ignore the partial chain from v and add the chain from w.

e Case 2 (0pin < £): Some right-hand-side node is not ahead of t‘v. We exchange one
earlier shortest chain for the greedy chain from v, then include the chain from the auxiliary
seed w = ttOming — > € t _5’“‘“aj, which produces an additional chain of length 0.,
to include in J.

Proceeding through all b; in order yields a set J of Jordan chains which represent a decom-
position of M whose concatenated nodes B 7 form a basis of M.

Remark 5.1 (Importance of ordering B). The correctness of the algorithm requires that
the basis B is totally ordered by weight. Let us consider the case when ¢ is a raising
operator, and the basis is ordered starting from the lowest weight vector. If the basis elements
are not processed in increasing order, then consider the first vector in the ordered basis,
bi, that is not processed. Since subsequent vectors are higher weight, b, will never be
included in subsequent Jordan chains. Therefore, processing basis elements in increasing
order guarantees that when the algorithm terminates, B is a valid basis of M.

We now describe the routines GreedyChain, Resolve, and the main loop JordanDecompose,
along with the correctness proof.

Algorithm 1 GREEDYCHAIN(v)

Require: Seed v € M, current concatenated set B.

Ensure: A chain S = [v,tv,...]| until zero or first dependency. If a first dependency occurs
at step 7, also return its linear relation.
LS« [l usw
2: loop
3: Append u to S
4: if tu = 0 then
5: return (S, NoRelation)
6: else if tu € span(By) then > first dependency detected
7 Find coefficients e; and nodes t*a; € By s.t. tu =" e;t%a;.
8: return (5, Relation({(e;, aj,a;)}7,))
9: else
10: U 4 tu
11: end if

12: end loop
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Algorithm 2 RESOLVE(S, Relation)

Require: Chain S = [v,tv,...,t" "v]; first dependency t'v = 37", ;% a;, with each t%a;
a node inside a prior chain Jlij) = (aj,taj,...,t" a;).
1: Let 5j @y and 6min — Il’liIlj 6]‘.
2: if i, > 7 then > Case 1: earlier nodes are strictly behind the RHS nodes
3: Set 0j <= d; —i > 0 for all j.
4: Define w < v — 37" | e t%a;.
5: return Casel(w) > Discard S; add chain from w
6: else > Case 2: some RHS node not ahead of t'v
7 Let 7% be an index with 0+ = dmin.
8: SetO(—i—(smiHZO, and Oj<_6j_5min20-
9: Define w « t°v — 377" | e;t%a;.
10: return Case2(j*, S, w) > Replace prior JU") with S, then add chain from w
11: end if

Algorithm 3 JORDANDECOMPOSE(B, t)

Require: Ordered basis B = (by,...,by), nilpotent ¢.
Ensure: A set of Jordan chains 7 whose concatenated vectors B 7 form a basis of M.
1. J @, Bj — 0
2: fori=1to N do > iterate in weight order (reverse for lowering operators)
3: V< bz
4 if v € span(B7) then
5: continue
6: end if
7 (S,Rel) +— GREEDYCHAIN(v)
8 if Rel = NoRelation then
9: Add chain S to J; update By <~ Bs U .S
10: else

11: Outcome < RESOLVE(S,Rel)

12: if Outcome = Casel(w) then

13: (Shew; -) < GREEDYCHAIN(w)

14: Add Spew to J; update By <— By L Spew

15: else > Case2(j*, S, w)
16: Replace the prior chain JU*) € J by S; update B, accordingly
17: (Shew, -) < GREEDYCHAIN(w)

18: Add Spew to J; update By <— By L Spew

19: end if

20: end if

21: end for

22: return J

In order to prove the correctness of Algorithm [3| we establish the following lemmas.

Lemma 5.2 (First dependency implies earlier independence). If t"v ¢ span(B;) for 0 <
r <{—1 and t'v € span(By), then the chain (v, tv,. .., t* ) is independent of By.



SEMISIMPLIFICATIONS OF o,-EQUIVARIANT GL,-MODULES 23

Proof. 1f a nontrivial linear dependence existed using some t"v with r < ¢, we would contra-
dict minimality of ¢ as the first dependent index. 0

Lemma 5.3 (Extension for Case 1). With 6y, > ¢, the seed w = v — Zj ejtdj_éaj satisfies
t'w = 0, and its earlier nodes avoid span(B.s). Moreover, v € span(By,.. ).

Proof. Since the relation at index £ is exactly t‘v = ; e;t%a;, we have by construction,
m
tlw = thv — Zej tajaj = 0,
j=1

for 0 <r </,

m
t"w=tv— Z e; t‘sf_”Taj.
7=1
Since 0; > dmin > ¢, we have 1 < 9; — £ +r < d;. Therefore, each correction term t‘sj_”Taj €
JW) € B;. Because ¢ is minimal, every ¢"v with r < ¢ is nonzero and independent of B.
Subtracting additional correction terms from B; cannot create a new dependency at these
indices. Thus the chain (w, tw, ..., 'w) is nonzero and independent of B;. Finally,

m
v = w+ g ejt‘sj_gaj,
j=1

where the summation lies in span(Bz). Hence v € span(B7, ., = B7U Shew), as required. [

Lemma 5.4 (Exchange + extension for Case 2). With Oy, < ¢, replacing the earlier chain
JU) by the greedy chain S and then adding the chain from w preserves independence and
increases coverage of By, to include v.

Proof. By Lemma , the greedy chain S = (v, tv,...,t* 'v) is independent of B up to its
first dependency. Now consider

m
w=tv — Zej t%aj, 0="{—0min, 0j = Qj — Opmin.
j=1
Then
t"w ="t — Z et a; = 1T ming Z et T oming
J J
For r = 0in, we have t"w = 0. So the chain from w terminates at height 0,;n.
For 0 < r < dmin we compute

0j+7 = (0 —0min) +7 < a;—1 < qj.
Thus each correction term t%*"a; lies strictly before the node t*a; from the relation in
its respective chain JU. Furthermore, ¢ + r — Sy < ¢. Therefore, the minimality of ¢
guarantees that t“*"~%miny is non zero and the newly generated chain from w is independent

of the previously established vectors in B;. This also implies linear independence from
Bs\ JU"). Therefore, the replacement step

B, = (Bs\JY)) U {v,tv,... t" W}
preserves linear independence and also spans v. Now, consider the chain

Spew = {w, tw, ... "1y},
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If there was a nontrivial linear dependence of t"w (1 < r < dp,) and the vectors in B/,
then from the definition of w, this would force a dependence in B;'. This contradicts the
independence of B;'. Therefore, Sy is independent of B, implying that

Bjnew = BJI U Snew

preserves linear independence and also spans v. Furthermore, consider the terms in J7~ that
have been removed from B;. We have for i < dpey

thw = t't% — Z et a;.
J
Since for the minimum index j*, 0j+ + % = aj+ — Omin + ¢ = %, We have tiaj* is linearly
dependent on t'w, t**°v and terms from JU#7Y). Therefore, the terms from J7° are still
spanned by Bz, .,. Therefore, the removal and extension operation on B; does not affect
the vectors spanned originally by B;. This concludes the proof that vectors covered by B
are still covered by Bz, Furthermore, By, is independent and spans v. O

We now prove the correctness for Algorithm [3| using three invariants:

(I1) Independence: By is linearly independent at every loop head,
(I2) Coverage of processed seeds: For all j < i, b; € span(By),
(I3) Chain-closure: Each J € J is a valid Jordan block terminating at zero.

Initialization: Before the first iteration, J = 0, B = 0: (I1)—(I3) hold trivially.

Maintenance: Assume (I1)—(I3) hold at the start of iteration i. If b; € span(By) then no
changes are made. (I1)—(I3) remain true, and (I2) extends to j = i. We now consider the
case when b; ¢ span(By). Algorithm [1] gives us two subcases.

If we encounter a terminal zero before any dependency, then Then S = (b;, ..., t*'b;) has
all nodes outside span(By), hence adding S preserves (I1). By construction t‘b; = 0, so (I3)
holds. Since b; € span(S) C span(Bs U S), (I2) holds for index i.

If we encounter the first dependency at t‘b; = > €t a;, then by minimality of £, the
nodes b;, tb;, . . ., t*~1b; are independent from B . Let §; = a; and iy = min; 6;. If (Spin > £)
then from Lemma the chain from w is independent of B 7, preserving (I1). Furthermore,
each chain terminates at zero, so (I3) holds. Also, b; € span(Bs U {w,tw,...},t" " 1w),
resulting in (I2) holding. For the case when (i < ¢, from Lemma [5.4] (I1) holds. Since
all chains still terminate at zero, (I3) holds. Furthermore b; lies in the updated span, so (12)
holds.

Hence (I1)—(I3) are maintained.

Termination: The loop runs for N iterations and terminates. At exit, (I2) implies span(By) =
M and combined with (I1) we have that B is a basis of M. Together with (I3), this proves
that J is a valid Jordan decomposition under the action of ¢.

Time complexity. Let N = dim M, and let L be the maximal chain length (in characteristic
p, L < p). Each seed advances at most L steps before zero or first dependency. With
standard GAP linear algebra routines, membership tests/solves are O(N?), yielding a worst
case complexity of O(LN?).

5.2. Semisimplifications of gl(3)-modules in characteristic 3. In this section we com-
pute the semisimplification of simple s[(3) modules, L(\) giving s[(1|1) modules which can
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then be lifted to gl(1|1) modules. The simple s[(3) modules are given by the 3* = 9 re-
stricted dominant integral weights. We first use the algorithm provided in Section to
decompose each L(\) into Jordan blocks (w.r.t ess) before semisimplification. The relevant
decompositions and actions maps are shown in the Appendix (see .

Decomposition
J1
J1 @ Jy
J1® D Js
J1 @ Jo
2Jo ® J3
J1® Jo D 4Js
J1 B I D Js
J1® Jy D43
(2,0,-2) 9J;
TABLE 1. Decomposition of L()A) for n =3,p =3

Case
1

»—w—lw“wwy

O | O | N

o[ Do o o 1o

— ]

—_
I

~—
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= e | = | — [ — | — [ ~—

~—

-
NS
\-O\'

|

O 00| | O O | W DN
—~

1. A=(2,2,2)
In this case we see that the semisimplification is obviously simple as it is (1|0) di-
mensional. Therefore, L(\) = L(\).

2. A0=1(2,2,1)
We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(\) = L(X).

3. A=1(2,2,0)
We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(\) = L(X).

4. X =(2,1,1)
We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(\) = L()).

5. A=1(2,1,0)
We can examine the action maps and note that there are two submodules. The
two submodules have highest weight A\; = (2,1,0) and Ay = (0,2,1). Therefore,
L(N\) = L(A) @ L(Xg).

6. A=(2,1,-1)
We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(\) = L(X).

7. 2=1(2,0,0)
We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(\) = L(X).

8. A=(2,0,-1)
We can examine the action maps in the appendix to verify that the semisimplification
is simple. Therefore, L(\) = L(X).

9. A =(2,0,-2)
In this case the decomposition consists of only J; meaning the semisimplification is
the zero-map.
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5.3. Semisimplifications of gl(4)-modules in characteristic 3. We use a similar ap-
proach of computing the semisimplification of simple s[(4) modules giving s[(2|1) modules.
Additionally, we make extensive use of Theorem when possible and the highest weight
vector strategy from Theorem m The simple s[(4) modules are given by the restricted
dominant integral weights of which there are 33 = 27. We again use the decomposition
algorithm in to decompose each L(A) into Jordan blocks (w.r.t ez4) to help determine
the semisimplification. The relevant decompositions and actions maps are described in Ap-
pendix while the semisimplified module structure is described below.

1A= (2,2,2,2)
We have (L()),e3q) = J; which means the semisimplification is (1|0)-dimensional.
The highest weight vector has semisimplified weight A = (2,2,4) and by virtue of the
semisimplification being (1]0)-dimensional it is obviously simple. Therefore, we can
conclude that L(\) = L(2,2,4).

2.0 =(2,2,2,1)
We have (L()), e34) = 2J1®Jo which means the semisimplification is (2|1)-dimensional.
Using the algorithm we see there is a unique highest weight vector with semisimplified
weight A = (2,2,3). Using Theorem tells us the dimension of the module gener-
ated by X must be 3 as needed. Therefore, we can conclude that W =L(2,2,3).

3.\ =(2,2,2,0)
We have (L(M),e34) = 3J1 & 2J5 & J3 which means the semisimplification is (3]2)-
dimensional. Using the algorithm we see there is a unique highest weight vector with
semisimplified weight A = (2,1, 3). Using Theorem tells us that the dimension
of the module generated by )\ is 5 as needed. Therefore, we can conclude that
L\ = L(2,1,3).

4. 2=(2,2,1,1)
We have (L()), e34) = 2J;852.J5 which means the semisimplification is (2|2)-dimensional.
Using the algorithm we see there is a unique highest weight vector with semisimpli-
fied weight A\ = (2,2,2). Using Theorem tells us the dimension of the module
generated by ) is 4 as needed. Therefore, we can conclude that L(\) = L(2,2,2).

5. A=(2,2,1,0)
We have (L()),e34) = 2J; @ 4.J5 & 2J3 which means the semisimplification is (2]4)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights A\; = (2,2,1) and Ay = (2,0,3). Using Theorem tells us that
dim L(A;) =1 and dim L(\y) = 5. Combining this with Theorem allows us to
conclude that L(\) = L(2,2,1) ¢ L(2,0,3).

6. A=(2,2,1,—1)
We have (L()\),e3q) = 6J7 @ 6J5 @ 9J3 which means the semisimplification is (6|6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semsimplified weight A’ = (2,0,2). Using Theorem tells us the dimension
of the module generated by X' is 12 as needed. Therefore, we can conclude that
L)) = L(2,0,2).

7. 2=1(2,2,0,0)
We have (L()),e34) = 2.J; @ 4J5 @ 3J3 which means the semisimplification is (2]4)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-

plified weights A; = (2,2,0) and Ay = (1,0,3). Using Theorem tells us that
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dim L(\;) = 3 and dim L(\;) = 3. Combining this with Theorem allows us to

conclude that L(\) = L(2,2,0) & L(1,0,3).

CA=(2,2,0,—1)

We have (L(\), esq) = 6.J1 @ 6J5 @ 14J3 which means the semisimplification is (6/6)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights Ay = (2,2,—1) and Ay = (1,0,2). Using Theorem tells us that
dim L(A;) =4 and dim L(\y) = 8. Combining this with Theorem allows us to

conclude that L(\) = L(2,2,—1) & L(1,0,2).

CA=1(2,2,0,-2)

We have (L(\), e3q) = 6.J; @ 6.J5 @ 36J3 which means the semisimplification is (6(6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight A" = (1, —1,2). Using Theorem tells us the dimension
of the module generated by )\ is 12 as needed. Therefore, we can conclude that
L(\) = L(1,-1,2).

A=(2,1,1,1)

We have (L()), es4) = 2J1@.Jo which means the semisimplification is (2|1)-dimensional.
Using the algorithm we see there is a unique highest weight vector with semisimpli-
fied weight A\ = (2,1,2). Using Theorem tells us the dimension of the module
generated by X is 3 as needed. Therefore, we can conclude that L(\) =L(2,1,2).
A=1(2,1,1,0)

We have (L(A),e34) = 4J1 @ 4J2 @ J3 which means the semisimplification is (4]4)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight A = (2,1,1). Using Theorem tells us the dimension
of the module generated by X is 8 as needed. Therefore, we can conclude that
L) = L(2,1,1)

A=1(2,1,1,-1)

We have (L()),e34) = 6.J; @ 6J5 @ 6J3 which means the semisimplification is (6/6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight A" = (2,0, 1). Using Theorem tells us the dimension
of the module generated by )\ is 12 as needed. Therefore, we can conclude that
L(\) = L(2,0,1).

A=1(2,1,0,0)

We have (L()), esq) = 2J; @ 4J5 @ 2J3 which means the semisimplification is (2[4)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights A\; = (2,1,0) and Ay = (0,0,3). Using Theorem tells us that
dim L(A\;) =5 and dim L(\;) = 1. Combining this with Theorem allows us to

conclude that L(\) = L(2,1,0) @& L(0,0,3).

A=(2,1,0,—1)

We have (L(M),e3q) = 2J; & 6J2 & 10J3 which means the semisimplification is
(2|6)-dimensional. Using the algorithm we can see four highest weight vectors with
semisimplified weights A\ = (2,1,—1), Ao = (—1,2,1), A3 = (2,—1,1) and Ny =
(0,0,2). Using Theorem 3.2]tells us that dim L(\;) = 3, dim L()2) = 1, dim L(\3) =
1 and dim L()\4) = 3. Combining this with Theorem allows us to conclude that
LN =L(2,1,-1)® L(—1,2,1) ® L(2, —1,1) & L(0,0, 2).

A=(2,1,0,—2)

We have (L(\),ess) = 4J; & 8Jy @ 32J3 which means the semisimplification is
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(4|8)-dimensional. Using the algorithm we can see four highest weight vectors with
semisimplified weights A\; = (1,1,—1), A2 = (2,—1,0), A3 = (—1,2,0), and \y =
(0,—1,2). Using Theorem 3.2]tells us that dim L(A\;) = 1, dim L()\;) = 3, dim L(\3) =
3 and dim L(A4) = 5. Combining this with Theorem allows us to conclude that
L(\) = L(1,1,-1) & L(2,—1,0) & L(—1,2,0) & L(0, —1, 2).

A=(2,1,-1,-1)

We have (L(\), e34) = 6J; @ 6J5 @ 14J3 which means the semisimplification is (66)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights Ay = (2,1,—2) and Ay = (0,0,1). Using Theorem (3.2 tells us that
dim L(\;) = 8 and dim L(\;) = 4. Combining this with Theorem allows us to
conclude that L(\) = L(2,1,—-2) & L(0,0,1).

A=(2,1,-1,-2)

We have (L(\), esq) = 7Jy @ 4J5 & 47J3 which means the semisimplification is (7]4)-
dimensional. Using the algorithm we can see three highest weight vectors with
semisimplified weights A; = (2,1,-3), A\» = (0,0,0), A3 = (0,—2,2). Using The-
orem [3.2] tells us that dim L(A\;) =5, dim L(A2) = 1 and dim L(A3) = 5. Combining
this with Theorem allows us to conclude that L(\) = L(2,1,—-3) @ L(0,0,0) @
L(0,-2,2).

A=(2,1,-1,-3)

We have (L(A), e34) = 6J; & 6.J5 & 114.J3 which means the semisimplification is (6(6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight A" = (0, —2, 1). Using Theorem tells us the dimension
of the module generated by )\ is 12 as needed. Therefore, we can conclude that
L(\) = L(0,-2,1).

A= (2,0,0,0)
This is S?(V) and must be simple. In particular, we have L(\) = L(2,0,0).
A= (2,0,0,—1)

We have (L()), ess) = 6J; @ 6J2 @ 6J3 which means the semisimplification is (6(6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight A = (2,0, —1). Using Theorem tells us the dimension
of the module generated by X is 12 as needed. Therefore, we can conclude that
L(\) = L(2,0,-1).

A=(2,0,0,-2)

We have (L(\), e34) = 4J;7 @ 4J5 @ 19J3 which means the semisimplification is (4|4)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights A\; = (2,—1,—1) and Ay = (—1,2,—1). Using Theorem [3.2] tells us
that dim L(\;) = 4 and dim L(A\y) = 4. Combining this with Theorem % allows
us to conclude that L(\) = L(2, -1, —1) & L(—1,2, —1).

A=(2,0,—-1,-1)

We have (L()),e34) = 6J; @ 6J5 & 9J3 which means the semisimplification is (6/6)-
dimensional. Using the algorithm we see there is a unique highest weight vector
with semisimplified weight A = (2,0, —2). Using Theorem tells us the dimension
of the module generated by X is 12 as needed. Therefore, we can conclude that
L(\) = L(2,0,-2).
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A=(2,0,—1,-2)

We have (L(\),ess) = 4J; @ 8Jy @ 32J;3 which means the semisimplification is
(4|8)-dimensional. Using the algorithm we can see four highest weight vectors with
semisimplified weights A\; = (2,0,-3), A2 = (=1,1,—1), A\3 = (=1,—-1,1), \y =
(2,—2,—1). Using Theorem tells us that dim L(A) = 5, dim L(\2) = 3,
dim L(A3) = 1, and dim L(A4) = 3. Combining this with Theorem allows
us to conclude that L(\) = L(2,0,-3)® L(—1,1,-1)® L(—-1,—-1,1) ® L(2, -2, —1).
A=(2,0,—1,-3)

We have (L(\), e3q) = 8J; @ 8J5 & 90J3 which means the semisimplification is (8|8)-
dimensional. Using the algorithm we can see two highest weight vectors with semisim-
plified weights A\; = (2,—2,—2) and Ay = (—1,1,—2). Using Theorem [3.2] tells us
that dim L(\;) = 8 and dim L(\y) = 8. Combining this with Theorem [4.14] allows

us to conclude that L(\) = L(2,—-2,-2) @ L(—1,1,—2).

A=(2,0,-2,-2)

We have (L(\), e3q) = 6.J7 @ 6.J5 @ 36J3 which means the semisimplification is (6/6)-
dimensional. Using the algorithm we see there is a unique highest weight vector with
semisimplified weight A\ = (2,0, —4). Using Theorem [3.2|tells us the dimension of the
module generated by X is 12. Therefore, we can conclude that L()\) = L(2,0, —4).
A=(2,0,-2,-3)

We have (L(A), e34) = 6J; @ 6J2 @ 114.J3 which means the semisimplification is (6/6)-
dimensional. Using the algorithm we see there is a unique highest weight vector with
semisimplified weight A = (2,0, —5). Using Theorem [3.2|tells us the dimension of the

module generated by A is 12, Therefore, we can conclude that L(\) = L(2,0, —5).
A= (2,0,-2,—4)
We have (L()\), e34) = 243.J3 which means the semisimplification is the zero-map.
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APPENDIX A. ACTION MAPS

GAP Generator | Matrix Element
4o €12
{o) €23
T3 €13
W €21
Yo €32
Ys €31
hy €11 — €22
hg €22 — €33

TABLE 2. Standard Basis Generators for sl;

A.1l. Semisimplifications of gl(3)-modules in characteristic 3. As seen in Table[2] the
8-dimensional Lie algebra sl((3), of type A, is built from two simple root vectors (xy, )
and their negatives (y1,y2). The Lie brackets among these generates the remaining positive
root (z3) and negative roots (y3). The Cartan subalgebra is 2-dimensional, spanned by
hy = e11 — €22, and hg = e — e33. Under the action of ess, s1(3) decomposes as J; ©2J, @ J3
where the copy of J; is hy — hg and the copies of J5 are y; — —y3 and x3 — x;. We now
enumerate the action maps for each of the 8 restricted integral weights. Since J3 vanishes
after semisimplification we omit listing the J3 modules in the decomposition.

1. Dominant Weight: \ = [2,2,2]
e Weyl module : V[0, 0] of dimension 1.
e [()) is a 1—dimensional quotient of V[0, 0].

Decomposition of L(\) under action of ez : Jy

Jl Vo (Ul)
Action map
| [ v |
h7y — hg 0
y1—~> —y3 | 0
T3 — T1 0

2. Dominant Weight: \ = [2,2 1]
e Weyl module : V[0, 1] of dimension 3.
e L()) is a 3—dimensional quotient of V[0, 1].

Decomposition of L(A) under action of ezy : J; @ Jo

J1 t y3vg (Ul)
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Jo 1 vg = yovg (wr)

Action map

| [ w [ w ]
h7 — hg 2u1 211)1
y1— —ys || 0 | 2u
T3 — T (] 0

3. Dominant Weight: \ = [2,2,0]

e Weyl module : V0, 2] of dimension 6.
e L()) is a 6—dimensional quotient of V[0, 2].

Decomposition of L(A) under action of ezs : J; & Jo @ J3

Ji: yéQ)vo (1)

Ja 1 Ysvy — Yaysto (wl)

Action map

| | [ ]

hy — hg Uy | Wy
y1— —y3| 0 | u
T3 — T wy | 0

4. Dominant Weight: A = (2,1, 1]

e Weyl module : V[1,0] of dimension 3.
e L()) is a 3—dimensional quotient of V'[1,0].

Decomposition of L(\) under action of ez : J; & Jo
J1 v (uq)
Jo 1 y1vg = 2y3v0 (wn)

Action map

| [ w1 [wn]
h7 — hg up | Wy
Y1 = —ys|jwi | 0
T3 — T 0 Uq

5. Dominant Weight: \ = [2,1,0]

e Weyl module : V|1, 1] of dimension 8.
e L()) is a T—dimensional quotient of V'[1,1].
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Decomposition of L(A) under action of ezy : 2J5 @ J3

Jo 1 vg = Yoo (wn)

Ja 1 y1yzvg — 2y§2)vo (w2)

Action map

| Lwi [w ]
h7 — hg 010
y1—~> -y 00
T3 — T 0 0

6. Dominant Weight: A\ = (2,1, —1]

e Weyl module : V[1,2] of dimension 15.
e () is a 15—dimensional quotient of V'[1,2].

Decomposition of L(A) under action of ez : J; @ Jo @ 4.J3
J1 s y1yeysvo (u)

Jy y1y;(32)U0 — 231;(33)?10 (wy)

Action map

| L ws [ ]
h7 — hg 2u1 0
Y1 > —ys || wi | O
T3 — I 0 2uq

7. Dominant Weight: \ = [2,0, 0]

e Weyl module : V[2,0] of dimension 6.
e () is a 6—dimensional quotient of V'[2,0].

Decomposition of L(A) under action of ezy : J; & Jo @ J3
J1 tvo (uy)
J2 D1y — 2y3’00 (wl)

Action map

| | w [ w |
h7 — hg 2u1 2’[1}1
fr =~ —ys | wi | O

T3 — T 0 2uq
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8. Dominant Weight: \ = [2,0, —1]

e Weyl module : V[2,1] of dimension 15.

e L()) is a 15—dimensional quotient of V|2, 1].
Decomposition of L(A) under action of ez : J; @ Jo @ 4J3

J1 : y1y2v0 + ysvo (u1)
Jo 1 vg = Yoo (w1)

Action map

| | [

h7 — hg Uy | W1
yi = —ys| 0 | uy
T3 — T1 wy | 0

9. Dominant Weight: \ = [2,0, —2]
e Weyl module : V[2,2] of dimension 27.
e L()) is a 27—dimensional quotient of V[2,2].

Decomposition of L(A) under action of ez : 9.J3
Semisimplification is the zero map as all J3 vanish after semisimplification.

GAP Generator | Matrix Element
T €12
o) €23
T3 €34
Ty €13
Ts €24
Te €14
W €21
Yo €32
Ys €43
Ya €31
Ys €42
Ye €41
ha3 €11 — €22
P4 €29 — €33
his €33 — €44

TABLE 3. Standard Basis Generators for sl

A.2. Semisimplifications of gl(4)-modules in characteristic 3. As seen in Table [3]
the 15-dimensional Lie algebra s[(4), of type As, is built from three simple root vectors
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(21, 22,x3) and their negatives (yi1,¥y2,v3). The Lie brackets among these generates the
remaining positive roots (x4, rs, xg) and negative roots (vs,ys,ys). The Cartan subalgebra
is 3-dimensional, spanned by hi3 = €17 — €99, h14 = €99 — €33, and hy5 = e33 — e44. Under the
action of ey3, sI(4) decomposes as 4.J; @ 4J, @ J3 where the copies of J; are x1,y1, his — his +
his, h1s — hqs and the copies of Jy are yy — —ye, Yo — —¥ys5, T5 — T9 and g — 4. We now
enumerate the action maps for the key subcases for the 27 restricted integral weights. Since
J3 vanishes after semisimplification we omit listing the J3; modules in the decomposition.

1. Dominant Weight: \ = [2,2,2,2]

e Weyl module, V[0, 0,0] Dim=1
e () is 1-dimensional quotient of V[ 0, 0, O |

Decomposition of L(\) under action of ey3 : J;
J1 v (ug)

Action map

e
=

W

T

hiz — hig + hys
hiy — his

Yas — —Ys

Y2 — —VYs

Ty —> T2

Tg — T4

[ev] Nen) Hen] Nen) Hev] e Rav] Haw)

2. Dominant Weight: )\ = [2,2,2 1]

e Weyl module V0,0, 1] Dim=4
e [()) is 4-dimensional quotient of V[ 0, 0, 1 |

Decomposition of L(A) under action of es3 : 2J; @ Jo
Jv :ysvo (ur)
Ji: ysvo (u2)
Jo 1 vg = yzve(wy)

Action map



36

APPENDIX

| w [ uz [ wi ]

Y1 Us 0 0
T 0 (751 0
hiz — hig + has || 2up | 2up | wy
h14 — h15 2'LL1 0 2'11}1
Ys — —Ys 0 0 U
Yo — —Ys 0 0 | w
Ty —> T2 w1 0 0
Tg —> T4 0 w1 0

3. Dominant Weight: )\ = [2,2,2,0]
e Weyl module V0,0, 2] Dim=10
e [()) is 10-dimensional quotient of V[0, 0, 2]

Decomposition of L(\) under action of es3 : 3.J; @ 2J5 & J3

Action map

Jl : yé2)

Jl : yé2)

vo (u1)

J1: ysysvo (usg)

Vo (U3)
Jo 1 ysvo = 2y3ysvo (wr)
Ja 1 YsVo — 2Y3Yso (w2>

L [(up [us [ wi [ wp |
Y1 (%) 2U3 0 Wo 0
T 0 2U1 (5) 0 w1
h14 - h15 Ul 2U2 0 w1 221)2
his —higa+his || ur | ug [us | 0 0
Ya — —Ys 0 0 0 (%) 2u3
Y2 — —UYs 0 0 0 |2uy | usy
Ts — To wy | wy | O 0 0
Tg —> T4 0 wy | Wo 0 0

4. Dominant Weight: A\ =[2,2,1,1]
e Weyl module : V0,1, 0] of dimension 6.
e () is a 6—dimensional quotient of V[0, 1, 0].

Decomposition of L(\) under action of ey3 : 2.J; @ 2J5

J1 : YaYso (
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Y1 0 0 W2 0
T 0 0 0 w1
h14 — h15 (51 2U2 w1 2w2
hiz — hia + his || 2uq | ue 0 0
Y2 — —Ys wy | 0 0 | 2uy
Ys — —Ye wy | 0 | uy | O
Ty — To 0 2wy | 2uq 0
Tg — Ty 0 | wy 0 | 2uy

5. Dominant Weight: )\ = [2,2,1,0]
e Weyl module : V[0, 1, 1] of dimension 20.
e L()) is a 16—dimensional quotient of V[0, 1, 1].

Decomposition of L(\) under action of ey3 : 2.J; @ 4J5 @ 2.J3

Action map

Ji
Ji

J2

S Y2YsYelo (Ul)

: yzy((;2)vo (Uz)
JQ .

vy — 2y3vo (w1)
(2)

D YaYsVo — 2Y5 Vo (’LUQ)
JQ .

JQZ

YoYsVo — 2Y2Y3YsVo (Ws3)

(2)

Y4YeUo — 23/62 v (wy)

| | w1 | up [wi] ws | ws | wy |
Y1 Us 0 0 | 2ws | wy 0
T 0 Ul 0 0 Wao 2U}3
h14 - h15 Uy 2U2 0 0 ws 211)4
hlg—h14+h15 0 0 0 2’(1]2 2w3 211)4
Y2

\L 0 0 0 0 Ul QUQ
Ys

Ya

\L 0 0 0 (51 2U2 0
Yo

L5

+ 2ws | 2wy | O 0 0 0
— T

e

\l, Wo W3 0 0 0 0

—Ty

37
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6. Dominant Weight: A\ =[2,2,1, —1]

e Weyl module : V[0, 1, 2] of dimension 45.
e L()) is a 45—dimensional quotient of V[0, 1, 2].

Decomposition of L(\) under action of ey3 : 6.J; @ 6J5 & 9.J3

J1  Yoysysvo (uq)

J1  Y2ysyevo + Ysyaysvo + Ysysvo (uz)

J1 1 Y3YaYevo + 2?Jé2)vo (u3)

(2)

Ji: yzy52 YsVo (u4)

Ji: y2y5yé2)'00 (us)

Ji: yzyés)vo (UG)
Jo ygyég)vg — Qyég)vo (w1)
J2 T YoYsYsVo — Y2U3YsYeUo + Z/g)%vo (w2)

Iy ys 0 = 2yaysysysvo + u ysvo (ws)

Iy 2 2y 00 = vausys vo + 2y537 vo (wy)
Ty Yaysysvo — 203y vo (ws)

Jo y4yé2)vg — 2yé3)v0 (we)

Action map

| | o Juw [ wg [wa[us [ug | w | wy [wgfw] ws [ ws |

Y1 Us 2u3 0 us | 2ug | 0 | wo+ws | 2wy +ws | ws | we 2wg 0

T 0 2uq Us 0 | 2uq | us 0 2wy wy | we | W + 2w3 | wy + ws
h14 - h15 2’LL1 0 Uus 0 Us 2u6 211_)1 0 0 Wy Ws 2106
h13 — h14 + h15 0 0 0 2U4 2’LL5 2U6 w1 Wa w3 | Wy Ws We

Y2 — —UYs w1 2ws | 2wy + ws 0 0 0 0 Uy 0 Us Us 2ug

Ys — —Ys Wo + 2w3 | 2wy We 0 0 0 Uy 2us 2us | 0 Ug 0

T5 — T 0 0 0 2ws | 2ws | 2wg Uy Us 0 | us 0 0

T — Ty 0 0 0 w1 Wy Wy 0 0 U 0 U9 us

7. Dominant Weight: A = [2,2,0,0]

e Weyl module : V0,2, 0] of dimension 20.
e () is a 19—dimensional quotient of V[0, 2, 0].

Decomposition of L(A) under action of ey3 : 2J; @ 4J5 & 3.J5.
Jl - Vo (Ul)

vy v (u2)

Ja 1 Y2y — 2y5v0 (wl)
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gy : Y4y — 2y61)0 (w2)

Jo: yéz)y(;vo — 2Y2YsYsVo (w3)

)

J2  Y2yaYsVo — 2y2yé2 vy (wy)

Action map

Y1 0 0 Wao 0 Wy 0
T 0 0 0 w1 0 W3
h14 — h15 2U1 (%) 2w1 0 0 Wy
h13 — h14 + h15 Ul 2U2 2w1 2w2 w3 | Wy
Yo — —Ys w1 0 0 0 0 U9
Ys — —Ys Wa 0 0 0 [2uy| O
Ts — To 0 | 2ws | uy 0 0 0
Te — T4 0 w3 0 lvg 0 0

8. Dominant Weight: \ = [2,2,0, —1]

e Weyl module : V0,2, 1] of dimension 60.
e L()) is a 60—dimensional quotient of V[0, 2, 1].

Decomposition of L(A) under action of ey3 : 6J; & 6.J5 & 14.J5.
J1 2 yaysvo + ysvo (u1)

J1 1 ysyavo + 2y6vo (u2)

(2)

Ji: yéz)ygyﬁvo + 2943/52 vo (ug)

J1 1 2y2y3yaysvo + 3/2.%(;2)?10 + YaysYsvo (ua)
Ty sy vo (us)

ity s vo (ue)
Ja 1 vg — Y3 (wl)

Jo 1 yaysyavo + 2y2Ysvo — 2Y3Yaysvo + Ysysvo (w2)

Ja: 952)%96@0 — 292yé2)y6?10 (ws)

Ja2 T Y2yaYsYsvo — y2y5yé2)vo + yf)ygyémvo (ws)

Ja y§2)yé2)vo — 2?;23/5?;((52)@0 + y§2)y3yé2)vo (ws)

Ja: yzy4yf(;2)?fo — 2yzyé3)vo (we)

Action map
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| o Jup [us | wa [ w5 [ug [wr[wy | wy [wi[ws| ws |
Y1 U 0 Uy 0 Ug 0 0 0 wy + 2ws 0 We 0
I 0 Uy 0 2U3 0 Us 0 0 0 0 ws | Wy + 211}5
h14 - h15 Up 2U2 2U3 0 0 Ug w1 2w2 271]5 0 0 We
his — hia + his 0 0 | 2us 2y Us Ug | wi | wsy 0 0 0 0
Y2 = —Ys 0 | wo | w3 | 2wy + 2w; 0 0 [2uy| O 0 Qus | us ug
Ys — —Ye 211)2 0 Ws 2’11}6 0 0 2u2 0 2U5 2u6 0 0
Ty — To w1 0 2o 0 2wy + 2ws | 2wg 0 Ug us Uy | 2uy 0
Tg — Xy 0 w1 0 0 w3 Ws 0 | 2uy 0 U3 0 2uy
9. Dominant Weight: )\ = [2,2,0, —2]
e Weyl module : V0,2, 2] of dimension 126.
e L()\) is a 126—dimensional quotient of V[0, 2, 2].
Decomposition of L(\) under action of ey3 : 6.J; @ 6J5 & 36.J3.
2 2 3
i 2y yevo + U8 Ysysyevo + 2uays vo (ur)
2 2 2
J1  Y293YaYsYsvo + 2y )ygyé Jup + y4y§ )yGUO (u2)
2 3 2
it 2ya3ays” Vo + yays Vo + yaysys Vo (us)
. (2),(2) (2)
J1 Y Y5 Y Vo (Ua)
2 3
Ty ysysvo (us)
2 4
Ji sy o (ue)
2 2 3
oy ys yevo — 2298 yovo (wi)
2 2 2
o Yayays yevo — ys ysysys vo (ws)
L2 (2) (2), (2) (2) (2)
Jo 1Yy YsYs Vo = Y2Us Ys Vo + Ys Y3YsYs Vo (ws3)
2 3 2 3
o Yayays s Vo — Yaysys Vo + ys ysys v (ws)
2 3 3 2 3
o+ 8y 00 = 2009538 v0 + 8 g5y w0 (ws)
3 4
o yayays o — 2098 vo (ws)
Action map
| lw Juo | ws | w us  Jug [ w [wy [ws | wy [ws [ ws |
Y1 Uy | Uz 0 Us 2ug 0 |ws4+wsg| ws | wy We We 0
T 0 | 2uq 2ug 0 2uy Us 0 2wy | 2wy | wo + w3 | w3 | wy + 2ws
h14 - h15 Uy 2’&2 0 2U4 0 Ug w1 2’LU2 2’LU3 0 0 We
h13 — h14 + h15 Uy U2 Uus 0 0 0 27.1}1 2w2 2’[1)3 2’(1}4 211)5 2U]6
Y2 — —UYs 2wy | 2w | 2wy + ws 0 0 0 0 0 22Uy 2us Us Ug
Ya — —Ys W3 | Wy We 0 0 0 2uy 2us | 0 0 Ug 0
Ts — To 0 0 0 2wy + 2ws3 | 2wy + ws | 2wg Uq 2ug | us U3 2ug 0
T — X4 0 0 0 w1 w3 Ws 0 Uy 0 Us 0 2ug

10. Dominant Weight: A\ = [2,1,1,1]
e Weyl module : V[1,0,0] of dimension 4.
e L()) is a 4—dimensional quotient of V'[1,0, 0].
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Decomposition of L(A) under action of ey3 : 2J; @ Jo.
J1 g (uy)
Ji 1o (uz)
Ja : yavo — 290 (w1)

| [ua [ e | wy |
Y1 up | 0O 0
I 0 U1l 0
his — his 0 U2 w1
hiz — hig +hys || ug | ug | 2wy
Yo — —Us 0 |2wy | O
Ys — —Ys wy | 0O 0
Ty —> T2 0 0 U9
Te — T4 0 0 | 2uy

11. Dominant Weight: A = [2,1,1,0]

e Weyl module : V1,0, 1] of dimension 15.
e () is a 15—dimensional quotient of V'[1,0, 1].

Decomposition of L(\) under action of ey3 : 4.7 @ 4J5 @ Js.
J1 : ysvo (Ul)
Ji y1ysvo (uz)
Ji  ysyavo + 2ysvo (u3)
Ji y1yevo (ua)
J2 1 vg — yavo (w1)
Ja 1 y1vo — Y1ysvo (w2)
Ja t yaysvo — 2ysysvo (ws3)

Jo : yaysvo — 23/(§2)U0 (wa)
Action map

| Lwn [up [ug [ g [on | wo | wy
Y1 Uy | 2ug | 2us | O Wa 0 Wy
T 0 2U1 2U1 U9 0 w1 0 ws
h14 — h15 2u1 0 0 Uy 211)1 0 0 Wy
hlg — h14 + h15 0 0 0 0 2101 2’11)2 W3 Wy
Yo — —Y5 0 |2ws| ws |2ws | up | ua +us 0 0
Ys — —Yp Ws Wy 0 0 PATES Uy 0 0
Ts — To wy | we |2we | 0 0 0 Ug + U3 | Ug
Tg —> T4 0 w1 0 Wo 0 0 2u,q Us
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12. Dominant Weight: A\ = [2,1,1, —1]

e Weyl module : V1,0, 2] of dimension 36.
e L()) is a 36—dimensional quotient of V1,0, 2].

Decomposition of L(\) under action of ey3 : 6.J; @ 6J5 @ 6J3.

2
iy ()
2
Jy: ylyé g (u2)
J1 : Ysyaysvo + 2ysysvo (us)
J1 1 2y15Y6v0 + YsYaYevo (Ua)
. (2)
J1 ¢ ysyayevo + 2y vo (us)
. 2)
Ji -ylyé vo ()
Ja : ysvo — Ysysvo (wr)
J2 T y1ysvo = Y1ysysvo (wa)
Ja 1Yo — Y1ysyevo (w3)
2 2
ot yays v — 298 yevo (ws)
. (2)
J2 : Yaysyevo — 2ysys Vo (ws)
2 3
o yay$ oo — 2y$ v (w)

‘ H Uy ‘ U9 ‘ us ‘ Uy ‘ Us ‘ Ug ‘ w1 ‘ Wa w3 Wy Ws ‘ We
Y1 U9 (51 Uy 2U6 2U6 0 Wy 211}3 0 Ws 2w6 0
T 0 0 Uy | us+uz | uz | 2ug+us| 0 2w Wa 0 2wy wWs
his — h1s uy | 2ug | 2usg 0 0 Ug w1 AT 0 2y 0 We
h,13 — h14 + }L15 2’1L1 2U2 271,3 271,4 2U5 2“6 w1 Wa w3 0 0 0
Yo — —Ys 0 2wy | 2wy 2ws Ws 2w 2uq | 2ug + usz | 2uy + 2us 0 0 0
Ys — —Ye Wy Ws 0 0 We 0 2U3 ZU4 2U6 0 0 0
T5 — Xo wy | wy | 2we w3 2ws 0 0 0 0 Uy + Uz | 2ug + 2us | ug
Tg — Xy 0 w1 0 AT 0 w3 0 0 0 2uq U3 Us

13. Dominant Weight: A = [2,1,0,0]

e Weyl module : V[1,1,0] of dimension 20.
e () is a 16—dimensional quotient of V'[1,1,0].

Decomposition of L(A) under action of ey3 : 2J; @ 4J5 & 2.J5.

Ji
Ji

JQZ
JQI
JQZ

vg (uq)

s y1vo (ug)

Yavo — 2ysvo (w1)
Y1y200 — 241Ysv0 (wa)
Y1yavo — 2y1y6vo (w3)
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)

Jo T YoYaYso — 2y2yé2 vy (wy)

Action map

| | [ ws [wn [ wy [ ws |wi]

Y1 Us 0 we |2ws | 0 0
T 0 Uy 0 2"LU1 Wo 0
h14 — h15 U1 2UQ w1 2'LU2 0 0
his —hia+his || 0 O | wy | wy | w3 | 0
Yo — —Ys wy | 2we 0 0 0 0
Ys — — Yo 2wq | w3 0 0 0 0
Ty —> To 0 0 2uy | 2ug 0 0
T —> T4 0 0 0 2u; | 2us | O

14. Dominant Weight: A = [2,1,0, —1]

e Weyl module : V[1,1, 1] of dimension 64.
e L()) is a 44—dimensional quotient of V[1,1,1].

Decomposition of L(\) under action of ey3 : 2.J; @ 6J5 & 10J3.
Jv  y1y2y3vo + 2y6vo (u1)
J1: 25192Y5Y6v0 + 292y3YaYsvo (U2)
Ja vg = yzvo (w1)
Ja  y1vo = y1ysvo (w2)
Ja t yaysvo — 245 vy (ws)

Ja T Y1YaYsVo — 2y1yé2)vo (wy)

J2 1 YoYaYsYsUo — 2y2y5yé2)vo (ws)

Tyt yatats v — 20008 v (ws)

Action Map
‘ H (75} ‘ U2 ‘ w1 ‘ Wy | W3 | Wy ‘ Wy ‘ We ‘
X 0 0 0 w1 0 0 0 Ws
h14 — h15 Uy 2U2 0 Wy 0 0 2’([)5 0
h13 — h14 + h15 2U1 2U2 w1 wao 0 0 2’(1}5 21116
Y2 — —UYs 0 2ws 0 uy | 0 0 0 0
Ys — —Ys 0 |2wg|2u; | O | O | O 0 0
Ty — T2 2ws9 0 0 0 0 0 | 2usg 0
T — T4 w1 0 0 0 0 0 0 2U2

15. Dominant Weight: \ = [2,1,0, —2]

e Weyl module : V1,1, 2] of dimension 140.
e L()) is a 116—dimensional quotient of V[1,1,2].
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Decomposition of L(A) under action of ey : 4J; @ 8Jy @ 32.J;5.

Ji: ylyzy5y((;2)vo + Y2Y3Yals Vo + 2y2y

(2)

(3)

6 Yo

(u1)

Ji: 21/13/21/5()2)116?10 + YoYsYaYsYeVo + y2y5yé2)vo (u2)

(2)

J1t Y1Ysyalevo + 201y vo (us)
J1 : Yoysysvo (ug)

Jo = 201aysv0 + 256t — Y1yays Vo + Y1ysysvo + 2ysysvo (ws)

Jo iy
Jaty

(2)

(3)

2Ys Vo — 2ys Vo (wr)

(2

1Y2Y5

) 3)

Vg — 2Y1Y5 Vo (w6)
(2

Jo  ynyaysysto — 2015558 vo + 25 vo (ws)

Jgiy
Jo iy

(2

1Y4Y¢

(2

2Y4Ys5

)
)

vy — 2y1yé3)vo (wy)

YeUog — QQQ?Jéz)yf(;Q)Uo

(w3)

Ja y2y4y5yé2)vo — 2y2y5yé3)vo (w2)

o Yayays) vo — 2ua98 vy (wr)
Action Map
| L wa [us [ wo | wi [ws] wr [ we | ws [ wa [ws] wy |wi]
U1 0 0 U1 0 0 Weg 0 W4y 0 Wa 2w1 0
T 0 0 0 U2 0 0 Wy 0 Ws 0 2U)3 Wao
h14 — h15 2U4 2U3 (%) 2U1 0 2’11]7 0 2'LU5 0 W3 2’(1]2 0
hlg — h14 + h15 Uy us 0 0 0 QW7 2w6 2w5 2w4 W3 Wa w1
Yo — —UYs wr | ws | 2ws | wa 0 0 0 0 0 0 0 0
yato — s we | wg | we | 2w; | O 0 0 0 0 0 0 0
T — To 0 0 0 0 0 | ug 0 Uus 0O Juy| up | O
Te — Ta 0 0 0 0 0 0 i 0 us | 0 | us | ug

16. Dominant Weight: A =21, -1, —1]

e Weyl module : V1,2, 0] of dimension 60.
e L()) is a 60—dimensional quotient of V1,2, 0].

Decomposition of L(\) under action of ey3 : 6.J; @ 6J @ 14.J3.

: v (ug)

Ji
Ji
Ji
Ji

Jll

Ji

- Y1

(us)

L YaleVo + 2Yaysvo (Ua)
L Y1Y2Y6Vo + 2Y1YaYsvo (us)

21y

2) (2
e

Y2YaY5YesVo (Uz)

Vo + 2ya1ays vo ()
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Ja  yavo — 2ys5v0 (we)
Ja 1 y1yavo — 2y1ysv0 (ws)
Jo : yavo — 2ysvo (wy)
Ja t y1yave — 2y1y6vo (w3)

. (2) 2
J2  201Y5 Yoo + 2Y2Ya¥eo —> Y1Y2YsYeUo + Y2Ys Vo + YaYsYsvo (w2)
2 2 2 3
oy yay$ve = 298y v (wr)
Action Map
| Lus | ws [ wa [ us [ws [wn [ | ws [walws] wy [ wy]
Y1 Us 0 us 0 2U1 0 Ws 211}3 w3 0 0 0
1 0 Ug 0 Uy 0 |2us | 0 |2wg|wg|ws| O 0
h14 - }L15 2u6 0 0 us U2 2’&1 Qwﬁ 0 0 w3 wWo 211}1
h13 — h14 + h15 2“6 2U5 Uy us 0 0 0 0 0 0 2’(1}2 w1
Y2 — —Ys weg | 2wy + ws 0 0 0 2w 0 Uyg 0 | us | uo 0
Ys — —Ye Wy w3 0 0 2wy 0 2uy | 2uz | 0 0 | 2uq 0
Ty — T 0 0 Wy + 2wy | 2ws | 2wo 0 Ug us | us | 0 0 2uq
Tg — Ty 0 0 Weg Wy 0 Wa 0 ug | 0 |us | O | 2us

17. Dominant Weight: A = [2,1, -1, —2]

e Weyl module : V1,2, 1] of dimension 175.
e L()) is a 156—dimensional quotient of V[1,2, 1].

Decomposition of L(\) under action of ey3 : 7J; @ 4J5 @ 47J3.
J1 : Yaysvo + ysvo (ur)
J1 L y1yeysvo + Y1ysvo (Us)

J1 y1ysyavo + 2y196v0 (Uus)

) (2) (2)

J1 T y1Y2ysYsvo + ylyéz Y3YsUo + y1y4y§,2)vo + YoUsYaYso + 2Y2s Vo + 2ysy,” Ysvo (uy)

Ty yauays yevo (us)

Ji: 2y1?/é2)y5yé2)ﬂo + 2yzy4y5yé2)vo + ng)y((;g)Uo (Uz)

I 29198y w0 + 200y4y$ 00 (w)

Jo 1 1vg — y3v (wy)

Jo 109 = Y1ysvo (w3)

Jy y§2)y4y5yé2)vo — 2y§2)y5yé3)vo (w2)

Iy - 182800 = 2089w (wr)

Action Map
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| i [t i [ ] o [ [ [ oo [y [ [ |

Y1 ug | 2us | 0 | 0 | 2ug | 2uy | O | w3 | O | wy 0
T 0 |2uy | ug | O 0 Uz | Us 0 Wy 0 Wo
h14 — h15 Uy 2U() 0 0 0 U2 2u1 Wy 2w3 Wo 211)1
h13 - h14 + h15 U7 | Ug | Us 0 2U3 2U2 2U1 0 0 0 0
Yo — — Y5 0 0 0 0 0 2wy | 2wy | 2ur | ug 0 0
Ys — —Ye 0 0 0 0 | 2wy | wy 0 Ug | 2us 0 0
Ts — T2 Wy | W3 0 0 0 0 0 0 0 ug | 2uq
Tg —> T4 0 wy |ws| O 0 0 0 0 0 2us | 2ug

18. Dominant Weight: A = [2,1, -1, —3]

e Weyl module : V1, 2,2] of dimension 360.
e L()) is a 360—dimensional quotient of V'[1,2,2].

Decomposition of L(A) under action of ey3 : 6.J; @ 6J5 @ 1147.J;.

Jy: 92y4ys()3)96vo (ug)

2 2 2 2 2 2 3
I 208252500 + 2001002 5P 00 + 15 ysy$P v (us)

2 2 2 2
J1 2 9oy v + 1 ysyaysyus oo + 208 ysyiPve (us)

Ty 200987 usus w0 + yayaysus vo + v ysyay$ ve + uS ysvo (us)

I 2 2000953800 + 15 ysyaytP e + 2050 yP vo (us)

Ji 2y yé Jyt )Uo + 292y4yé4)vo (u1)

I = 2019y ysv0 + 200040 yevo — 111208 vsvo + 20254y ysvo (we)

Ja i yé )ysyé Jvo + 2yzy3y§2)y5y6vo + 2y2y4y5yé2)

1 yzyé )yé )Uo + y1y§ )ysysyé Jvg + 2Y2Y3Y4Ys5Ys

(2), (2) (3)

Vo —

(2) 2,2, (2 (2)

2, @) (4)

Jy: ylyé )Z/f(; )Uo + 2Y2Y3Y4 Ys Vo — 2Y1Y2Ys5Ys Vo + Y1Ys  Y3Ys Vo + Y2Ys Vo + 2YaYsy

2 2
Ty = 45y s v — 2050y y vy (ws)

Iy y2ysys s ve = 29 ysyt v (ws)

o = 8 yays Voo — 2087 ys5)vo (w)

Action map

Vo + Ys Y3 YalYg Vo + 2Yays yé )Uo

3)

6 Uo

(ws)

(w4)

| Lus | us  [ua | usg Jup| wn | [ws]|wy | ws [ wp [ w |
Y1 2us | us + 2us | us Uy up | 0 |2ws |wyg| O wy | 2wy | O
T 0 0 Ug Ug + Us | Ug U9 0 We | Ws 0 2w3 Wo
]’L14 — h13 2U6 0 0 us (75 2U1 2U}6 0 Wy 0 Wa 2U}1
h13 — h14 + h15 Ug Us Uy us U (51 0 0 0 271)3 2U)2 211)1
Y2 — —Ys 0 2ws 2ws 0 wa | 2wy | 2ug | us | 2us 0 0 0
Ys — —Yg PATERS W2 2w9 w1 0 0 2us | ug | 2uq 0 0 0
Ty —> T2 2wg 2ws 0 Wy Wy 0 0 0 0 2us | uz | 2uq
Tg —> T4 0 We 0 2ws 0 0 0 0 0 2ug | Uy U9
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19. Dominant Weight: A = [2,0,0,0]

e Weyl module : V[2,0,0] of dimension 10.
e L()) is a 10—dimensional quotient of V[2,0,0].

Decomposition of L(\) under action of ey3 : 3J; @ 2J5 @ Js.

Jl Vo (Ug)

Jv t v (ug)

I (2)

1y vo (u1)
Jo 1 yavo — yevo (wo)
Jo 1 ynyavo — y1ysvo (w1)
Action Map
| | us [ up [ w [wy wy |

W Ug 2uy 0 w1 0
T 0 211)0 (75 0 Wo
h14 - h15 0 U9 2U1 Wa 2w1
h13 — h14 -+ ]7,15 2U3 2U2 2’1“ 0 0
Yo — —Ys 0 | 2wy | 2wy | O 0
Ya — —Ys wy | Wi 0 0 0
Ty — To 0 0 0 [ug | 2wy
Te —r T4 0 0 0 | us | 2us

20. Dominant Weight: A\ =[2,0,0, —1]

e Weyl module : V[2,0, 1] of dimension 36.
e L()\) is a 36—dimensional quotient of V'[2,0, 1].

Decomposition of L(A) under action of ey3 : 6J; @ 6J5 & 6.J5.

Ji
Ji
Ji
Ji
Ji
Ji

Jo
Jo
Jo
Jo
Jo
Jo

L ysvo (ug)

L 1ysvo (Us)

L Y3Yavo + 2ysvo (Us)

L Y1Y3Yavo + 2419600 (u3)

(2

‘Y )ysvo (Uz)

: y§2)9600 (Ul)

Y1YaYsVo — 2y1?/62

Lvg — y3vo (w)

Y1vo — Y1y3vo (ws)
yPUo — ZAQ)Z/:WO (w4)
Yaysvo — 2ysYsvo (w3)

Y1YaYs5v0 — 2Y1Y5Y6V0 (w2)

( )Uo (wl)

47
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Action Map

‘ H Ug ‘ Us ‘ U ‘ us ‘ Uz ‘ Uy ‘ We ‘ Ws Wy ‘ w3 W2 ‘ w1 ‘
U1 Us 2U2 Uus (75} 0 0 Ws 2U}4 0 Wa 2”[1)1 0
1 0 0 | 2ug | us + uyg | 2us | us 0 2wg Ws 0 2ws3 Wo
h14 - h15 2U6 0 0 us (75 2%1 2w6 0 Wy 0 wa 211)1
h13 - h14 + h15 Ug Us Uy us U2 Uq 0 0 0 2w3 2?1)2 211)1
Yo — —Y5 0 |2ws | ws Wo 2wy | 2wy | ug | Us + Ug | U + Usg 0 0 0
Ys — —Ye w3 W 0 0 w1 0 2uy 2us (51 0 0 0
Ts — T wg | ws | 2ws Wy Wy 0 0 0 0 Uy + Ug | Uz + 2us | 2uy
Te — T4 0 Wg | Weg 0 Ws | Wy 0 0 0 Ug 2us +uy | usg

21. Dominant Weight: \ = [2,0,0, —2]

e Weyl module : V[2,0,2] of dimension 84.
e L()\) is a 69—dimensional quotient of V[2,0, 2].

Decomposition of L(\) under action of ey3 : 4.J; @ 4J5 @ 19.J3.

Action Map

22. Dominant Weight: \ = [2,0,

J1
Ji
J1
J1

JQZ
JQZ
JQZ

: yéZ)Uo

i yéQ)Uo

D Y1Y3Y4YeVo + 2311?/62

2) (2
7y o

YsVo — Y3YsVo

P ysvg — 4

y4y5(,2)vo — 2ys
) (2)
“Y1YalYs

vo — 2Y1Yg

(),

YslYesVo
(2)

YeVo

)y,

U1 us 0 (751 0 0 0 0 0
T 0 Uy 0 U9 0 0 0 0
h14 — h15 Uy QU3 U2 2’LL1 Wy ws 2UJ2 2w1
hlg — h14 + h15 0 0 0 0 2104 2’(1)3 wao w1
Yo — —Us O [2ws | O |2wy | 2ug | 2us | O 0
Ys — —Ys weg| 0 |wy| 0 | 2us|2u; | O 0
Ts5 — To Wy 0 w3 0 0 0 2us | 2uq
T — T4 0 Wy 0 W3 0 0 Ug U9

~1,-1]

e Weyl module : V[2,1,0] of dimension 45.
e L()) is a 45—dimensional quotient of V[2,1,0].



APPENDIX 49
Decomposition of L(A) under action of es3 : 6J; @ 6J5 & 9.J5.
J1 s vg (ug)
J1 : y1vo (U5)
.. (2)
J1 iy v (ug)
J1  Yaysvo + 2yaysvo (us3)
Ji: 12Ysvo + 2y19aysvo (uz)
. (2)
J1 1 2y19ay6v0 + 241 Yayevo (u1)
Jo t yavo — 2y5v0 (we)
Jo 1 11200 — 2y1y5v0 (ws)
Ja : yavo — 2ysvo (wy)
Jo 1 y1yavo — 2y1y6v0 (w3)
.2 (2)
Ja 1y yavo = 245 ysvo (wa)
.. (2) (2)
Ja 1y yavo — 245 yevo (wi)
Action Map
| Los | w5 | wae [ wg | w | w [ws[ws [wi] wy [w [ w ]
Y1 Us 2uy 0 Us 2uy 0 ws | 2wy | w3 2uwn 0 0
Mg 0 2”6 Us 0 2U3 U 0 0 We | Wyq + Ws 2’LU5 wWa
h14 - h15 Ug 2U5 0 21145 0 (75} We 2105 2’!1/’4 0 0 w1
h13 — h14 + h15 Ug Us Uy 0 0 0 2’UJ() 2105 2’UJ4 2103 2’!1)2 2’[1)1
Yo — —s we | 2wy + ws | 2w3 + we 0 0 0 0 usz | us Us Uy | Uy
Y4 — —Ys Wy w3 wy 0 0 0 2ug | 2us | 0 0 2y | 0
T5 — To 0 0 0 2wy + 2ws | 2wz + wy 2un 2ug | 2us | us 2uy 2ug | 0
Te — Ty 0 0 0 We 2wy 2ws + 2w9 0 2ug 0 Us 2us | 2uy

23. Dominant Weight: A\ = [2,0,—1, —2]
e Weyl module : V[2,1, 1] of dimension 140.
e [()\) is a 116—dimensional quotient of V'[2,1,1].

Decomposition of L(A) under action of ey : 4J; @ 8Jy & 32.J;5.

Ji
Ji
Ji
Ji

J>

JQZ

L Y3yao + 2ysvo (us)
L Y1YsYaUo + 2y1Y6v0 (us3)
 Yasysto + 2yayS ) vo (us)

(2) 2, (2

L 2Y1Y4Yg Vo + 2Y1 Y2Ys Vo (u1)
J2 .
J2 .

JQI

Vo — Y3Vo (ws)

Y100 — Y1ysvo (wr)

y§2)vo — y?)ysvo (wg)

D Y2Ysvo — QQéz)Uo (ws)
JQ .

Y1Y2Y5vg — 21/199”0 (wy)

2Y1YaYeVo + 2y§2)y2y6vo — 2Y1Y3Y4Y6Vo + y§2)yzy3yavo (ws)
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)

Jy: y§2 Y4YeVo — 2y§2)yé2)vo (ws)

Ja 1 Y1Y2yaYsYeUo + 2?/29395;2)?/600 — 2y1y2y5yé2)vo + 2y2y3y4yé2)vo (wy)

Action Map
| | s [us | up [ wn | ws [ wr | we [ ws |wa]ws]ws]|w |
Y1 U3 0 0 0 wy | 2wg | O wg | O Jwe| O] 0
T 0 Uy 0 0 0 2/LU8 wy 0 Ws 0 0 0
h14 — hlS Uy 27,L3 U2 Uy 0 Wy 2’LU6 0 Wy 0 Wa 0
h13 — h14 + h15 0 0 2U2 2U1 2’11)8 2’([)7 2w6 Wy | Wyq | W3 | W2 0
Yo — —Ys 0 0 0 0 0 Uy | U3 O |u | 0 Ju | O
Ys — —Ys 0 0 0 0 |2ug |[2u3| 0 [2us| O | O] 0[O
Ty — Xy 27 | wg | 2wy | 2we | 0 0 0 0 010|010
T — Ty 2’[08 wy Ws w3 0 0 0 0 0 0 0 0

24. Dominant Weight: A\ = [2,0,—1, —3]

e Weyl module : V[2,1,2] of dimension 300.
e L()\) is a 294—dimensional quotient of V[2, 1, 2].

Decomposition of L(A) under action of ey : 8J; & 8J3 @ 90.J5.
J1 : Yaysysvo (us)

i Y1y2ysysvo (ur)

J1 1 2Y1Y3YaYsvo + y1y§2)vo + y§2)yzy3yevo + y§2)y3y4y5vo + y§2

Jy yf)yi’)yzlyﬁvo + ny)yémvo (us)

J1 2 92y yevo + 204 vy (ug)

)y5?/ﬁvo (Uﬁ)

Ji: y1y2y§2)yﬁvo + 2y1y4y§3)vo (us)

J1 2 20004050 v0 + 208 yaus P vo + ysy Py vo (us)

Ji: 2y1y4yé3)vo + 23/§2)y2yé3)vo (u1)

J2 : ygyé2)1}0 — Qyég)vo (’wg)

Ja ?lezyé2)vo — 2y1y§3)vo (wr)
Jo 1 2Y2ysYaysvo + 2Y2Ys5YsVo — Y2UsYsYslo (We)

Jo 1 201Y2Y3YaYsVo + 2U1Y2Y5Y6V0 — Y1Y2Y3YsYeVo (Ws)

. 2 2 2
J2 . y1y2y3y4y600+y1y2yé )vo+y§ )921/5961]0""2?/49((3 )Uo —

2 2 2 2 2 2 2
y1y2y3yé )U0+2y1y2y§ )y4y6v0+2y1y3y4y5y6v0+2y1y5yé )v0+y§ )y2y3y5y6vo+y§ >yé >y6vo+2y3y4yé Jvg (w4)

Ja: 2y1y4yé2)vo + 2y§2)y2yé2)vo — 2y1y3y4yé2)vo + ny)yzysyf)vo + yf)ys)yéz)vo (w3)

Iy P ysysysvo = 201030y vo + 2015500 + 207 yaysytP v (ws)

Iy - Py = 20Dy P v (wr)
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‘ ‘ ‘ us ‘ (V4 ‘ Ug ‘ Us ‘ Uy ‘ Uus ‘ U ‘ (75} ‘ wsg ‘ wr ‘ We ‘ Wy ‘ Wy ‘ w3 ‘ Wa ‘ w1
U1 Uz 0 Us 0 Us 0 Uy 0 wy 0 Ws 0 |wy+ws| wy 0 0
T 0 Uug 0 Ug 0 Uy 0 Us 0 | 2wg | 2wg | 2wy 0 2wy | 0 | wy 4 2ws
h14 - }L15 2’LL8 0 2“’6 0 0 Uus 0 Uy 2?,()8 0 0 Ws 2’LU4 0 0 wyq
hig — hig + hys || 2us 2u7 2ug 2 Uy U3 Us Uy 0 0 0 0 0 0 0 0
Yo —> —Ys wg | wy +ws | wy | we + ws 0 0 0 0 0 uy | 2uy | 2uz 0 Uy | 2ug [
Ys — —Ys 2uwg 2ws w3 wy 0 0 0 0 |2ug | 2us3| O 0 U 0 |2u 0
Ty — Ty 0 0 0 0 2y +2wg | 0 | 2wy 4+ 2w3 | 2wy | ug | ur 0 0 2ug us | 2us 0
T — T4 0 0 0 0 wg 2wg 2wy w3 0 Ug 0 | 2uy 0 0 | ug Ug

25. Dominant Weight: \ = [2,0, -2, —2]
e Weyl module : V[2,2,0] of dimension 126.
e L()) is a 126—dimensional quotient of V[2,2,0].
Decomposition of L(A) under action of ey : 6J; @ 6.J5 @ 36.J5.
J1 1o (ug)

J1 1 Y100 (U5)
Jy: ?AQ)UO (ug)
J1  y2Yevo + 244500 (us)

J1 : Y192Y6vo + 2Y1yaysvo (u2)

Ji: ?/%2)92?46@0 + 2y§2)y4y5vo (w1)

Ja 2 yavo — 2y5v0 (ws)

Ja 1 y1y2v0 — 251500 (ws)

Ja : yavo — 2ysvo (wy)

Ja t y1yavo — 2y1y6v0 (w3)
(2) (2

Ja Y1 y2vo = 2417 Ysvo (w2)
2 2
oy yave = 2y ysvo (wn)
Action Map
‘ H Ue ‘ Us ‘ Uy ‘ Uus ‘ U ‘ Uy ‘ We ‘ Ws ‘ Wy ‘ w3 ‘ wo ‘ wh ‘

U1 Us 2uy 0 Us 2uq 0 | ws | 2wy | wg 2w 0 0
I 0 2’LL6 Us 0 2’LL3 U2 0 0 We | Wq + W; 2’[1)5 Wa
h14 - h15 2U6 0 Uy 0 U9 2u1 2106 0 0 w3 Wa 2w1
hlg — h14 + h15 0 0 0 2’LL3 2U2 2U1 We Ws Wy w3 Wa w1
Yo — —Ys wg | 2wy + ws | wo + w3 0 0 0 0 uz | Us Us Uy | U
Ys — —Ys Wy w3 wq 0 0 0 |2ug | 2uy| O 0 2uq 0
Ty — T9 0 0 0 Wy + 2/LU5 Wy + W3 | W1 Ug Us Us 2’&4 Uy 0
Tg — Tg 0 0 0 2w Wy + W5 | W3 0 ug | 2ug 0 Us Uyg

26. Dominant Weight: A\ = [2,0, -2, —3]
e Weyl module : V2,2, 1] of dimension 360.
e () is a 360—dimensional quotient of V'[2,2,1].
Decomposition of L(\) under action of ey3 : 6.J; @ 6J5 @ 114.J3.
Ji : Yaysvo + ysvo (us)
J1 1 y1yeysvo + Y1ysvo (us)
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J1 : ysyavo + 2ysvo (14)
J1 1 y1y3yavo + 2y1y6v0 (us)
2 2
Ty yaysvo + y D ysvo (us)
2 2
Ji: yg )3/33/41)0 + 29% )?/67)0 (u1)
JQ Uy — 2y31)0 (w6)
Jo 1 y1v9 — 2y1y3v0 (ws)
2 2
T = gD vy — 2y ysvo (wy)
Ja 1 Yaysyavo + 2Y2YV0 — Y3yaYsvo + 2ysYevo (w3)
Jo 1 192y3Yav0 + 2Y152Y6V0 — Y1Y3YaYsvo + 201Y5Y6vo (W2)
2 2 2 2
Jy yi )y2y3y4v0 + 295 )y2yevo — y§ )y3y4ysvo + 2y§ )y5y6U0 (wl)
Action Map
‘ H Ug ‘ Us ‘ Uy ‘ us ‘ U2 ‘ Uy ‘ We ‘ Ws Wy ‘ ws Wa wy
Y1 Us 2U2 Us 2U1 0 0 Ws 2w4 0 Wa 2’[1)1 0
T 0 0 Ug | Ug + Uz | 2us | Us 0 2wg Ws 0 2ws3 Wo
h14 - h15 Ug 2U5 2’(,&4 0 0 Uy We 27115 0 2105 0 2’(1)1
his — hia + his || 2ug | 2us | 2uy 2us3 2ug | 2uy | wg ws Wy 0 0 0
Yo — —UYs 0 QUJ3 w3 Wa 2w2 w1 2u6 21145 + Uy | Ug + QUQ 0 0 0
Yy — —Ys w3 | wa 0 0 w1 0 | 2uy 2us 2uy 0 0 0
Ty —> Ty We Ws 2’105 Wy Wy 0 0 0 0 2U4 + 2’&5 Uy + 2’LL3 2u1
Tg — T4 0 | weg 0 2ws ws | wy | 0 0 0 Ug Uy 2ug + 2ug

27. Dominant Weight: \ = [2,0, -2, —4]

e Weyl module : V2,2, 2] of dimension 729.
e [(\) is a 729—dimensional quotient of V'[2,2,2].
Decomposition of L(A) under action of ey3 : 243.J5.

Semisimplification is the zero map as all J3 vanish after semisimplification.
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