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               Study of Cycloidal Curves and The Application in Hydraulic Motor Design 
 

Jialin Dong 
 

Abstract 
 

The research described in this paper is a part of the design and development of a compact and 

high-torque hydraulic motor for robotic arms. Traditional motors are too bulky to be installed 

on robotic arms. This paper presents new designs of hydraulic motors based on cycloidal 

curves. It presents the mathematically detailed generation of both epicycloidal and 

hypocycloidal curves, including the standard, shortened, and modified cycloids, for cycloidal 

gears and corresponding pin gears. The innovative design of hydraulic epicycloidal and 

hypocycloidal motors was described, including designs of gears and the oil distribution system. 

The comparison with traditional cycloidal motors is discussed, and the advantages of the new 

design, including compact size and high precision, are highlighted. A hydraulic motor for a 

subsea robotic arm was designed as a real industrial design case. Compact size, high output 

torque, and smooth spinning at low speeds were needed. The method presented was used to 

make a hypocycloidal motor with seven teeth on the inner gear. The designed motor was 

installed on a subsea robotic arm and has been operating in a subsea environment for over a 

year. This design case completely proves that the theory and design method proposed here are 

effective. 
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1. Introduction 

The cycloids, the curves traced by a point on a rolling circle, have captivated mathematicians 
since the Renaissance. Although their properties were hinted at in antiquity, serious study began 
in the 17th century. Galileo Galilei (1599) is often credited with naming the cycloids and 
attempting to calculate the area under one arch, though his results were approximate.(Stillwell, 
1989) The curve’s true mathematical exploration flourished during the "century of genius": 
Blaise Pascal (1658) solved key problems related to its area and centroid, while Christiaan 
Huygens (1659) discovered its property, using it to design pendulum clocks with improved 
accuracy. The cycloids became a battleground for calculus pioneers—Johann Bernoulli, Jakob 
Bernoulli, Gottfried Leibniz, and Isaac Newton—who tackled the Brachistochrone problem 
(1697), proving the cycloids’ optimality as the "curve of fastest descent." The cycloids’ 
applications in physics, engineering, and mathematics cemented their legacy as a cornerstone 
of classical mechanics and calculus. The rich history reflects both the beauty of pure 
mathematics and its profound utility.(Whitman 1943) 

In cycloids’ application, the cycloidal pinion gear transmission system (Cycloidal Drive Systems) 
(Litvin & Fuentes, 2004) utilizes the geometric properties of epicycloid and hypocycloid, 
achieving high-precision power transmission through precise meshing mechanisms. In the field 
of hydraulic motors and reducers, the cycloidal pinion gear transmission system is widely used 
due to its high efficiency and flexibility. For example, in single-stage reducers (Qi et al., 2024) 
(Naveen et al., 2020), their output efficiency can reach over 98%, significantly reducing energy 
consumption and enhancing production efficiency. This paper explores the theory of cycloids 
and cycloidal transmission, which would be used in the innovation of hydraulic motor design. 

The core of cycloidal pinion transmission is the great role of mathematical modeling of cycloidal 
tooth shape in gear meshing (mesh). Characteristics of cycloidal transmission are as follows. 
(Huang et al., 2021) (Zhang et al., 2020) 

1) Compact and Lightweight Design 

The rotor (pin gear) and stator (cycloidal gear) utilize cycloidal profiles. The rotor performs 
planetary motion via an eccentric shaft, eliminating the need for multi-stage transmissions, 
drastically reducing size. Its compact layout allows lighter weight compared to gear or piston 
motors of equivalent power, making them ideal for space-constrained systems (e.g., AGVs, 
robotic joints (Mesmer et al., 2022)). 

2) Structural symmetry 

In order to meet the bidirectional rotation requirements of hydraulic motors, the cycloidal gear 
and pin gear are adopted with a symmetrical structure. Reversing fluid flow direction enables 
easy forward/reverse switching without additional mechanisms. Through the precise 
cooperation between the eccentric cycloidal gear and the pin gear, the stable output of the 
drive is ensured. Speed is adjustable from near-zero to hundreds of rpm and adaptable to 
diverse operational needs. 
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3) Low speed and high torque characteristics 

The geometric properties of cycloidal gears enable significant torque generation even at low 
speeds (high torque-to-volume ratio), ideal for applications requiring heavy-load, low-speed 
operation (e.g., cranes, excavator slewing mechanisms). Continuous meshing of cycloidal teeth 
minimizes output pulsations, ensuring stable operation even at extremely low speeds (e.g., 1-2 
rpm) without "crawling" effects. 

4) High Mechanical Efficiency and Durability 

Multiple contact points (typically 6-8) during meshing ensure even pressure distribution, 
reducing localized wear. Rolling friction dominance further enhances energy efficiency. Critical 
components (e.g., rotor, stator) use hardened steel or composites for wear resistance. Hydraulic 
oil provides direct lubrication, minimizing the frequency of maintenance needed. 

Although the geometric problem of cycloidal gear is based on the parametric equation of a 
circle (positive and negative cosine trigonometric functions), its correct mathematical derivation 
becomes a great difficulty and challenge due to its dynamic coordinate transformation. In the 
second part of this paper, the mathematical derivation of cycloids is provided with details in 
standard, shortened, and modified versions, which leads to a whole theory to generate cycloid 
curves for gear design. The third part describes the way to design a cycloidal motor, followed by 
a design case study of a hypocycloidal motor. Then, the test results of the designed motor are 
presented and discussed. 

2. Method-Mathematical Modeling of Cycloids 

(1)  Basic Cycloids 

Firstly, the mathematical cycloidal model needs to be established. The Epicycloidal and 
Hypocycloidal curves are mathematically described in the following two parts.   

1) Epicycloids 

As shown in Figure 1, let the big circle (shown in the quarter) be the base one with radius	R, and 
the small circle is the rolling one with radius r. The parametric equations (i.e., the coordinates of 
a point) for the base circle can be written as: 

!x=R∙cosθ
y=R∙sinθ

       (1) 
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(a)                              (b) 

Figure 1: The geometric drawing of an epicycloidal curve. (a) The definition of a standard 
epicycloidal curve. (b) An enlarged drawing to describe the mathematical derivation. 

Where θ is the angle between the line connecting the point to the origin and the positive x-axis, 
the coordinates of the rolling circle’s center are: 

!
xr=(R+r)∙cosθ
yr=(R+r)∙sinθ

       (2) 

When the rolling circle rolls on the base circle by an angle θ, it rotates around its center by an 
angle. Because the rolling has no slipping, the arc lengths traced on the two circles are equal, 
i.e., 

R=z∙r         (3) 

Here, z is an integer, which determines the number of petals of the cycloid, which is the number 
of teeth in a pin gear. Therefore, the coordinates of the reference point on the rolling circle are: 

!
xe=xr+r∙sinα
ye=yr−r∙cosα

       (4) 

Where, 

 α=∠EGF=∠AGE−∠AGF=β−( π
2

−θ)    (5) 

Replacing xr, yr and r by Eqns (2) and (3),  

#
xe=r(z+1)∙cosθ+r∙sin(β−( π

2
−θ))

ye=r(z+1)∙sinθ−r∙cos(β−( π
2

−θ))
    (6) 

Also, the arc BD*  is the same with arc DE* , so 

θ∙R=β∙r        (7) 
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Finally, the expression of a standard epicycloid can be derived  

!
xe=r(z+1)∙cosθ−r∙cos[(1+z)θ]
ye=r(z+1)∙sinθ−r∙sin[(1+z)θ]

     (8) 

  

2) Hypocycloids 

As shown in Figure 2 below, let the dashed line represent the base circle with radius, and the 
blue circle represent the rolling circle with radius  r. The parametric equations (i.e., coordinates 
of a point) for the base circle can be expressed as Eqn (1): 

      
 (a)                                                                   (b) 

Figure 2: The geometric drawing of a hypocycloidal curve. (a) The definition of a standard 
hypocycloidal curve. (b) An enlarged drawing to describe the mathematical derivation.  

The coordinates of the rolling circle’s center are: 

!
{xr=(R−r)∙cosθ
yr=(R−r)∙sinθ

     (9) 

When the rolling circle has rolled along the base circle by an angle θ, it rotates around its center 
by an angle. Since the rolling has no slipping, the arc lengths traced on both circles are equal, 
i.e., R and r have the same relation shown in Eqn(3), 

Here, z is an integer that determines the number of lobes (petals) of the hypocycloid, 
corresponding to the number of teeth in the pin gear. 

Thus, the coordinates of a reference point on the rolling circle are: 

!
xℎ=xr−r∙sinγ
yℎ=yr−r∙cosγ

     (10) 

Where, 
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 γ=∠HDF=∠FDE−∠HDE=β−( π
2

+θ)   (11) 

Since the rolling circle moves on the base circle without sliding, the lengths of the arc FE*  and 
arc BE*  are the same, Eqn (12) is derived 

R∙θ=r∙β      (12) 

After substituting Eqns (9, 11, 12) into Eqn (10), Eqn (13) can be obtained. 

#
xℎ=r(z−1)∙cosθ−r∙sin[β−( π

2
+θ)]

yℎ=r(z−1)∙sinθ−r∙cos[β−( π
2

+θ)]
   (13) 

This simplifies a standard hypocycloid to be expressed as: 

!
xℎ=r(z−1)∙cosθ+r∙cos[(z−1)∙θ]
yℎ=r(z−1)∙sinθ−r∙sin[(z−1)∙θ]

    (14) 

(2)  Revision and Modification 

The standard cycloid has a serious flaw--it contains mathematically discontinuous points (non-
differentiable points). To create a pin gear suitable for transmission, it’s necessary to apply a 
displacement (offset) to create space for the rollers on the pin teeth to operate. 

The method of displacement involves extending or shrinking the curve along its normal 

direction by a specific distance. Specifically, by calculating the differentials {dx
dθ
, dy
dθ

}  at a given 

point, the proportional components in the x and y directions can be determined. The 
displacement is then applied according to the ratio of these components over the total 
displacement distance, as follows: 

⎩
⎪⎪
⎨

⎪⎪
⎧lx=l∙

dx
dθ

!dx
dθ

2
+dy
dθ

2

ly=l∙
dy
dθ

!dx
dθ

2
+dy
dθ

2

      (15) 

However, because the standard cycloid has non-differentiable (discontinuous) points, it is 
impossible to calculate the displacement at these locations (see Figure 3). 
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(a)                                                               (b) 

Figure 3: Modification of standard cycloidal curves: (a) Standard epicycloidal curves, and 
(b) Standard hypocycloidal curves 

Thus, the standard cycloidal curves need to be revised. By replacing the in the subtracted term 

with  η∙r, where η is a percentage less than 100% (i.e., using a point inside the rolling circle 
instead of on its circumference), a shortened epicycloid can be generated. In conclusion, the 
equations of the shortened epicycloids and hypocycloids can be derived as Eqn (16) and (17) 

!
xes=r(z+1)∙cosθ−η∙r∙cos[(1+z)θ]
yes=r(z+1)∙sinθ−η∙r∙sin[(1+z)θ]

     (16) 

!
xℎs=r(z−1)∙cosθ+η∙r∙cos[(z−1)∙θ]
yℎs=r(z−1)∙sinθ−η∙r∙sin[(z−1)∙θ]

      (17) 

Next, the shortened cycloid in red in the graph is scaled equidistantly to form the green 
modified cycloids. This process uses proportional scaling: for a segment on the cycloid, its x- 
and y-direction components are scaled according to their proportional ratios given by Eqns (18) 
and (19). 

  

⎩
⎪⎪
⎨

⎪⎪
⎧xem=xes−l∙

dxes
dθ

!dxes
2

dθ
+
dyes2

dθ

=r(z+1)∙cosθ−η∙r∙cos[(1+z)θ]−l∙
dxes
dθ

!dxes
2

dθ
+
dyes2

dθ

yem=yes−l∙
dyes
dθ

!dxes
2

dθ
+
dyes2

dθ

=r(z+1)∙sinθ−η∙r∙sin[(1+z)θ]−l∙
dyes
dθ

!dxes
2

dθ
+
dyes2

dθ

   (18) 
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⎩
⎪⎪
⎨

⎪⎪
⎧xℎm=xℎs+l∙

dxℎs
dθ

&dxℎs
2

dθ
+
dyℎs
2

dθ

=r(z−1)∙cosθ+η∙r∙cos[(z−1)∙θ]+l∙
dxℎs
dθ

&dxℎs
2

dθ
+
dyℎs
2

dθ

yℎm=yℎs+l∙
dyℎs
dθ

&dxℎs
2

dθ
+
dyℎs
2

dθ

=r(z−1)∙sinθ−η∙r∙sin[(z−1)∙θ]+l∙
dyℎs
dθ

&dxℎs
2

dθ
+
dyℎs
2

dθ

  (19) 

           
(a)                                                                  b) 

Figure 4: Modification of shortened cycloidal curves: (a) Shortened epicycloidal curves, and 
(b) Shortened hypocycloidal curves 

3. Hydraulic Cycloidal Motor Design 

The author used the mathematical program in Octave to generate the cycloidal gear and pin 
gear’s shape, and CAD software to make a 3D model of the motor. Before giving the details on 
how to design two types of motors in the following two parts, three concepts need to be 
defined: rotor, stator, and float stator. 

Rotor is the inner gear, which can spin along the central axis. 

A Stator is a part that cannot spin and is normally fixed to the housing.  

The float stator is the outer gear that is not spinning but movable to adjust the contact 
position with the rotor so that mechanical transmission can be achieved.    

(1)  Epicycloidal Gear and Pin Gear Design 

The epicycloidal gear is an inner gear, i.e., rotor. The design is based on Eqn (18). The equation 
can be used to generate an epicycloidal curve with four parameters: radius of rolling circle r, 
integer ratio of base circle to rolling circle z (i.e., the number of petals), shorten coefficient η , 
and displacement distance l. The curve, which is shown as the green curve in Figure 5(a), forms 
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the contact surface of a cycloidal gear. For an epicycloidal hydraulic motor, the cycloidal gear is 
the inner gear, while the pin gear is the outer gear, which can be seen in Figure 5(b). 

 
(a)                                                          (b) 

Figure 5: Epicycloidal motor design. (a)Gear curves generation. (b) Use the generated curve 
to design a motor in 3D CAD software 

The pin gear is the outer gear, i.e., the float stator, and is formed by several pins, which are 
tangent to the epicycloidal curve. Also, it is eccentric to the curve, and the eccentric offset is the 

shortened radius to form the curve O1O2=η∙r. Therefore, there are z+1 circular teeth shown as 
the blue circles in Figure 5(a) located on a circle eccentric to the origin, which is shown as the 
red circle. These cylinders are just tangent to the epicycloid. There are two methods to design 
the pin gear after determining the epicycloidal curve: mathematical and engineering methods. 

Mathematical Method. The small red and green circles are the center of the red circle and the 
green curve, respectively. The red circle is  

(
xepb=(R+r)∗ cos θ−η∙r

yepb=(R+r)∗ sin θ
      (20) 

The i-th pin on the pin gear can be expressed as 

(
xepc_i=l∙cos(θ) + (R+r)∙cos(2π/(z+1)∙(i−1)) − η∙r

yepc_i=l∙ sin θ  + (R+r)∙sin(2∙π/(z+1)∙(i−1))
    (21) 

Engineering Method. In CAD software, place cylinders equispaced with a radius of l tangent to 
the epicycloid from outside, which is shown in Figure 5(b).       

(2)  Hypocycloidal Gear and Pin Gear Design 

Similar to epicycloidal gear, the hypocycloidal gear design is based on Eqn (19). However, it is 
the outer gear, i.e., the float stator. The equation can be used to generate a hypocycloid with 
four parameters: radius of rolling circle r, integer ratio of base circle to rolling circle z (i.e., the 



 

9 
 

number of petals), shortening coefficient η, and displacement distancel. The curve, which is 
shown as the green curve in Figure 6(a), forms the contact surface of a cycloidal gear. 

 

  
(a)                                                     (b) 

Figure 6:  Hypocycloidal motor design. (a) Gear curves generation. (b) Use the generated 
curve to design a motor in 3D CAD software. 

The pin gear is formed by several pins, which are tangent to the hypocycloid from inside. It is 
eccentric to the curve, and the eccentric offset is the shortened radius to form the curve 

O1O2=η∙r.  Differently, the pin gear in a hypocycloidal motor is a rotor. There are z+1 circular 
teeth shown as the blue circles in Figure 6(a) located on a circle eccentric to the origin, which is 
shown as the red circle. These cylinders are just tangent to the epicycloid. There are two 
methods to design a pin gear after determining the hypocycloid: mathematical and engineering 
methods. 

Mathematical Method. The small red and green circles are the center of the red circle and the 
green curve, respectively. The red circle is  

(
xℎpb=(R−r)∗ cos θ+η∙r

yℎpb=(R−r)∗ sin θ
      (22) 

and the i-th pin on the pin gear can be expressed as 

(
xℎpc_i=l∙cos(θ) + (R−r)∙cos(2π/z∙(i−1)) + η∙r

yℎpc_i=l∙ sin θ  + (R−r)∙sin(2∙π/z∙(i−1))
    (23) 

Engineering Method. Similarly, in CAD software, place cylinders equispaced with a radius 
tangent to the hypocycloid from the inner side, as shown in Figure 6(b).       

(3)  Oil Distribution Design 

It can be seen from Figure 5 and Figure 6 that a pair of rotor and float stator of both 
epicycloidal and hypocycloidal motors creates cavities, each of which is formed by two pins, a 
segment of curve on the cycloid, and a segment of curve on the pin gear. The only difference is 



 

10 
 

that the cycloidal curve segment of the hypocycloidal motor is outside, while that of the 
epicycloidal motor is inside. 

When the rotors of both motors spin, half (if the number of cavities is even) or nearly half (if the 
number of cavities is odd) cavities tend to be enlarged, and the others are the contrary. For 
example, when the rotor of the epicycloidal motor shown in Figure 5 spins clockwise, the 
cavities with blue marks get smaller. The volume of a cavity turns to decreases when it crosses 
the upper half of the vertical bisector. On the other hand, the cavity’s volume increases when it 
crosses the lower half of the vertical bisector. Therefore, the oil distribution is easily 
implemented by the following theory. 

Oil Distribution Theory: After deciding the direction to spin, the oil distribution system always 
fills the cavities, which tend to be larger with high-pressure oil, and allows the ones that tend to 
be smaller to output oil back to the low-pressure tank. 

 

 

(a)                                    (b)                                     (c)                                      (d) 

 

 
(e)                                    (f)                                     (g)                                    (h) 

Figure 7: The oil distribution systems of epicycloidal and hypocycloidal motors. The first row 
is 3D models of an epicycloidal motor, while the second row is those of a hypocycloidal 
motor. (a) and (e) are epicycloidal and hypocycloidal motors. (b) and (f) are the oil 
distribution systems of both motors. (c) and (g) are the oiling plates. (d) and (h) are the 
distributing plates 

The oil distribution system consists of two parts: the oiling plate and the distributing plate. The 
oiling plate is the one that contacts both gears and fills oil into the cavities. The distributing 
plate is the one that contacts and rotates relatively to the oiling plate. Since there is a relative 
rotation between these two plates, the cavities would either be filled with oil or output oil 
according to the relative angle.   
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Figure 7 shows the oil distribution systems of two types of motors. It can be found that the 
number of oiling holes is equal to the number of teeth of the pin gears. The number of 
distributing holes is twice the number of cycloidal gears. Table 1 shows a summary of the 
design issues of both motors.   

  Table 1: Summary of the structure of epicycloidal and hypocycloidal motors. It 
provides a description of the basic structure used in design and the key parameters 
determined as design input. 

Item Epicycloidal Motor Hypocycloidal Motor 

Inner Gear Cycloidal Gear Pin Gear 

Outer Gear Pin Gear Cycloidal Gear 

Oiling Plate Stationery to Housing Stationary to Rotor 

Distributing Plate Stationary to Rotor Stationery to Housing 

Number of Teeth, Inner Gear z z 

Number of Teeth, Outer Gear z+1 z+1 

No. of Oiling Holes z+1 z 

No. of Distributing Holes 2z 2(z+1) 

 

Comparing the oil distribution systems of both motors, the epicycloidal motor is more difficult 
to design. An oiling hole shall always be between two pins. However, the pin gear of the 
epicycloidal motor is a floating part, which slides in the housing. Therefore, oiling holes should 
be sized and located to guarantee that it is always between two pins, even when the pin gear is 
sliding, which is a difficulty that does not exist in a hypocycloidal motor. 

4. Results-Design Case 

After analyzing the mathematical model of two cycloidal curves and discussing the design of oil 
distribution systems, a motor can be easily designed and manufactured. Firstly, for a subsea 
manipulator, a hypocycloidal motor was determined to be designed and used. The limited size 
of such manipulators requires the diameter of our motor to be less than 110mm. After a brief 
sketch, a diameter of around 50mm for our base circle is determined. The design starts with the 
sketch and then iterates according to the design result. The specifications are listed in Table 2. 

Assume the base circle radius is R=25mm. The number of inner gear teeth is z=7, and, 

therefore, the one of outer gear teeth is z+1=8. The radius of the rolling circle is r= R
z
=3.57mm. 

The author selects the eccentric distance rs=2.5mm, and thus the shortening coefficient is  

η= rs
r
=0.7. To use standard bearing rollers, l=5mm is determined. Figure 8 shows the design 

and machined parts.  
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Table 2: Specification parameters of the designed hypocycloidal motor, including the 
symbol definitions and the values used in the design. 

 

Parameter Symbol Value 

Radius of base 
circle R 25mm 

Radius of rolling 
circle  r 3.57mm 

Shorten coefficient  η 0.7 

Displace l 5mm 

Radius of roller rr 5mm 

No. of teeth, pin 
gear z 7 

No. of teeth, 
cycloidal gear z+1 8 

Eccentric distance O1O2 2.5mm 

Thickness of gear b 20mm 

Volume 
displacement 

VQ 116ml/rev 

 

The motor is assembled and tested on a dynamometer. The motor is installed on the 
dynamometer, and the spline shaft is connected to a magnetic adjustable load. The motor is 
powered by a pressure-controlled hydraulic power unit and controlled by a servo valve. The 
input pressure, spinning speed, and flow are all monitored. The test results are achieved and 
shown in Table 3. According to the design specification, the theoretical output torque is  

τ=
P∗VQ

2π
=387.7Nm 

The test results show that the efficiency of the motor is 

ηe=
330

387.7
=85% 

The performance of the low-speed high-torque (LSHT) motor is good. The special structure 
makes each cavity change the status of filling and discharging by z∙(z+1) times, which is 
equivalent to a z∙(z+1):1reducer. It can run smoothly when the speed is 3 rpm, which is very 
useful for extremely low-speed applications such as robotic joints.   
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Figure 8:  The design process. (a) the design in CAD software, (b) the machined and 
assembled gears, and (c) the subsea manipulator, the wrist of which is equipped with the 
hypocycloidal motor. 

Table 3: Test results of the designed hypocycloidal motor, which represent the performance 
of the motor. These are important parameters to evaluate a motor. 

Displacement Maximum Speed 

Continuous Flow 
Rate/ 

Instantaneous 
Flow Rate 

Continuous 
Pressure 

Instantaneous 
Pressure 

Continuous 
Torque 

Instantaneous 
Torque 

Maximum Power 

116ml/rev 716 rpm 70L/min 
80L/min 

14MPa 
21MPa 

278Nm 
330Nm 26.5HP 

 

5. Discussion 

Traditional cycloidal motors normally use an inner epicycloidal gear, a pin gear, and a spline 
coupler. The innovative application of a floating stator replacing a spline coupler makes the 
presented motors superior to traditional cycloidal motors. The main advantages are as follows: 

(1) The motor length in the axial direction is dramatically decreased. In a traditional motor, the 
outer gear and housing are the same part, which is fixed. As presented in the mathematical 
part, the inner gear needs to spin eccentrically if the outer gear is fixed. The traditional one 
needs to use a coupler with splines at each end, shown in Figure 9, which requires extra 
length (even more than double the length) in the axial direction.   

(2) Since one end of the coupler needs to spin with sliding movement in a traditional motor, 
the spline cannot be too tight, which means that the backlash is big, and the accuracy is not 
high enough for precise servo control. 
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Figure 9: A traditional epicycloidal motor. It is clear that such kind of motor has large size in 
axial dimension due to using coupler to transmit motion 

On the other hand, the only drawback of the presented epicycloidal motor is slightly larger in 
the radial direction compared to the traditional cycloidal motor. However, the presented 
hypocycloidal motor can also help reduce that size. The hypocycloidal motor designed and 
presented in this paper has been used in the subsea manipulator shown in Figure 8(c) due to its 
compact size and large torque output. The subsea manipulator has been working at a depth of 
4500 meters shown in Figure 10. 

. 

Figure 10 Operation at 4500msw 

6. Conclusion 

This paper presents mathematically detailed generation of both epicycloidal and hypocycloidal 
curves, including the standard, shortened, and modified cycloids, for designing cycloidal gears 
and corresponding pin gears. It provides not only the mathematical formulas but also the 
process to design gears. Moreover, the innovative design of hydraulic epicycloidal and 
hypocycloidal motors is described. Especially, the oil distribution system is analyzed and 
compared to traditional cycloidal motors. The critical contribution in this paper is motor design 
with a hypocycloid, which is rarely published. The advantages of the presented design are 
obvious. It can achieve a more compact size and more precise transmission. 

A real industrial design case was also presented in this paper. A hydraulic motor was required 
by a subsea robotic arm. Compact size, high output torque, and smooth spinning at low speeds 
were needed. The method presented in this paper was used to make a hypocycloidal motor 
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with seven teeth on the inner gear, 2.5mm eccentric distance, and a 20mm gear thickness. The 
maximum output torque is reached at a pressure of 21 MPa. When the machining precision was 
guaranteed, it could smoothly spin at the speed of 1.5rpm. The designed motor was installed on 
a subsea robotic arm and has been working in a subsea environment for more than a year. This 
design case completely proves that the theory and design method proposed here are effective.          
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