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Spatiotemporal Super-Infection and Co-Infection Dynamics in Networks

Alyssa Yu

Abstract: Understanding interactions between the spread of multiple pathogens during
an epidemic is crucial to assessing the severity of infections in living communities. We
introduce two new Multiplex Bi-Virus Reaction-Diffusion models (MBRD) on multiplex
metapopulation networks: the super-infection model (MBRD-SI) and the co-infection model
(MBRD-CI). These models capture two-pathogen dynamics with spatial diffusion and cross-
diffusion, allowing the prediction of infection clustering and large-scale spatial distributions.
For a thorough investigation of the spatiotemporal evolution of two-pathogen epidemics, we
first derive conditions for Turing and Turing-Hopf instability for pattern formation in both
models. Then, through numerical experiments, we study the effects of pathogen virulence,
superinfection and co-infection rates, and network topologies on epidemic hotspot formation
and long-term prevalence. Our results highlight the role of multiplex structure in amplify-
ing or suppressing co-circulating infections, and provide quantitative insight into conditions
that drive persistent epidemic patterns. Beyond epidemiology, these findings have broader
implications for multiplex contagion processes such as information diffusion and malware
propagation.

Keywords: epidemic models, reaction-diffusion, Turing patterns, multiplex networks, super-infection, co-
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I. INTRODUCTION

Mathematical models for epidemiology have been cru-
cial to understanding the spread of infections, from
Ebola [2] to malaria [3]. During the COVID-19 pan-
demic, mathematical models informed policy decisions,
including issued public health emergencies, lockdowns,
and mask mandates worldwide [4]. To combat the 2024
measles outbreak in Chicago, Illinois, the Center for Dis-
ease Control used a compartmental dynamic model to
predict new cases and inform an early response which
included mass vaccinations [5].

The field of epidemiology originates from Hippocrates
in ancient Greece [6], and has evolved significantly since.
The first mathematical model for epidemiology was de-
veloped by Bernoulli [7] to study smallpox spread. Later,
in 1927, Kermack and McKendrick introduced the com-
partmental SIR model [8], in which individuals are sep-
arated into the Susceptible, Infected, and Recovery pop-
ulations.

Most epidemic models can be categorized as either
stochastic or deterministic. ~There are a number of
approaches to stochastic modeling, including Markov
chains [9], cellular automata [10], stochastic differential
equations [11], branching processes [12], and percola-
tion [13]. While most deterministic models are com-
partmental, modifications can be made to structure them
based on factors such as age [14] and risk [15]. Our study
is based on the classic SIS model [16], in which individ-
uals are compartmentalized into the Susceptible and In-
fected populations, and individuals become susceptible
once again after recovery without lasting immunity.

There are a myriad of studies dedicated to understand-
ing the spread of a single infectious disease. In this paper,
we extend the typical SIS framework in the following two
ways.

e We extend classic SIS models to two-pathogen
models, formalized as the Multiplex Bi-Virus
Reaction-Diffusion framework (MBRD).
Within this, we define the super-infection
model (MBRD-SI) and the co-infection model
(MBRD-CI). While we refer to the infecting
agents as “viruses” in this paper, these extensions
can also capture the dynamics of interactions
between viral strains while they spread across
populations.

e Spatiotemporal epidemic modeling has emerged as
a critical area in understanding infection spread.
In many scenarios, the severity of infections in a
region depends on infections in neighboring regions.
As a result, factoring in spatial information leads
to more accurate models. Moreover, spatial data
and analysis are especially useful for identifying and
targeting high-risk areas, particularly in the early
stages of an epidemic [17]. Thus, we consider the
spatial distribution of infections across a network
of populations, which can represent towns, cities,
or countries, depending on the spatial scale chosen.
To do this, we integrate multiplex networks into

our model so varying levels of movement between
populations are accounted for.

The spread of infectious diseases can be character-
ized by diffusion processes [18, 19], and reaction-diffusion
equations have been used to model the epidemic spread
of a single pathogen [20, 21]. Reaction-diffusion dynam-
ics can often simulate the clustering of infections that
occurs between physical communities. For example, we
observe that clustering occurs in both Figure 1 and Fig-
ure 2, showing that modeling with reaction-diffusion sys-
tems may explain some aspects of infection spread in the
physical world. In this paper, reaction-diffusion mechan-
ics allow us to describe the spatial distribution of infec-
tions in two-pathogen models by treating the susceptible
state and each infected state as different morphogens.

Geographical distribution of COVID-19 cases
in the Central Federal District Russia
as of 30 April 2020
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FIG. 1: Distribution of COVID-19 infections in the Central
Federal District of Russia, from [22].

This paper makes both theoretical and simulation-
based contributions to the study of two-pathogen dy-
namics. In the theoretical part of our paper, we make
the following contributions:

e We establish two new Multiplex Bi-Virus
Reaction-Diffusion models (MBRD)
on multiplex networks: the super-infection
model (MBRD-SI) and the co-infection model
(MBRD-CI). By incorporating reaction-diffusion
and cross-diffusion dynamics, these models capture
realistic spatial distributions of infections over
large geographical ranges and account for complex
network structures (see Section III).

e We perform instability analyses for reaction-
diffusion systems with three (resp. four) mor-
phogens on three-layer (resp. four-layer) multi-
plex networks. This includes explicit conditions
for Turing and Turing-Hopf instabilities. To the



FIG. 2: Simulation of infection cases on a Watts-Strogatz
network, created using the epidemic model from [20].

best of our knowledge, prior work has only ad-
dressed reaction-diffusion epidemic systems on two-
layer multiplex networks (see Sections IV and V).

We also build on the MBRD framework to analyze bi-
pathogen dynamics from a simulation-based standpoint,
with an emphasis on the types of spatiotemporal phe-
nomena that arise under different network and epidemio-
logical conditions. We focus on two complementary per-
spectives:

e Hotspot growth. We investigate the formation
and growth of stationary hotspots that emerge from
perturbations to a steady state. Such hotspots,
driven by Turing instability, can lead to system
collapse. For example, cholera is largely endemic
in countries such as Bangladesh, yet hotspots of-
ten occur due to seasonal plankton blooms [23].
While prior works such as [21] considered single-
pathogen hotspots, no previous study has thor-
oughly examined this phenomenon in bi-pathogen
dynamics through a simulation-based approach.

e Point-source infections. Infections often orig-
inate from localized events such as concerts, air-
ports, or schools. Historical examples include Cox-
iella burnetii spreading from a dairy-goat farm in
the Netherlands [24], or a campylobacteriosis out-
break from raw milk consumed on a school field
trip [25]. In the context of bi-pathogen spread,
we investigate point-source infections where both
pathogens originate independently in the network,
and analyze how MBRD-SI and MBRD-CI respond
under varying parameter regimes.

Through our analysis of the different settings, we have
several main results:

e Stationary hotspots can grow in severity over time
under both MBRD-SI and MBRD-CI dynamics,

potentially leading to system collapse. Varying net-
work average degrees across the layers can inhibit
pattern formation and growth.

e A higher superinfection coefficient accelerates the
spread of the more severe pathogen, while a higher
co-transmission coefficient accelerates the spread of
co-infections. Moreover, lower removal rates of co-
infected individuals can increase endemicity of co-
infections.

e During the early stages of bi-pathogen spread, lim-
iting migration of infected individuals is crucial to
containment, verifying the importance of quaran-
tine policies.

e Network topology strongly influences pathogen
spread, offering a possible explanation for seasonal
surges in outbreaks - even under bi-pathogen dy-
namics.

The remainder of this paper is organized as follows.
Section II introduces preliminaries on Turing patterns.
Section III introduces novel reaction-diffusion models
MBRD-SI and MBRD-CI for super-infection and co-
infection. Section IV establishes instability conditions for
three-morphogen systems including the MBRD-SI model,
while Section V treats the four-morphogen case includ-
ing the MBRD-CI model. Section VI investigates how
various factors influence pattern formation and hotspot
growth. Section VII introduces metrics for analyzing
spread from point sources and discusses the impact of
model parameters and network layers. Section VIII con-
nects our simulation results with real-world co-infection
data. Finally, Section IX discusses potential applications
that our framework can be used for. Finally, Section X
concludes this paper with a summary of this work and
future extensions.

II. BACKGROUND

In 1952, Turing proposed that reaction-diffusion dy-
namics trigger the formation of many patterns in na-
ture (e.g., the pattern in Figure 3). These patterns,
known as Turing patterns, are driven by interactions
between substances, referred to as morphogens. Sub-
sequently, Gierer and Meinhardt introduced the local
autoactivation-lateral inhibition (LALI) framework in
1972, demonstrating that for Turing patterns to form, lo-
cal self-activation and long-range inhibition must balance
each other [26]. In 1990, Turing patterns were first con-
firmed experimentally in the chlorite-iodide-malonic acid
(CIMA) reaction [27]. In the following, we first introduce
Turing patterns on continuous domains and then Turing
patterns on networks. We also discuss previous spatial
epidemic models with either one or two pathogens.



FIG. 3: A boxfish (top), a closeup of its pigmentation pattern
(bottom-left), and simulations (bottom-center and right),
from [28].

A. Turing Patterns on Continuous Domains

Turing patterns are formed by small fluctuations in the
concentration of morphogens, which grow and settle into
a spatially organized pattern. The instabilities relevant
to this paper are Turing, Hopf, and Turing-Hopf insta-
bilities, which are defined below.

Definition 1. Turing instability results in a stationary
spatial pattern, Hopf instability results in temporal oscil-
lations only, and Turing-Hopf instability results in both
spatial and temporal oscillations over the same period of
time.

For the most simple example, we consider two reaction-
diffusion equations of the form,

0
o= fww) + DV, (1)
0
o = glu,) + DV, e)

where f and g describe the reaction kinetics of the mor-
phogens, D, and D, are the diffusion coefficients and
V2u = 0?u/0z* where z is the finite domain [0, L]. To
obtain a unique pattern, we must also introduce a bound-
ary condition. Most often, the boundary condition im-
posed is the Neumann condition, which specifies that
there is no flux at the spatial boundary.

Theorem 1 (Turing instability conditions for Equa-
tions (1) and (2)). [29, Equations (7.18), (7.16), (7.17)]
Let f, = 0f/0u, f, = 0f/0v, g, = 0g/0u, and
gv == 0g/0v. The conditions for Turing instability are
Ju+ 90 <0,
fugv - fvgu > O,

D'Ufu + Dyug, > 2\/DuDv(fugv - fvgu)a

k2 < (%)2 < ki,

where

kQ _ fu + gv + \/(fu + gv)2 - 4DuDv(fugv - fvgu)
+ 2D, D, :

Theorem 1 is proven by considering a small pertur-
bation (@4(x,t),0(x,t)) to the equilibrium state and lin-
earizing the system with multivariable Taylor polynomial
expansions. We then substitute an ansatz solution of the
form @ = a exp(ikz + \(k?)t), where @ = (4 @)T, aisa
constant vector, k is the wave number or the number of
spatial oscillations within a certain length, and A\ is the
temporal growth rate. From this, we obtain the charac-
teristic equation A* — (fu + go)A + (fugo — fogu) = 0,
and with further analysis, we obtain the four conditions
above. We will use a similar idea for the instability anal-
ysis in this paper.

B. Turing Patterns on Networks

Most Turing models proposed have been on continu-
ous domains; however, the branch of Turing patterns on
complex networks, first introduced in [30], has recently
become prevalent.

In the following, we introduce Turing patterns on com-
plex networks. Consider a unweighted network G =
(V, E) with |V| = N, where an edge from node i to node
j is denoted by (4,7). We assume here that G is undi-
rected. The entries of the adjacency matrix A(G) are
defined as

AG . 15 if (iaj)EEa
4] 0, otherwise

We define a matrix L(G) as a function of graph G as
follows:

Definition 2. If G is a graph with N nodes, then we
define L(G) to be an N x N matrix with entries

. G G
Li; = Aij — 035k,
where

1, ifi=yj,
57;]‘ = .
0, otherwise.

and AY are the entries of the adjacency matrix A(G).
Moreover k& is the degree of node i and satisfies k& =

N
o1 AG

Note that our definition of L is the negative of the
combinatorial Laplacian. The diffusion of a morphogen
from node j to node i is of rate D, (u; —u;). We can add
these rates to get the total amount of the morphogen that
enters a node. Thus, the amount of substance entering



node 7 is

u',» = Du ZAU‘(U]‘ — ul) = Du ZAijuj — Duk‘iui
7j=1 j=1

n

= Du Z Liju]'.
j=1

In a network, a two-morphogen reaction-diffusion sys-
tem is formulated as

du; -
dtz = f(ui,vi) + Du Y Lijuy,
j=1
dvi -
g = 9, vi) + Dy > Lijuy,
j=1
for all ¢ = 1,2,...,n, where L;; are the entries of the

combinatorial Laplacian.

C. Previous Epidemic Models

In reaction-diffusion epidemic models, the states, such
as Susceptible and Infected, are treated as morphogens
and the model is a function of the relative densities of
those separate populations at every node. To the best
of our knowledge, the first SI reaction-diffusion model
was introduced by Webb [31] in 1981. This frame-
work has been extended to analyze the spread of spe-
cific pathogens. For example, Bai et al. [32] proposed a
malaria reaction-diffusion model, accounting for season-
ality and incubation. Likewise, Wang et al. [33] studied a
similar COVID model accounting for superspreaders and
asymptomatic cases on a continuous domain. Recent re-
search has also proposed epidemic models on complex
networks. For instance, Duan et al. [20] investigated a
SIS reaction-diffusion model on a single-layer complex
network.

Epidemic models have been studied on two-layer multi-
plex networks, where layers have the same sets of nodes
but can have different connectivity and house different
diffusing morphogens representing different aspects of the
system. Zhao and Shen introduced a reaction-diffusion
epidemic model with S and I states on a two-layer net-
work [21] with cross-diffusion, meaning that, when the
movement of individuals on the S and I layers induce dif-
fusion on the other layer. Reaction-diffusion two-strain
models have also been proposed on continuous domains.
Shi and Zhao [34] analyzed a reaction-diffusion two-strain
malaria model and Lu et al. [35] introduced a two-strain
COVID model.

To the extent of our knowledge, no previous reaction-
diffusion models have considered Multiplex Bi-Virus
Reaction-Diffusion frameworks, including the super-
infection case (MBRD-SI) or the co-infection case
(MBRD-CI), on discrete domains.

Parameters for Epidemic Models

Symbol |Description

51 Transmission rate of pathogen 1 from pop-
ulation infected only with pathogen 1

B2 Transmission rate of pathogen 2 from pop-
ulation infected only with pathogen 1

B1o Transmission rate of pathogen 1 only from
co-infected population

Boz Transmission rate of pathogen 2 only from
co-infected population

Bi2 Transmission rate of co-infection from co-
infected population

Y1 Recovery rate for pathogen 1

Y2 Recovery rate for pathogen 2

aq Virulence of pathogen 1

Qg Virulence of pathogen 2

r Natural growth of susceptible population

K Maximum environmental capacity density

A Critical spatial carrying capacity density

I Natural mortality rate

o Rate of host takeover by the more virulent
strain

di1 Diffusion rate of susceptible population

di2 Cross-diffusion rate induced by movement
of population infected with pathogen 1

di3 Cross-diffusion rate induced by movement
of population infected with pathogen 2

dao Diffusion rate of population infected with
pathogen 1

dss Diffusion rate of population infected with
pathogen 2

TABLE I: Parameters used in the epidemic models.

IIT. EPIDEMIC MODELS

In this section, we develop the two Multiplex
Bi-Virus Reaction-Diffusion models: the super-
infection model (MBRD-ST) and the co-infection model
(MBRD-CI). In this context, super-infection refers to
when pathogens cannot coexist in the same host and a
more virulent pathogen can “steal” the host from a less
virulent pathogen. Co-infection describes scenarios when
a host can be infected with both viruses at once. In our
co-infection model, no pathogen can “steal” hosts from
the other.

In addition to interactions between two different
viruses, our superinfection and co-infection models ap-
ply to interactions between different strains of the same
virus [36-38]. Following conventional notation, we use
S, I, Is, and I3 in the classic SIS model to represent
the densities of the susceptible population, population
mono-infected by pathogen 1, population mono-infected
by pathogen 2, and the co-infected population. We will
sometimes refer to a host infected by pathogen 1 (resp.
pathogen 2) as I-infected (J-infected).

When discussing the reaction-diffusion equations, we
use the symbols S, I, J, and C instead to represent the
susceptible, I-infected (both mono and co-infections), J-



infected, and co-infected population densities. Note that
Table I introduces the key notation used in Sections I1T A
and I1I B.

A. The Super-Infection Model (MBRD-SI)

The following superinfection SIS model was developed
by Nowak and May in 1994 [36]:

ds

o B — (pp+ Bilh + p212) S,

dl

cTtl =0L(51S — p—ay —opl),

dl

d7t2 :1—2(5257#70(24’0—/82]1),
=S+ 41,

where S, I, and I represent the proportion of the pop-
ulation that is susceptible, infected by the first strain,
and infected by the second strain, respectively. It is as-
sumed that both strains cannot coinfect a single host.
Moreover, this model assumes that pathogen 2 is more
virulent than pathogen 1. Note that o represents the rel-
ative rate of superinfection of hosts already infected with
pathogen 1 relative to the transmission of pathogen 2 to
uninfected hosts. When o > 1, hosts already infected
with pathogen 1 are more likely than uninfected hosts to
become infected with pathogen 2.

Inspired by [21], we incorporate a logistic growth
framework to model the growth of the susceptible pop-
ulation, which is suited for reaction dynamics in small
communities or cities. Due to factors such as low so-
cial capital, populations with low densities will grow rel-
atively slowly. Moreover, due to resource shortages and
lower quality of life, populations with high densities will
often converge to a carrying capacity, exhibiting the Allee
effect.

We adjust this model by adding in recovery rates from
both pathogens and modify it so that S, I;, and I rep-
resent the number of individuals or the population den-
sities, as shown in the following system:

ﬁ:745' 1_§ §_1 _M
dt x)\a S+ +1
+ 7111 + 2z — pS,

ah _(_BS _oBly
a  \syn+n MMM TS L+ L)
dly _p(_ PS5 . _oPh
a P\Ss+n+n MU TnL )

We represent this system with Figure 4. The
susceptible population growth is described by
rS (1 — %) (% — 1). The movement from the sus-
ceptible population to the two infected populations
are represented by Sillllflz and S%;fflz. The
movement from the I-infected to J-infected population
due to superinfection is & f?ffﬁ The movement from
either infected population to the susceptible population

due to recovery is represented by 71/ and v5J. Finally,
the total population deaths are represented by uS,
(u + a1)I, and (p + az)J for the three populations,
respectively.

FIG. 4: Flowchart for the super-infection model (MBRD-SI).

We consider the three-layer multiplex network pictured
in Figure 5, where each layer has the same set of nodes.
In an epidemiological context, it is most reasonable for
the average degree of the I and J layers to be the same or
lower than the average degree of the S layer, as infected
people tend to migrate less.

S
| |

" Susceptible

Pathogen 2 Infection

FIG. 5: Three-layer multiplex network for MBRD-SI.

In order to understand the spatial distribution of in-
fected populations, we treat the S, I, and J popula-
tion densities as morphogens which diffuse on the cor-
responding separate layers of Figure 5. We let S;, I;,
and J; be the densities of the susceptible population, I-
infected population, and J-infected population, respec-
tively. We denote the S, I, and J layers to be graphs G,
Gr, and G, respectively. Then, we let L(5) = L(Gy),
LY = L(Gy), and L) = L(G}), defined according to
Definition 2. We also denote the entries of L(3), L,
(5) )

and L(') in row i and column j to be L;;7, L;;’, and

()
L;:.

Then, we propose the following reaction-diffusion
model:



as; Si\ [ Si (BLL; + B2Ji)Si
@ (1_ K) (A _1> TS+,

+ ’)/1]1' + ’VQJZ‘ — /LS

N N N
+din Y LS +din Y L+ dis Y LY,
j=1 j=1 j=1

Sy

ali (kS oBdi
dt_Z(SZ-—FIZ-—kJi poamm SZ-+IZ-+JZ->
N
+d222Lg)Ij7
j=1
LY .
dt \Si+ i+ Ji Si+1i+Ji
N
+dss LY ;.
j=1

(3)
We include the cross-diffusion terms di Zjvzl Lg)Ij

and dq3 Z;Y:I LZ(-j‘-I) J; to indicate how the susceptible pop-
ulation moves in response to infected population densi-
ties. In particular, when dyo is positive (resp. negative),
susceptible individuals gravitate toward areas with a low
(resp. high) density of individuals infected with pathogen
1, and when d;3 is positive (resp. negative), susceptible
individuals gravitate toward areas with a low (resp. high)
density of individuals infected with pathogen 2.

B. The Co-Infection Models (MBRD-CI)

The co-infection SIS model proposed by Gao et al. in
2016 [39] is

% =p— (A1 + A2+ Aot + A1z + Ai22) S
+ (mli +7212) — pS,
% = (M 4+ Ai21)S — (A2 + Moo + Aasi2)h
+ (v2liz — 1) — ply,
dl
i (A2 + A1252)S — (A1 + A1 + Aas12) o
+ (vili2 —y2l2) — pla,
% = AM25125 + (A2 + Moo + Aasi2) s

+ (M + Moo + Mesa2)le — (v1 +y2) a2 — plig,
1=85+1 + 1+ I,

where A\ == 8111, Ay == Bala, AMas12 = Pr2l12, A2—1 =
Brol12, and Ai2s2 == Boalia.

Note that the dynamics of the two pathogens can be
described in the following four ways [39]:

e In non-interaction transmission, the presence of the

two diseases do not affect each other. In the model,
this translates to B12+ 810 = 1 and B2+ Bo2 = Ba.

e Mutual enhancement occurs when (51o + B10 > (1
and 312 + Bo2 > Ba.

e The enhancement of one pathogen and inhibition
of the other occurs when either 815 + 819 > £1 and
Bi2 + Po2 < B2, or
P12 + P10 < B1 and B2 + Boz > Ba.

e Mutual inhibition occurs when Bi2 + S0 < 51 and

Bi2 + Boz < Po.

We define T (resp. J) to represent the total I-infected
(resp. J-infected) density, including both mono- and
co-infections, and use C' in place of I15. We combine
mono- and co-infections because we assume that the two
pathogens exhibit independent diffusion dynamics, and
we want to consider the diffusion of the population densi-
ties associated with both mono- and co-infections. After
making these modifications, we have

% =B — (Bl + B2J)S
— (B1o + Boz + P12 — B1 — p2)C'S
+ I +vJd — (1 +72)C — S,

% =Bl + (Bro+ B2 —L1)CI(S+JT —C) —m 1
— Oél(I — C) — 05120 — ,u],

% = [Bad + (Bo2 + P12 — B2)CI(S + I —C) — vy J
—az(J = C) = a12C — pJ,

% = [12CS + [B2J + (Boz2 + Bi2 — B2)C](I — C)

+ 81 + (Bro + Biz2 — B1)C)(J = O)
— (1 + 72 + a12)C — uC,
1=5S+1+J-C.

W, 12

FIG. 6: Flowchart for the co-infection model (MBRD-CI).
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FIG. 7: Four-layer multiplex network for MBRD-CI.

We modify this model so that S, I, J, and C account
for either the number of individuals or population den-
sities. Moreover, we adopt a logistic growth framework
instead of a constant birth rate, as follows:

ds SN (S (Bl + B2J)S
dt:r5<1_K> (A_1>_S+I+JC
~ (Bio+ Bo2 + Bi2 — 1 — B2)CS
S+I1+J-C
+ 7l +72d — (71 +72)C — s,
% = [B11 + (Bio + P12 — 41)C] - Sf——‘l_i—JfC' -l

_041(]_0) _O‘12C_MI7

dJ 5+1-C
— = [B2J + (Bo2 + P12 — 2)C] - m_wj

dt
—ay(J = C) = a12C — pJ,
iC  BaCS

[B2J + (Boz + Bi2 — B2)C](I — C)

dt  S+I+J-C S+I+J-C

611 + (Bro + P12 — B1)C(J = O)
S+1+J-C

—(71 +’}/2+0412)C—,LLC,

_|_

Recall that our model has four states: S, I, I,
and I15, which are the susceptible, pathogen 1 mono-
infected, pathogen 2 mono-infected, and co-infected den-
sities. This system can be represented by Figure 6.
The susceptible population has birth and natural death
rates represented by r (1 — %) (% — 1) and pS, respec-
tively. The movement of individuals from .S to the mono-
infected states and from the mono-infected states to I
are controlled by the infection rates. The movement of
individuals from I;5 back to a mono-infected state, as
well as from a mono-infected state back to S, are con-
trolled by the recovery rates. Finally, deaths in the I, I,

and I1o populations include both natural and infection-
related deaths.

We introduce the four-layer multiplex network in Fig-
ure 7. For the most part, we assume again that the aver-
age degrees of the I and J layers are less than the average
degree of the S layer. Only the S, I, and J layers expe-
rience diffusion and thus, edges are not included in the
C layer. This is because the relative density for each
node on the C layer can directly be calculated from the
densities of the corresponding nodes on the other three
layers.

We treat the S, I, and J populations as morphogens
and let S;, I;, J;, and C; be the densities of their corre-
sponding populations on node i. Letting Gg, Gy, and G5
be the networks on layers S, I, and J, we establish the
same definitions for L5), LD and L), and their re-

spective entries Ll(-f), LEJI-), and Ll(-;-]) as our superinfection
model in Equation (3).

Then, we have
dt K)\A Si+ 1+ J; — C;

(Bio + Boz2 + Sz — B1 — B2)CiS;
S;+ 1, +J; — C;
+7li +72Ji — (11 +72)Ci — pS;

N N N
+ d11 Z LE;-S)SJ‘ + di2 Z Ll(,jl.)[j + dq3 Z Lz('.j])‘]j’
=1 =1 =1

S; +J; — C;

dI;
dat [Buli + (o + Bro = Pr)Cil - Si+1;,+J,—C;
—mli —a1(l; = C;) — a12C; — pl;
N
+dpn Y LI,
j=1
dJ; _ Si+1; — C;
o [B2J; + (Bo2 + B12 — B2)Ci] S 1117 _C,
— ’YgJi — OéQ(Ji — Cz) — 041201' — NJi
N
+dss Y LY ;,
j=1
(4)
ac; B12C;5;

dt — Si+1i+J;—C;

[B2Ji + (Boz + Biz — B2)Ci](1i — C)
Si+1i+Ji—C;

[611; + (B1o + 12 — 1) Cil(Ji — Cy)
S+ 1, + J; — C;

— (m + 72+ a12)Ci — uC;.

+

_|_

IV. THREE-STATE INSTABILITY ANALYSIS

In this section, we perform an instability analysis for
reaction-diffusion models with three morphogens on net-
works. In particular, we first derive general instability
conditions for such models on a three-layer multiplex net-



work. Then, we establish additional conditions for a spe-
cial case where the layers of the multiplex network are
identical. The conditions discussed in this section apply
to the three-layer model in Equation (3).

A. Instability Analysis on a Three-Layer Multiplex
Network

We now derive the conditions for Turing and Turing-
Hopf instability in a reaction-diffusion system for three
distinct morphogens on a three-layer multiplex network.
We consider the following system with morphogens S,
I, and J, where S;, I;, and J; are the densities of the
morphogens in each node of the network.

ds;

= Si7[i7 Jl
a1 )

+din Yy LEJ'S)SJ‘ +din Y Lg)[j t+dis ) LE;])JJ’
j=1 i=1 =

dI; L0
= g(Si T, i) + d22j;Lij I,
dJ; " L)
L= (S Ly i) + s Y L.

j=1

Let (S*,I*,J*) be the steady state densities on all
nodes. We define fg to be %|(S*7I*7J*) and fr, fs, gs,
g1, 97, hs, hr, and hj similarly. We introduce a pertur-
bation (4S;,d1;,3.J;) to the equilibrium densities. Then,
by multinomial Taylor expansions, we have

dss; "9
g = 508+ f10li + [50i + dy ; L{78S;
+ di2 Z LEJI)(SIJ + di3 Z Lg;])(SJ],
o~ ! (5)
ao1; = 950S; + 9161 + g50J; + dao i D51,
dt =
dsJ; )
- = hs0Si+ hidli+ hyoJ; + dss ; Li8J;.
We approximate this system as follows:
dss;
i fs6S; + frol; + f;6J;
— d k68, — diokDs1; — dysk!s;,
dsI; (6)
gt = 956S; + groL; + g;0.J; — daok " 51,
déJ;
flt‘] — hg8S; + hidl; + hy6J; — dsgk!”6.J;.

Letting x; := (45;,d1;, 6Ji)T, we rewrite the system in
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Equation (6) as

fo—duk®™  fr—dpkD  fy - disk”
dat gs g1 — dagk"

hs h;

d.’IJIL‘

gJ Z;
hy — dssk!”
(7)

Let M be the matrix
fs—duk!® =X fr— diok? fr— diskt”
gs g1 — d22/€§1) - A 97
hs h; hy — dssk!” — A

We let x; be of the form aexp(ikx + At), where A is the
growth rate. Substituting this ansatz into Equation (7),
the growth rate satisfies det(M) = 0.

We define
q11 = grhy — gshr, qo2 = hyfs —hsfy,
q33 = fsgr — f19s, q12 = hsgs — gshy,
q13 = gshr — grhs, myy == d11k§s),
Moy = d22k§”, m33 = d33/€§J),
mig ‘= dlgkgl), mi3 ‘= dlgng).

We also denote e; to be the i-th elementary symmetric
polynomial and

p1 = fs+gr+hy,

P2 = q11 + q22 + ¢33,

p3 = (fsgrhy + frgshs + figshr)
— (fsgshr + frgshy + figrhs).

Finally, we define

A(x1, 22,73, 4, 75) = 21 fs+T2gr +a3hs + 495 +25hs,

and

B(w1, 29,73, 24, 75) = T1q11+T2¢22+73q33+T4q12+25q13.
Then we let

p(A) == —det(M) = > —bX2 +ecA—d=0, (8)

where

b= p1 — e1(mi1, maa, m33)
c = pa + ea(mi1, maz, m33) — pre1(mir, maz, M33)
+ A(mi1, maz, m33, mi2,m13)
d = p3 — B(mi1, maz, m3z, m12,m13) — e3(mi1, maz, m33)
+ A(maamasz, m3zmi1, mi1Maz, —M12M33, —M13Ma2).
(9)
We denote the solutions to the system in Equation (9)
to be A1, A2, and A3, where R(A\1) > R(A2) > R(A3).
We prove the following two sets of necessary instability
conditions:



Proposition 1 (Boundary conditions). We must have

p1<07
p3<0a

D2 > Oa
p1p2 < p3.

Proof. Recall the previously stated definitions of pi, po,
and ps3. At equilibrium, there is no spatial diffusion, and
the characteristic polynomial p(\) is

A3 — p1A% + pad — p.

All roots have negative real parts because no perturba-
tions can grow into oscillations. By Vieta’s formulas, we
have

P1 = A1+ A2+ A3 <0,
P2 = A2 + A3 + AzA >0,
p3 = A1A2A3 < 0.

Moreover, p1ps < p3 follows from the Routh-Hurwitz cri-
terion. O]

The following definition differentiates between Turing
and Turing-Hopf instability for systems of three interact-
ing morphogens in this context. A similar definition for
continuous domains is also stated in [40].

Definition 3. Turing instability occurs when every
eigenvalue of M with a positive real part is real for every
Laplacian eigenvalue k. Turing-Hopf instability occurs
when some eigenvalues with a positive real part are not
real at some Laplacian eigenvalue k.

This leads us to the following set of instability condi-
tions:

Proposition 2 (Instability conditions I). We denote Ag
to be the cubic discriminant 18bed — 4b3d + b?c? — 4c® —
27d?. For Turing instability to occur, we have ¢ < 0 must
be true under the condition that As = 18bed — 4b3d +
b2c? —4c® —27d? > 0 and both ¢ > 0 and d > 0 must both
be true under the condition that As < 0. For Turing-
Hopf instability to occur, we must have Ag < 0 and d <
0.

Proof. Recall the definitions from Equations (8) and (9).
Either all roots of p(\) are real or there is one real root
and two complex roots.

If the discriminant As = 18bed—4b3d+bc? —4c¢® —27d?
is greater than 0, we have three distinct real roots, which
we call z1, y1, and z;. We assume without loss of gen-
erality that ©1 > y1 > z;. For any spatial instability
to occur, there must be an nonzero number of positive
roots because a perturbation must grow into an oscilla-
tion. Recall that b = p; — e1(my1, a2, m33) and mqq,
mag, and mg3 are positive by definition. Then, because
p1 < 0 by Proposition 1, we have b < 0, we have that p())
must have least one negative root and 1 < —(y1 + 21).
First, if ;1 > 0 and 0 > y; > =z, it follows that
c =z +y)+ iy < 211 — (@1 +y1)? < 0 and
d = z1y121 > 0. Second, if x1 > y; > 0 and z; < 0,
then ¢ = xl(yl + Zl) +y121 < Y121 — (y1 + 21)2 < 0 and
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d = z1y121 < 0. Thus, ¢ < 0 must be true if A > 0,
assuming that spatial oscillations occur.

If the discriminant A = 18bcd —4b3d +b%c? —4c3 —27d?
is less than 0, there exist nonreal roots. Let these roots
be x5 +1yot, To —yot, and zo, where x5 and ys are positive,
and z9 are real numbers. By Vieta’s formulas, we have
b =219+ 2, ¢ = 23 + Y5 + 22229, and d = 29(73 + 13).
Recall that b is always negative. For spatial oscillations
(Turing or Turing-Hopf) to occur, at least one root must
have a positive real part. Thus either zo > 0 and 2z, < 0,

2 2
or 2o < 0 and zo > 0. First, if 2o < —221%

ng
_zotys

c < 0and d < 0. Second, when . < 22 < 0, we
have ¢ > 0 and d < 0. Third, when 25 > 0, we have ¢ > 0
and d > 0.

It directly follows from Definition 3 that Turing in-
stability can only occur when all roots are real or there
are two complex roots with negative real parts. Turing-
Hopf instability occurs when two roots are complex with
positive real parts. The theorem statement thus directly
follows from this definition and the analysis above. [

, we have

B. Instability Analysis on a Single-Layer Network

We shall derive additional instability conditions for the
special case of Subsection IV A where all layers are iden-
tical, which collapses to a single layer network.

We denote G4 to be the single layer network, and
Ly = L(G4) as defined in Definition 2. Inspired by [41],
we express the perturbations (8.5;,91;,0J;) as

N N N
(Z Cllje)wt(bgv)a Z cze)‘”t¢gv)7 Z Cge)‘”t@(‘v)) )
v=1 v=1 v=1

where p1,, is the v-th eigenvalue of L 4 with corresponding

T
eigenvector ¢, = (gbgv), el 5\1;)) , and A, is the growth
rate of the v-th spatial mode.
We let
fs +dupw  fr+diape  fr+dizp
N = gs g1 + daapiy gs . (10)
hs hy hy + ds3piy

When we substitute the ansatzes in Equation (10) into
the system in Equation (5), we have

/\vyv = Nyva

where y, = (c}} c? cf’})T.

We let N be the matrix

fs+duipe  fr4+digpy  fr+dispe
gs g1 + dagfiy g7
hs hr hy + dsspi,

Thus, the eigenvalue pu, of L4 and eigenvalue A, of N
for node v satisfy

det(IN) = 0.



The characteristic polynomial is
)‘i —b (NU)A?; + c1(pw) Ao — di(po) =0, (11)
where

b1 (ty) = p1 + e1(di1, daz, d3s) o,
c1(ph) = p2

+ [pre1(dir, doa, dss) — A(dry, daz, dss, dia, dis) ] i

+ ea(dr1, dag, d3z) 2,

di(py) = ps + B(di1, da2, d33, di2, di13) fo
+ A(dy1da2, daadss, dasdyy, —diadss, —dizdas) 12
+ e3(di1, daa, daz) il
(12)

For simplicity, let

Ay = A(di1,da2, ds3, d12, di3),
As = A(d22dss, d3zdi1, di1daz, —di2dss, —di3daz), (13)
By == B(d11,d22,ds33,d12,d13).

Then, we denote

bo = p2, by == Ay — pre1(di, d2a, ds3),
by = ea(di1,da2, dss), ap = P3,
le = —Bl, C~L2 = A27
a3 = —ez(di1,do2, ds3).
(14)

Finally, note that ca(¢y)c1(dy) — co(dy) = azd? +
0,292512, + al¢v + ao, where

ag = pip2 — P3
a1 = p1A1 + Bi — paer(din, daz, ds3) — pie(din, daz, dss)
as = pres(dit, daz, d33) + pre}(din, doz, d33)
- 61(d11, da2, d33)A1 - Ay
az = e3(di1,daa, d33)

—e1(diy, daz, d3z)ea(din, daz, dss).
(15)

In this scenario, Propositions 1 and 2 still hold. We
prove the following proposition, which holds specifically
for the case where the multiplex network layers are iden-
tical.

Proposition 3 (Instability conditions II). Consider the
following sets of inequalities:

0< ag — 3aias,

0<ag+ \/ a% — 3aiagz, (16)

0 < 243 + 2(a2 — 3a1a3)*? — 9ajazas + 27aga?,
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and
b1 < —+/ 4b2b0,
3(13(b1 + A/ b% - 4b2b0) < 2b0(a2 + \/a% - 3(11(13),

Qbo(QQ + \/a% - 3&1&3) < 3(13(b1 - \/b% - 4b2b0),
. (—b1 — B —4b2b0> <0

2by
—by + \/b% — 4bybg
9 % <0,
2

(17)
where g(y) = bay? + by + bo.

A Turing-Hopf instability in the system defined above
occurs if and only if all inequalities in the system rep-
resented by FEquation (16) are satisfied and at least one
inequality in the system represented by Equation (17) is
not satisfied. A Turing instability occurs if and only if a
Turing-Hopf instability does not occur and all inequalities
in the system represented by Equation (16) are satisfied.

Proof. Recall the definitions in Equations (11), (12), (13),
(14), and (15). Let ¢, = —pu, for every v. Then the
characteristic polynomial is equivalent to A3 —ca (¢, ) A2 +
c1(¢y) Ay — co(¢y) = 0, where

c2(¢y) == —ei(di1, daz, ds3) by + p1,
c1(gw) = bagl + bidy + by,
co(pu) = d3¢3 + Aoy + d1¢py + do.

It is well known that the eigenvalues pu, are all nonpos-
itive and 0 € {u1,...,un}. Thus ¢, is interchangable
with &2 in [40]. Verifying that the other assumptions used
in [40] on the coefficients of ca(¢y), c1(¢y), and co(dy)
are all true for our definitions above, we conclude that
Proposition 3 follows from Theorem 1 in [40]. O

V. FOUR-STATE INSTABILITY ANALYSIS

We now derive the conditions for Turing and Turing-
Hopf instability in a reaction-diffusion system for four
distinct morphogens on a four-layer multiplex network,
with diffusion occurring on only three layers. We con-
sider the following system with morphogens S, I, J, and
C, where S;, I;, J;, and C; are the densities of the mor-
phogens in each node of the network. Because we con-
sider diffusion on only the first three layers, the condi-
tions discussed below apply to the MBRD-CI model in
Equation (4).



dsS;
dtZ = f(Si7Iia Jiac’i)
+ dll ZLE;S)SJ + d12 Z Lg)I] + d13 ZLE;])JJ’
j=1 j=1 j=1
dl; )
e 9(Si; L;, Ji, Ci) + dzzjzz:lLij I;,
dJ; n )
p h(Si, I;, J;, Cs) + d33;Lij Jj,
dc;
— =1 S’ivli,JiaCi ..
oz = U )

Let (S*,I*,J*,C*) be the steady state densities on all
nodes. We define fg to be %hs*’[*’]*’c*) and fr, fs,
fcs 9s, 91, 97, 9c, hs, h1, by, he, ls, Ir, 1y, and lo
similarly. We introduce a perturbation (85;,4d1;,dJ;) to
the equilibrium densities. Then, by multinomial Taylor
expansions, we have

dssS; ()

7 = fs6S; + f10l; + f50J; + fcdC; + d1a ; Lij (5Sj

+diy Y LS+ dis Y L6,
j=1 j=1

WL _ 355+ g16Ts + 956.J; + 903Ci +d zn: s,

dt gsoo; grol; gjod; gcol; 22 =~ ij J
WL hg6S; + habLi + hybJi + hodC; + d Xn:L(‘-’)éJ»

dt SO0 10144 JOJg c % 33 = ij YR
0C;

a =1g0S; + 1161, +1;6J; +1c6C;.

(18)

We approximate this system as follows:

dés;

T Js0Si + f16l; + fs00; + fcoC;

— d k965, — dyok D81, — dysk!Ds;,
doI; o
i 956S; + g161; + g50J; + go6C; — dagk; 61,
déJ;
di = hg6S; + hi6I; + hy6J; + hodCi — dssk!” 8.,
déC;

(19)

Letting w; = (85;,01;,0J;, 5C’i)T, we rewrite the sys-
tem in Equation (19) as
fr— d13k‘EJ) fc

fs —dik!™  fr — diok®

dw; _ gs g1 — doakl" 9J gc
dt hs hy hy —dssk!”  he
ls Iy Ly lc

(20)

Recall the definitions of my1, mao, msz, mio, and my3

13

from the previous section. Let P be the matrix

fs—mi1— A fr—ma2 f1—mas fc
gs gr — Moz — A 9g gc
hs h[ hJ—m33 - A hc
ls I 1y lo — A

We let w; be of the form a exp(ikx + At), where A is the
growth rate. Substituting this ansatz into Equation (7),
the growth rate satisfies det(P) = 0.

We define

uy = mai(lrgchy — lrgshe + ligrhe — lygohr)
+maa(lsfchs —lsfrhe + 15 fshe — 1 fohs)
+mas(lsgrfo — lsfrgc +lrgchs —l1gshe)
+miz(lsgshe —lsgchs +1shsge — ligshc)
+mas(lshrge — lsgrhe +lthcgs — ligchs),

ug = lg fomaamas + lrgcmiimas + Lyhamiimas,

uz = ls(frgc — grfc + frhc — fchy)
+1r(gshe — gchs + gshe — gchs)
+15(9chr — grhc + fchs — fshe),

ug = ma1(lrge + lihe) + moa(lsfo + Lihe)
+mas(lsfo +l1ge) — ls(gemiz + hemas),

us = lsfc +1lrgc +lshc.

Recall the definitions of e;, p1, p2, and ps from the
previous section. We denote

T = lc — P1,
r9 = us + lcp1 — P,
r3 == uz + u4 + lcp2 — ps,

fs fr fr fc
— gs 9r 95 gc
T4 = det hS h[ hJ hc

Is Ir 1y ¢

Recall the definitions of functions b, ¢, and d from the
previous section. Then we let

r(A) =det(P) =\ —d N+ 6N =N +d =0, (21)
where

a =lc—b,
b = wus +Ilcb—c,
d=us+us+lcc—d,

d = ps+up —us + led.

We denote the solutions to the system in Equation (22)
to be A1, A2, and A3, where R(A\1) > R(A2) > R(A3).
We prove the following two sets of necessary instability

Wenditions:

Proposition 4 (Boundary conditions). For instability



to occur, we must have

T‘4>0,
’I"2>07

7’3<0,
ry <0,

r1T4 > T2T3, r1Tr9T3 > 7"§ + 7"%7“4.

Proof. Recall the previously stated definitions of 71, po,
r3, and r4. At equilibrium, there is no spatial diffusion,
and the characteristic polynomial r(\) is

)\4 — 7"1)\3 + 7“2)\2 —1r3\ + 4.

All roots have negative real parts because no perturba-
tions can grow into oscillations. By Vieta’s formulas, we
have

Pr=A+ A+ A3+ <O,
P2 =Y A >0,

cyc

Ps =Y Mads <0,

cyc

Pa = Al)\g)\3>\4 > 0.

Moreover, the conditions riry > rors and rirers > 7"§ +
r2r4 follow from the Routh-Hurwitz criterion. O

Proposition 5 (Instability conditions). Let Ay be the
quartic discriminant of r(\). If Ay > 0, then 4X\3 —
3a’\% 4 26/ \ — ¢! must have three real roots alternating
in sign, for Turing instability to occur and d' > 0 is a
necessary condition for Turing-Hopf instability.

Proof. Tt is well-known that there are either four distinct
real roots or four distinct complex roots when Ay > 0,
two real and two complex roots when A,y < 0, and du-
plicate roots when Ay = 0. Assuming Ay > 0, all roots
must be real for Turing instability to occur. By Rolle’s
theorem, there must be a real value between each pair
of roots where 7(\) has slope 0 at that point, and these
values must be alternating in sign because no roots are
repeated. Thus, r'(\) = 4A3 —3a’\? +2b'\ — ¢ must have
three real roots alternating in sign.

Assuming Ay > 0, we must have four complex roots
for Turing-Hopf instability to occur. Let these roots be
w+ xi, w — 1, y + 2i, and y — zi. Thus, we have d’' =
(w? +2%)(y* + 2%) > 0. O

VI. PATTERN FORMATION

Many epidemics are comprised of waves of infections.
Here, we aim to simulate such waves by adding stochas-
tic noise to an initial steady state, which creates spatial
oscillations. In a physical sense, this noise can represent
fluctuations in infections that are induced by changes in
external dynamics such as weather. We shall dedicate
this section to analyzing simulation results with the pro-
posed MBRD-SI and MBRD-CI models. Particularly,
in Subsection VI A, we describe the methodology for our
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experiments. In Subsection VIB, we analyze two exam-
ples of pattern formation. In Subsection VIC, we aim to
understand the effect of different parameters on hotspot
growth. Finally, in Subsection VID, we explore the ef-
fect of variations in layerwise network degrees on pattern
formation and growth.

A. Methodology

Because infection densities cannot be negative in the
real world, we set 0 as the minimum threshold for all
densities. We conduct simulations on three types of net-
works:

e Lattice networks. With simulations on lattice
networks, we can more easily view patterns that
form. We implement the LA4, LA12, and LA24
lattice networks, in which most nodes have degree
4, 12, and 24, respectively. These are represented
in Figure 8. In each of the lattices in the figure, the
center red vertex is connected to the green vertices
through edges. Lattice networks have a determin-
istic structure and give us identical solutions across
trials.

D
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o Ay A
= AN AN PN 2 —p—p—~p—p
L W s N N
9 oD -9
Fan Y WY L ) P W R R WY Y
ey R N T S ZAAN ZEEAN A FAN )
Fa Y Fa N T Y
=4 S ZA ZN
ay
=y

FIG. 8: The LA4 (left), LA12 (middle), and LA24 (right)
networks.

e Watts-Strogatz (WS) network. The Watts-
Strogatz model [42] is characterized by short
geodesic distances between nodes; this phenomenon
is called the small-world effect. Thus, diffusion
on small-world networks is faster than diffusion on
other networks such as lattice networks.

e Barabasi-Albert (BA) network. The BA net-
work [43] is a scale-free network and follows a
power-law degree distribution. It also incorporates
preferential attachment, meaning that each node is
more likely to create new connections if it already
is connected to many other nodes.

We simulate with the WS and BA networks because
both the small-world phenomenon and scale-free prop-
erties are present in social networks [43, 44|, the World
Wide Web [45, 46], and migration between physical hu-
man communities [47, 48]. We consider the following
metrics throughout this section:



Definition 4 (Pattern amplitude for superinfection dy-
namics). The amplitude of the densities among all layers
of the multiplex network in superinfection dynamics is

DS =82+ (I = I)2 + (J; = J*)?], (23)

i=1

A=

where S*, I*, and J* are the equilibrium densities for the
susceptible, pathogen 1-infected, and pathogen 2-infected
populations.

Definition 5 (Pattern amplitude for co-infection dynam-
ics). In co-infection dynamics, the amplitude A is defined
as

N
SOU(Ss = 872 + (I — 192+ (Ji — J)2 4+ (C — O+,
i=1
(24)
where S*, I*, J*, and C* are the equilibrium densi-
ties for the susceptible, pathogen 1l-infected (mono- or
co-infected), pathogen 2-infected populations, and co-
infected populations.

There are some co-infection patterns that revolves
around different densities than the original equilibrium.
In that case, we use the following alternate definition of
A from Equation (23):

i=1

o ~ (25)
where S, I, J, and C are the mean densities of all nodes
in the network: S = vazl S, I = Zil I, J = Zf\il J;
and C = Zfil C;.

B. Amplifying Hotspots

Emerging spatial hotspots have been investigated in
the spread of COVID-19 [49]. Here, we focus on hotspots
that arise from Turing instability. In SIS dynamics, prior
research has shown that Turing patterns often become
spatiotemporally stationary after a period of time [21].
Meanwhile, in both the MBRD-SI and MBRD-CI dy-
namics discussed in this paper, we find that it is possi-
ble for these peaks to be both spatially stationary while
also consistently growing over time until system collapse
occurs. We illustrate this phenomena with Examples 1
and 2 for superinfection and co-infection dynamics, re-
spectively.

Example 1 (MBRD-SI model). Consider the
MBRD-SI model in Equation (3) with the following
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parameters:
w = 0.005, r=0.1, A=0.1, K=1,
81 = 0.3, B2 = 0.15, o =3,
v = 0.02, v2 = 0.05, ayp = 0.02, ag = 0.15,
di1 =0.1, di1s = —0.2, di13 = —0.2,
doo = 0.01, dss = 4.8.
(26)

On a multiplex network with three identical LA12 net-
works for the S, I, and J layers, the configuration in
Example 1 forms the patterns in Figure 9. This figure
demonstrates the layers with S, I, and J densities, in
order of row, at times t = 500, 1300, and 1850, respec-
tively. As seen in the figure, we observe the emergence
and growth of patterns with dots and stripes in the S and
I layers. In those layers, the hotspots are still at the same
locations between times 500 and 1300, which is a key
features of Turing patterns. On the other hand, pattern
formation does not occur on the J layer, demonstrat-
ing the possibility that Turing patterns occur only on
some layers and not all of them. Finally, we notice from
Figure 9 that the I layer densities are centered around
approximately 0.52 and the J layer densities are centered
around approximately 0.4. This shows that it is possible
for the I layer to have a greater equilibrium even when
J steals hosts from I, and this is largely because of f;
being significantly larger than fSs.

From our derivations, we expect that the type of net-
work should not affect whether or not pattern formation
occurs as long as the average degrees are constant, espe-
cially when the average degrees of each layer are large.
We observe that this is indeed true for the MBRD-SI
dynamics described in Equation (3) and Example 1. The
MBRD-SI model, with the parameters mentioned above,
produce patterns in LA4-LLA4-LA4 networks. Figure 10
displays the oscillating node densities at t = 100 with the
superinfection model parameters in Example 1 on a WS
multiplex network on the same multiplex network.

We introduce a co-infection parameter setting below,
which produces patterns with very similar shapes to that
of Example 1.

Example 2. [MBRD-CI model] Consider now the
MBRD-CI model in Equation (4) and the following pa-
rameter settings in Example 2:

1 = 0.005, r=0.1 A=01, K=1,
8 = 0.3, By = 0.15,
B0 = 0.1, Boz = 0.1, P12 = 0.05,

v1 = 0.02, v2 = 0.05,

a1 = 0.02, as = 0.15, aip = 0.1,
diy = 0.4, dig = —0.2,  dyz=—0.2,
day = 0.01, g3 = 4.8.

(27)

On a multiplex network with three identical LA4-LA4-
LA4 networks for the layers with S, I, J densities, this
configuration forms the patterns in Figure 11. This figure
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column).

presents the the four layers, in order of row, at times

= 300, 500, and 700, respectively. We observe fine-
grained Turing patterns with a labyrinth structure, and
the hotspots are still at the same locations between times
300 and 500.

System collapse as a result of growing Turing patterns
has been investigated in competition dynamics between
pathogens [50]. We see the same phenomenon occur in
both MBRD-SI and MBRD-CI dynamics. From the
first and second columns of Figure 9, the oscillations in-

creases until a time around ¢ = 1600 when system col-
lapse begins, as shown in the third column of Figure 9.
The system collapse can be seen in the fading of the pat-
tern in Figure 9 because many nodes reach 0 and stay
there. We also see the oscillations amplify in the first
two columns of Figure 11, as well as system collapse in
the third column. This demonstrates that with the right
parameter settings, it is possible for both the human pop-
ulation and strains to disappear in most nodes. Thus,
local oscillations can cause local system collapse, which
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FIG. 10: Spatial distribution of densities on each layer at time ¢ = 100 on an WS multiplex network with all layers having

average degree of 4.

propagates to other areas and leads to global collapse.

Overall, from observation, we find Turing-Hopf pat-
terns are rarer than Turing patterns. With the pres-
ence of Turing patterns, location-targeted intervention
will be easier as the hotspots formed are stationary. With
Turing-Hopf patterns, the locations most in need of inter-
vention will constantly be changing, making an effective
response more difficult.

C. Effects of Model Parameters

In this subsection, we aim to understand the effect of
various model parameters on pattern formation and the
growth of Turing instability-induced hotspots.

We find that the following characteristics are present
in most of the patterns we have studied and thus, we
believe they help induce pattern formation.

e There is a significant difference between the trans-
mission rates 51 and So and the virulences «; and
ag. This is especially true for the MBRD-SI
model.

The cross-diffusion rates di2 and di3 are negative,
meaning in the physical sense that susceptible indi-
viduals gravitate towards areas with a high number
of infections of either pathogen.

There is a substantial difference between at least
two of the diffusion rates di1, do2, and dz3. We see
that this is true in the parameter settings shown
in the last seciton. This is also consistent with the
parameter settings for the patterns described in [20,
21].

We observe through our scenario that increasing o in-
hibits pattern growth; an example can be seen in Fig-
ure 20, which is based on the parameter setting in Ex-
ample 1 and the superinfection model in Equation (3).
We observe that the relationship between the average
amplitude at t = 50 can be described by a power curve,
as described in the caption of Figure 20. As a result,
larger o will make it less likely for the pattern to evolve
back into the steady-state and system collapse to occur

more quickly. Thus, in this case, a greater superinfection
coeflicient is most favorable in the long-term.

We consider the MBRD-CI dynamics from the model
in Equation (4). We note that in many scenarios, the ma-
jority of amplitude growth originates from fluctuations
between nodes in mono-infections in co-infection dynam-
ics. We use the configuration in Example 2, except for
the co-transmission coefficient 12, which we vary. From
Figure 13, we see that the average amplitude peaks ap-
proximately when S12 = 0.2. We fit the resulting points
with a Fourier series, and the curve’s formula is shown in
Figure 13.

This further analysis highlights the dual role of the
co-transmission coefficient. Small values of 315 are insuf-
ficient to sustain strong co-infection clusters, while very
large values rapidly homogenize the system and suppress
pattern formation. The intermediate regime (around
B12 = 0.2) maximizes oscillations, suggesting that there
exists a critical threshold at which co-infections am-
plify spatial heterogeneity most strongly. In our setting,
it implies that targeted interventions which reduce co-
transmission could substantially weaken pattern growth
and delay system collapse.

D. Varying Network Degrees

We shall dedicate this section to analyzing the effect
of varying average degrees between layers on pattern for-
mation and growth. We mainly analyze this from the
standpoint of clustering, which influences how difficult a
disease is to mitigate.

We analyzed the coinfection pattern with 8 combina-
tions of varying networks: (LA4, LA4, LA4), (LA12,
LA12, LA4), (LA12, LA4, LA4), (LA12, LA4, LA12),
(LA12, LA12, LA12), (LA24, LA12, LA4), (LA24, LA4,
LA12), (LA24, LA24, LA24). Figure 14 presents pat-
terns in the I and C' layers (first and second rows) for
varying degree layers at time 100 for the MBRD-CI
dynamics in Equation (4) and Example 2 for the other
three pattern-forming layer combinations besides (LA4,
LA4, LA4). The I and C layers are pictured in the first
and second rows, respectively. Additionally, the first, sec-
ond, and third columns depict pattern formation for the
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FIG. 12: Amplitude at ¢t = 50 (average of five trials) for vary-
ing o values on a LA4-LA4-LA4 network, based on Example 1.
Fitted curve: y = a - x® where a = 2141.6 and b = —11.6768.
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FIG. 13: Amplitude growth of oscillations for different [12
values on a LA4-LA4-LA4 network at ¢ = 40, based on Ex-
ample 2. Fitted curve: y = ao + a1 cos(zw) + by sin(zw) +
a2 cos(2zw) + by sin(2zw), where ap = 5.4740, a1 = —3.4742,
b1 = —1.4995, az = 0.0836, 0.6879, w = 17.8057.

(LA12, LA12, LA4), (LA12, LA12, LA12), and (LA24,
LA24, LA24). We make the following observations and
illustrate them with Figure 14.

e It was previously mentioned that pattern forma-
tion occurred in four combinations out of the con-
figurations analyzed: (LA4, LA4, LA4), (LA12,
LA12, LA4), (LA12, LA12, LA12), and (LA24,
LA24, LA24). Pattern formation occurred exactly
for those combinations also with the superinfec-
tion example. We notice that pattern formation
occurs more often when the layers have the same
degrees. Because infection hotspots are difficult to
mitigate, it is ideal for variation to occur between
layers. Longer quarantine periods and limits on mi-

19

gration for infected populations would induce large
average degree variations between the layers, pre-
venting Turing patterns from forming.

e Zhao et al. emphasized that increasing layerwise
average degrees can lead to larger clusters [21].
This also occurs in our simulation and is illustrated
in Figure 14, where the clusters for (LA24, LA24,
LA24) are the largest and there are only small clus-
ters at the early stages for (LA4, LA4, LA4). Be-
cause larger clusters of hotspots are more difficult
to mitigate, it is beneficial to limit migration for
all individuals while limiting migration for infected
individuals to a greater extent.

VII. POINT-SOURCE INFECTIONS

Many epidemics, such as the COVID pandemic, orig-
inate in a single location. In this section, we explore
superinfection and co-infection dynamics after both are
introduced at different nodes. In particular, we aim to
understand the effects of the infection source locations,
time difference of pathogen introductions, and the su-
perinfection and co-infection parameters on the infection
spread. Finally, we consider the impact of different net-
work topologies and varying average layer degrees on in-
fection spread.

A. Methodology

We let Iy and Jy be the initialized source nodes for
pathogen 1- and pathogen 2-infections, respectively. We
introduce the following terminology and metrics:

Definition 6. We call a node I;-active (resp. Is-active)
if its density of I1-infections (resp. Iz-infections), includ-
ing only mono-infections, is greater than Iip.es (resp.
Jthres)- We call a node C-active if the density of co-
infections is greater than Cipres-

Definition 7. We define the I1-spread index (resp. Io-
spread index) to be the fraction of nodes that are I;-
active (resp. Is-active). Additionally, we define the C-
spread index to be the fraction of nodes that are C-active.

In this paper, we set Iy = Jg = 0.05, Lipres = Jihres =
0.01 for both superinfection and co-infection simulations.
We also define Cypres = 0.005 for the co-infection simula-
tions. We also introduce the following definitions, which
will be useful in Subsection VIIF.

Definition 8 (Peaks). Let 6(¢t) be the Ij-, I- or C-
spread index as a function of the time ¢. For some integer
time increment 7, we define a local peak time t* > 0 to
be integer multiple of 7 that satisfies

3t — 1) < 8(tY),



7.909

7.9085

7.908

7.9075

(d)

(e)

20

4465
448
4455
445
4.445
444

4435

7.9087
7.9095
7.9086

7.9085
7.909

7.9084
70085 7.9083
7.9082
7.908 7.9081
7.908

7.9075 7.9079

()

FIG. 14: Layers with I (top row) and C densities (bottom row) for three multiplex networks: LA12-LA4-LA4 (first column),
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under the condition that there exists an integer u such
that u =0 mod 7, u > t*, §(u) > §(u + 7), and

§(t) = 8(t*)V t € {(t*,u] | t = 0 mod n}.

We also define the corresponding peak value to a local
peak time t* as 6(¢*). Additionally, for a local peak time
t*, we define the corresponding peak to be 6(¢*). Further-
more, we define the n-th peak time to be the unique time
t, such that there exist exactly n — 1 local peak times
less than t*, and the nth peak value to be 6(t,).

Definition 9 (Saturation time). For time-increment 7
and 6(t) as a spread index as a function of ¢, we define
the saturation time of a spread index to be an smallest
integer multiple of 7, t*, such that §(¢*) = 1.

In our simulations, we use a time increment of 7 = 1.
Using a larger 7 would provide smoother spread-index
graphs. Finally, to illustrate our observations in the fol-
lowing subsections, we introduce the following superin-
fection parameters for Equation (3), and co-infection pa-
rameters for Equation (4).

Example 3. (Superinfection model)

w = 0.005, r=0.1, A=0.1, K=1
B = 0.5, By =04, =09,
=02, =01, a;=00l, a=0.05,
dii = 0.3, dio = 0.1,  dys = 0.1,
day = 0.3, dgz = 0.1.
(28)
Example 4. (Co-infection model)
w = 0.005, r=0.1, A=0.1, K=1,
B = 0.3, By =04,
B10=10.2, Bo2 = 0.3, B2 = 0.05,
7 =01, No = 0.05,
a1 = 0.05, as = 0.15, a2 = 0.25,
dip = 0.3, dip = 0.1, diz = 0.1,
dao = 0.3, dss = 0.1.
(29)

In Subsection VII B, we discuss the overall shape of the
spread index evolutions. In Subsection VIIC and VIID,
we evaluate the impact of the distance and time differ-
ence, respectively, between the initialization of pathogen
1 and 2. In Subsection VIIE, we discuss the impact of
superinfection or co-infection model-specific parameters.
Finally, in Subsection VIIF, we evaluate the impact of



different network types and average layer degrees on the
spread of infections in this context.

B. Nature of Infection Dynamics

Consider the superinfection model in Equation (3). In
many scenarios with superinfection dynamics, we expect
the eventual persistence of pathogen 2 infections in every
region and pathogen 1 infections to die out as a result of
pathogen 2’s ability to steal hosts. We see that this is
true for the parameter set in Example 3 with the top
row in Figure 15. In many cases, the I1-spread index
experiences a single peak and falls back to 0. Meanwhile,
the Ir-spread index eventually becomes 1, as shown in
Figures 15 and 16.

In the co-infection dynamics shown in Equation (4),
it is less likely for one pathogen to completely dominate
the other. Thus, we expect that in some scenarios, both
the I1-, Is-, and C-spread indexes will reach 1 over time.
We see in Figure 17 that it is possible for that to occur.
Moreover, it is possible for one pathogen to dominate
over the other, causing one mono-spread index to peak
and fall back to 0 and the other mono-spread index to
persist at 1 as shown in Figure 21 when 15 = 0.01.

C. Effect of Source Locations

We first focus on the effect that source locations for
both pathogens have on the spread of both pathogens
throughout networks. For simplicity, we perform our
simulations with 40 x 40 lattice networks. We denote
d;; to be the starting path distance between the sources
of pathogen 1 and pathogen 2.

With respect to location, we focus on two configu-
rations. The first, as seen in Figure 15(a), features
pathogen 1 originating from the center of the network
with initial density 0.05. At the same time ¢t = 0, we
let pathogen 2 originate at ji, j2, j3, or j4, which are
ordered based on distance from node i. We analyze this
scenario for both superinfection dynamics (see Figure 15)
and co-infection dynamics (see Figure 17).

Considering Example 3 and the superinfection model
in Equation (3), we believe it is reasonable to expect
that for both pathogen dynamics, the weaker pathogen’s
spread index peaks at a greater value or the time for that
pathogen’s spread index to reach 1 decreases as the dis-
tance between the source locations of pathogens 1 and 2
increases. This is because pathogen 1 has time to dom-
inate a large area before both pathogens start to com-
pete in the same locations. We observe from both figures
that this is indeed true. However, in this specific con-
figuration, we note that the initial distance between the
pathogen sources has a minimal impact on the time at
which the I;-spread index peaks in the superinfection dy-
namics in Figure 15(b).

For the same initialization configuration but with the
co-infection dynamics in Equation (4), we first note that
as d;; increases, one of the I;-spread index or I»-spread
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index reaches 1 earlier while the other reaches 1 later.
For Example 4, pathogen 2 has higher transmission rates
than pathogen 1. The I;-spread index reaches 1 at an
earlier time and the Is-spread index reaches 1 at a later
time because the [;-spread index has more room to grow
before the pathogens start interacting. We also find that
the C-spread index reaches 1 at a later time as d;; in-
creases. This could be investigated in a future study.

The second initialization configuration, pictured
in 16(a) for the superinfection dynamics in Equation (3)
with Example 3, features pathogen 1-infections origi-
nating from a corner of the lattice, while the origin of
pathogen 2-infections varies. We observe that the source
location for pathogen 2 has a more irregular impact on
the I-spread index’s peak. The largest peaks occurs
when pathogen 2 is initialized at j; and js. This can be
explained by the overall direction in movement of both
infection spreads. When pathogen 2 is initialized at j4,
the I-spread index has more room to grow before both
pathogen infections start diffusing at the same locations.
On the other hand, when the origins of pathogen 1 and 2
are close, pathogen 1 more easily catches up to the places
that pathogen 2 is infecting already before pathogen 2 in-
fections can grow significantly. It is surprising that the
initializations at jo and j3 produce the smallest peaks by
a large margin, even though j; is fairly close to jo and js
is close to j4.

Because pathogen 2 is dominant and has a higher vir-
ulence as, it is most ideal for the J-spread index to
grow slowly. We see from the superinfection examples
that the Is-spread index grows relatively slowly when the
pathogens originate a far distance from each other, as-
suming the initialization in Figure 15(a) or Figure 16(a).
For co-infection dynamics, if we seek to slow the spread
of the infection that has the greatest virulence, different
configurations are most beneficial depending on the na-
ture of each infection. In this case, the co-infected group
has the greatest virulence of 0.25. Thus, it is most ideal
for the distances between the pathogen initializations to
be as far as possible, assuming the configuration in Fig-
ure 15(a).

D. Effect of Source Time Differences

In this subsection, we investigate the impact of time
differences in the introduction of the two pathogens in
the network, where pathogen 2 infections are introduced
some time after pathogen 1 infections. We denote the
time difference between the introductions of pathogens
1 and 2 in the network to be t;. For superinfection dy-
namics, we expect that pathogen 1 infections will have
more time to spread to a greater area before superinfec-
tion occurs at a large rate. We see this is true when
we incorporate the parameter values from Example 3
with the model in Equation (3) and initialize pathogen 1-
and pathogen 2-infections to originate at opposite corner
nodes in a 1600-node lattice network. In Figure 18, we
observe that as the time difference t; of the introduction
of the two pathogens-induced infections increases, both



22

0.9 09f
0.8 08f
eSS 1388
IPeeditrreed: 0.7 07t
S ESaa s T OSSaas $3ond
bnssaas 2O ey 94 S P 40000
sl sesl $eesal x x
Tirrreees ! $reell it res Il 206 D o6k
Pesenee .“00. P eeq bhnond ©° v © Y
10000000 e Y R OOEeas S POS08sss c =4
22000 ‘el .ed = =
A IR o0y
Dirresess ] I ISaas oY T 05 B o5t
Prreses [l Tt e Tteeess! g 3 3
A .. 9000 [}
000y Pt e el 49 tee = =
*ren +- >. P9 000 o Q. »
bssaaa s O tree g, Preeasils » 0.4 D04+t i
L 200800 aas s N OSBRaEass J088sig o £ dj = 29
*s. .. oo - '
buisssoes s TSSO EaEs TO88Ssasss ) 03 03 d; = 39
450044 S *eeag, 3+ '
-, o4y R Ty
Dotrressdldssss el et tressdlld
M:::’.'.”‘::’.'.."::’...”m 0.2 021
PSS e PO S S e s S O08800si. :
-..-...::0-..,’:--..,"::-uu...
+ 90y $eog 9000,
* .. e dend F
8 S S S RS e S S S500es 0.1 0.1
Speees il +e 3 e D boaed|
- /
"‘.:"‘C:"‘c.. "”..2 /
ﬁ;m- FEErrrisssiiiisotea” 0 ‘ o . ) ‘ )
* $se *tee i
i f”ii{‘fint-ﬁ-u:mzla 0 50 100 150 200 250 0 50 100 150 200
;if'f Time Time
(a) (b) (c)

FIG. 15: I;-spread index (center) and I»-spread index (right) when I is introduced in a central location and the

location of J varies (left). Based on Example 3.

09
09
08+
Ja 08l
111 07f
sHHH
IS ISABS S S iS5 !! 07k
e ISR S S B = = i 4 =2
sssdilaise it s it iild 06l i
resieat S S S R R R SRR RS S SR 5111 dj =18
binssoan S04 4o I 8 4qq, ! x
Dotesddlisses s i s it iy 3 4y = 58 go6r
Pnaes P : D33 0ers
[0S S RS e S S S Sessss ] 2ost 4 =78 2
b : : £
Meessqy Ittee, T esal il toem =
(11130000 p s s R SO Ran S S O080sss ] 2 g 05
sl il s s s LT e NN g 8
Hisrressddlirreesd it 2 o4t &
9904 4. 540
Js . e fysony ? D 0.4t
o0 Peee, e es i X
oo ey P99 040 - -
bnesad g ey teee
2084 el 0000
[ 2000000 nas S teeseld 03}
o3 s il RS teug 0al
esiea e, Thes, .
P40 4o T2 4000m
Dissas 2004 e e saag
IR ttesy 1080 0sn ]
Ditreeesdditteees Il ttee0eslld 02+ 02
9 P
[150000 S an st SNBSS e S SO008ssssc ]
fstotsnsnas St Soonas S 20080ssen. |
sl ] e q oay
pruses 3 3 $08un
e S R S SO S a e S S OSSaeas s 0.1 0411
[ i0908 S SRS B el *eedq
Spreeidl o SR8 gy
e S S S S S S SR e s st
ﬁi S S S S S S S S S ST TN 0 L L 0 L L L L L L L L ‘
3 33
fnniiif}ffif:"-..:::g=J1 0 50 100 150 200 250 0 20 40 60 80 100 120 140 160 180 200
’ < -
ffnﬁﬁ i Time Time

FIG. 16: I-spread index (center) and Is-spread index (right) when pathogen 1 is introduced in a central location and the
starting location of pathogen 2 varies (left). Based on parameter configuration in Example 3.

the peak I-spread index and the time that this peak oc-
curs will increase. The progression of the I;-peak value
follows approximately a power curve, and the progression
of the Ir-saturation time as a linear relationship with the

time tg4.

We keep the same settings as before, but incorporate
the coinfection model from Equation (4) and the co-
infection parameters from Example 4. Again, we see that
one mono-infection spread index reaches 1 sooner as tq4
increases, and the other spread index reaches 1 at a later
time, from Figure 19. Moreover, we see for both peaks
that the time at which the peaks occur both shift forward
as tg increases. We observe that for both in Figure 17
and the evolution of the I1- and I»- spread indexes over
time for the current example, the C-spread index follows
the same trend in response to location or time changes
as the Ir-spread index. We believe this could be true
in general co-infection dynamics and propose this as an
interesting topic of future study.

E. Effect of Superinfection and Co-Transmission
Parameters

Because a larger superinfection coeflicient o allows
pathogen 2 to dominate more easily, we expect that as o
increases, the I1-spread index will peak at a lower value
and at an earlier time. This is because the Ii-spread
index will have less room to grow before it becomes sig-
nificantly dominated by pathogen 2-infections and falls
back to 0 when pathogen 2 is more dominant. We ver-
ify these statements with the model in Equation (3) and
the parameter settings in Example 3, with varying values
of 0. In Figure 20, we observe that as ¢ increases, the
I1-peak value and I-peak time both decrease, and the
relationship can be fitted to a power curve, respectively.
Moreover, the I>-saturation time decreases according to
a power-curve relationship. Because the correlations are

all negative, it is most ideal for the superinfection coeffi-
cient to be small.

For co-infection dynamics in Equation (4), we expect
that as (1o increases, the probability that an individual
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will be co-infected will increase, resulting in the C-spread Example 5 (Superinfection model).
index reaching 1 sooner. We see this occurs in Figure 21,

which was created using the parameter set from Exam- p = 0.005 r=0.1 A=01 K=1
ple 4. From this figure, we also note that the dynamics B1 = 0.3, Ba = 0.5, oc=12
when 15 = 0.01, 0.05 and 0.09 can be described as mu- =02, o = 0.1, ar = 0.01, oy = 0.1

tual inhibition, while the dynamics when £15 = 0.14 can

be described as mutual enhancement. We observe that all di1 = 0.5, diz = 0.1 di3 = 0.1
three indexes reach 1 earlier when mutual enhancement da2 = 0.3, dszz =0.1.
occurs. (30)
In this figure, we observe that fB12 = 0.14 allows
all three indexes to reach 1 at the earliest times, and
B12 = 0.01 enables the [;-spread index and C-spread in-
dex to peak and then fall to 0. This inspires the following
definition: Example 6 (Superinfection model).
Definition 10 (S;5 threshold). We define the ;5 thresh- w = 0.005 r=20.1 A=0.1 K=1
old of a co-infection parameter configuration to be the B1 = 0.3, B2 = 0.2, oc=0.3
largest value .of Bi2, with all o_ther parame.ters.ﬁxed, such v =02, o = 0.05, a; = 0.01, ay = 0.02
that the maximum C-spread index over time is less than
1 and converges to 0. di = 0.8, d12 = —0.05 diz = —0.07
dos = 0.03, dzz = 0.5.
When the co-infection removal rate ajs is large, we (31)

expect that the value of 515 must make up for it, and the

(12 threshold must be larger. From Figure 22, we observe

that the relationship between the (12 threshold and the

value of ajo. We believe that proving this relationship

mathematically would be an interesting subject of future =~ Example 7. (Co-infection model)
work.

w = 0.005, r=0.1, A=0.1, K =1,
Bl = 0.5, 52 =04,
F. Effect of Network Type and Layer Degrees B1o = 0.4, Boo = 0.3, B2 = 0.15,
Y1 = 02, Yo = 01,
Investigating the impact. of varying n.etwork types a'nd ay = 0.05, ap =02, s = 0.15,
layer average degrees is highly useful in understanding
infection spread and effective public health policy. We dip = 0.5, dia =0.1, di3 = 0.1,
analyze infection spreading in LA, WS and BA networks doo = 0.2, dss = 0.3.
and with 8 different combinations of average layer de- (32)

grees. We analyze these factors with the following su-
perinfection and co-infection parameter sets, as well as
Examples 3 and 4.
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FIG. 22: Bi2-threshold for varying ai2 values. Fitted curve:
y = ar + b, where a = 1.0148 and b = —0.2285.

Example 8. (Co-infection model)

w = 0.005, r=0.1, A=0.1, K =1,
61 =0.7, Bo =04,
B10 = 0.2, Bo2 = 0.05, B12 = 0.15,
v1 = 0.2, v2 = 0.1,
a; = 0.16, ag = 0.05, a1z = 0.15,
di; = 0.8, di12 = 0.05, di13 = 0.05,
dog = 0.4, dsz = 0.1.
(33)

We first analyze infection diffusion for different net-
work topology and layerwise average degrees in superin-
fection dynamics. We saw for the examples in Section VI
that it may be optimal for the layerwise average degrees
to vary. In this context, we expect something similar
to occur. In particular, a lower average degree for the
layer with J densities than the other two layers may be
the most beneficial in slowing the spread of J so that
it cannot dominate as much. We use Table II to verify

this. The first subtable compares different combinations
of degrees and the I;-peak value, I; peak time, and I
saturation time that occur.

We start by focusing specifically on lattice networks
because they are deterministic. We note that because
pathogen 2 has a larger removal rate, we want to maxi-
mize the time that the J—spread index reaches 1 to lessen
the number of deaths. From all of the subtables in Ta-
ble II, we observe the following:

e We find that in all the subtables in Table II, the
degree combinations that give the highest I satu-
ration times are LA24-1LA12-LLA4, LA12-LA4-1L.A4,
LA12-LA12-LA4, and LA4-LA4-LA4. Thus, in su-
perinfection dynamics, it is most paramount that
the average degree of the J-density layer of the mul-
tiplex network are low.

e The average degree of the susceptible density layer
has no significant impact on the I;-peak value, I;-
peak time, and I;-saturation time. For example,
the LA24-LLA12-1LA4 produces a I, peak value of
1 but a I saturation time of 184. Meanwhile, the
LA12-LA12-LA4 also has the same I;-peak and I
saturation values.

e Recent research has found that diffusion gener-
ally occurs faster in BA networks than WS net-
works [51, 52]. As a result, we expect that in BA
networks, the number of instances of superinfection
will grow earlier and faster, leading to smaller peaks
in the I;-spread index and a longer time for the I»-
spread index to reach 1. We verify this is true in
Tables II, where the time that the Is-spread in-
dex reaches 1 is consistently lower for BA networks
than WS networks. Moreover, degree variations
have a smaller impact on the values on the spread
indexes over time for both infections. The BA net-
work topology may also explain why outbreaks of-
ten occur during holidays and policies become less
effective.

Moving to co-infection dynamics, we similarly expect
that it is most beneficial for the graph corresponding to
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Layerwise Degree Variations, using Examples 3, 5, 6 and Lattice Networks

LA12 |LA12 |LA12 |0.9719 (54 75
LA12 |LA4 |LA12 ]0.5056 |71 74
LA12 |LA4 |LA4 |0.8581 |88 183
LA12 |LA12 |[LA4 1 49 184
LA4 |LA4 |LA4 |0.8581 (88 183

Network Type Example 3 Example 5 Example 6
S I J Il- Il- Ig-sat. Il- Il- Ig-sat. Il- Il- Ig-sat.
layer |layer |layer |peak |peak |time |peak |peak |time |peak |peak |time
value |time value |time value |time
LA24 |LA24 |LA24 |1 28 43 0.0006 |0 38 0.0006 |0 48
LA24 |LA4 |LA12 |0.5056 |71 74 0.0881 |62 66 0.1581 |84 60
LA24 |LA12 |LA4 1 49 184 0.6756 |84 158 0.7963 99 128

0.0969 |60 66 0.3844 |80 60
0.0881 |62 66 0.1581 |84 60
0.3444 |111 158 0.3525 (116 128
0.6756 |84 158 0.7963 100 128
0.3444 |111 158 0.3525 (116 128

Layerwise Degree Variations, using Example 3

Average Degrees WS BA

S layer I layer J layer I,-peak I,-peak I>-sat. I;-sat. I>-sat.
value time time time time

24 24 24 1 21 25.01 21 24
24 4 12 0.9458 45.573 29.649 21 24
24 12 4 1 22.061 72.345 21 29.341
12 12 12 1 22.049 29.622 21 24
12 4 12 0.95034 45.721 29.555 21 24
12 4 4 0.99901 46.391 71.883 21.912 29.358
12 12 4 1 22.059 72.611 21 29.321
4 4 4 0.99874 46.353 72.434 21.913 29.348

Layerwise Degree Variations, using Example 5

Average Degrees WS BA
S layer I layer J layer I-peak I-peak I>-sat. I,-peak I>-sat.
value time time value time
24 24 24 0.0006 0 21.041 0.000625 |20
24 4 12 0.00063062 |0.019 25.637 0.000625 |20
24 12 4 0.000625 |0 63.19 0.000625 |25.464
12 12 12 0.000625 |0 25.591 0.000625 |20
12 4 12 0.00063062 |0.02 25.644 0.000625 |20
12 4 4 0.0013719 |6.899 63.026 0.000625 |25.494
12 12 4 0.000625 |0 63.265 0.000625  |25.482
4 4 4 0.0014444 |6.631 62.924 0.000625  [25.495
Layerwise Degree Variations, using Example 6
Average Degrees WS BA
S layer I layer J layer I,-peak I-peak I>-peak I;-peak I>-sat.
value time time value time
24 24 24 0.000625 |0 47 0.0006 47
24 4 12 0.17353 77.012 47 0.0006 47
24 12 4 0.43153 78.423 64.423 0.0006 47
12 12 12 0.000625 |0 47 0.0006 47
12 4 12 0.17657 77.039 47 0.0006 47
12 4 4 0.21016 79.89 64.475 0.0006 47
12 12 4 0.43003 77.688 64.422 0.0006 47
4 4 4 0.20097 79.75 64.365 0.0006 47

TABLE II: Variation of layerwise degrees with superinfection dynamics, each an average of 1000 trials.

the more dominant pathogen to have a lower average de-
gree to slow the spread of that pathogen across the net-
work. Table III incorporates the co-infection model in
Equation 4 and the parameters from Example 4, 7, and 8.
Here, we analyze each of them separately, as follows:

e Example 4. This parameter configuration satis-

fies ayo > g > «y. Thus, it is most beneficial
to limit the infections of pathogen 2, including co-
infections. Overall, the combinations that produce
the largest saturation time for I and Io are the
LA12-LA4-LA4 and LA4-LA4-LLA4. Moreover, for
the LA24-1LA4-1LA12 and LA12-1LA4-LLA12, there is
also a large saturation time for I;.



Layerwise Degree Variations, using Examples 4, 7, 8 and Lattice Networks
Network Type Example 4 Example 7 Example 8
S I J I1-sat. | Ir-sat. |C-sat. | [;-sat. | [s-sat. |C-sat. | [1-sat. | [,-sat. |C-sat.
layer |layer |layer |time |[time |[time |[time |[time |[time |[time |[time |[time
LA24 |LA24 |LA24 |53 50 56 34 61 55 22 58 52
LA24 |LA4 |LA12 |586 89 353 132 81 133 103 95 97
LA24 |LA12 |LA4 |73 234 232 55 155 152 36 301 292
LA12 |LA12 |LA12 |84 90 89 55 78 73 37 108 101
LA12 |LA4 |LA12 |586 89 353 132 81 133 103 95 97
LA12 |LA4 |LA4 |260 229 227 132 161 157 93 279 270
LA12 |LA12 |LA4 |73 234 232 55 155 152 36 301 292
LA4 |LA4 |LA4 |260 229 227 132 161 157 93 279 270
Layerwise Degree Variations, using Example 4
Average Degrees WS BA
S layer |I layer |J layer |[;-sat. I>-sat. C-sat. I-sat. I>-sat. C-sat.
time time time time time time
24 24 24 42 30.997 49 42 30 49
24 4 12 206.54 35.534 109.15 42 30 49
24 12 4 47.186 86.964 87.678 43.798 30.154 50.412
12 12 12 44.741 35.522 50.677 42 30 49
12 4 12 205.06 35.519 108.87 42 30 49
12 4 4 79.151 85.998 88.342 44.495 35.139 50.394
12 12 4 47.269 87.004 87.816 43.823 35.156 50.462
4 4 4 80.926 85.362 88.37 44.548 35.12 50.396
Layerwise Degree Variations, using Example 7
Average Degrees WS BA
S layer |I layer |J layer |I[;-sat. I>-sat. C-sat. I-sat. I>-sat. C-sat.
time time time time time time
24 24 24 24 59 53 24 59 53
24 4 12 55.093 62.9 65.06 25 59 53
24 12 4 26.305 80.404 75.829 24 59 53
12 12 12 26.285 59 53.001 24 59 53
12 4 12 55.406 62.943 65.275 25 59 53
12 4 4 54.962 83.433 79.132 25 59 53
12 12 4 26.274 80.755 76.213 24 59 53
4 4 4 55.104 83.323 79.063 25 59 53
Layerwise Degree Variations, using Example 8
Average Degrees WS BA
S layer |I layer |J layer |I[,-sat. I>-sat. C-sat. I-sat. I>-sat. C-sat.
time time time time time time
24 24 24 18 26.059 29 18 25 29
24 4 12 35.974 33.44 38.772 18 25 29
24 12 4 18.599 121.13 111.84 18.676 34.168 32.378
12 12 12 18.536 34.862 32.733 18 25 29
12 4 12 36.073 33.423 38.907 18 25 29
12 4 4 35.407 116.22 106.95 18.915 34.313 32.459
12 12 4 18.602 121.28 111.97 18.668 34.155 32.389
4 4 4 35.654 116.21 106.86 18.923 34.227 32.409

TABLE III: Variation of layerwise degrees with coinfection dynamics, each an average of 1000 trials.

e Example 7. This parameter configuration satis-
fies g > 12 > 7. Again, it is most beneficial

thus most beneficial

to limit the infections of pathogen 2, including co-

infections. In this case, the multiplex network com-
binations LA24-LA12-LA4, LA12-LA4-LA4, LA12-
LA12-LA4, and LA4-LA4-LA4. Out of these, the
combinations LA12-LA4-LLA4 and LA4-LA4-LA4
produce the highest I-saturation times in addition
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to the high 5 and and C-saturation time, and are

e Example 8. This parameter configuration satisfies
a1 > aqa > ag, where a; and aqo are only 0.01
apart. Thus, it may be most beneficial to limit the
infections of pathogen 1, including co-infections. It
is the most beneficial to maximize the saturation



times for pathogen 1 and co-infections. Thus, the
most beneficial layer combinations are LA12-LA4-
LA4 and LA4-LA4-LA4.

As a result, to minimize the spread of both infections,
it is most important to reduce the movement of indi-
viduals infected by either, and limiting the movement of
susceptible individuals is less important.

In human metapopulations, migration patterns can be
best described with the BA networks topologies. A key
feature of scale-free networks such as BA networks is
large hubs that dominate the network. This accurately
reflects how during holiday season, major cities serve
as large tourism hubs, as [53] shows is true for Chinese
tourism on the May Day holiday.

During other seasons, human metapopulations are bet-
ter represented with small-world networks such as the
WS network. The WS network has a high clustering
coefficient, representing how at work and local events,
humans form many close social circles. Small-world
networks are also characterized by short average path
lengths, which represent how communities in human
metapopulations are highly interconnected [21, 54].

Studies have shown that infections often spike during
holidays [55, 56]. From the results discussed above, we
observe for both superinfection and co-infection dynam-
ics that BA network topologies allow both pathogens to
spread more quickly throughout the network. As a re-
sult, we believe that network topology may be a reason
for infection spikes during holiday seasons.

VIII. COMPARISON WITH REAL-WORLD

INFECTIONS

In this section, we explore some of the similarities be-
tween our co-infection simulations and real-world data.
First, we present two observations from our simulations,
which are illustrated with Example 9. Then, we show
that some of these phenomena can be found in real-world
data.

We conduct simulations with the co-infection model in
Equation (4) and the parameters in Example 9.

Example 9. (Co-infection model)

11 = 0.005, r=0.1, A=01, K=1,
By =04, By = 0.3,
B1o = 0.1, Boz2 = 0.3, P12 = 0.05,

=01, 2 = 0.05,

ar = 0.01, as =002, ass = 0.05,
dy1 = 0.3, dyi2 = 0.001, dy3 = 0.001,
doy = 0.03,  dss = 0.01.

(34)

Note that these figures show the density on each layer
as a function of the node index. This leads us to some
examples, shown in Figure 23. We have the following
observations:
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e It is a general pattern that oftentimes, the peaks
of one infection and a valley of the other infec-
tion occur at the same location. We see this oc-
cur for different types of initializations, including
when both initializations are far from each other
and when they are close.

e The severity of both infections tend to be higher
in locations that have a greater density of co-
infections, and co-infection distributions tend to
mirror the density distribution of one pathogen
more than the other. This can be seen in Fig-
ure 23(a), co-infection distributions typically fol-
low pathogen 1 infection distributions, but fol-
lows pathogen 2 infection distributions at some
locations. In Figure 23(b), co-infection distribu-
tions typically follow pathogen 2 infection distri-
butions, but follow pathogen 1 infection distri-
butions at some locations. In Figure 23(c), co-
infection distributions follow pathogen 2 infections
from nodes 1 to 40, and pathogen 1 infections oth-
erwise. Figure 23(d) is more of an anomaly because
co-infection distributions tend to follow the spatial
distribution of pathogen 1 infections throughout
the entire network at ¢ = 9. We see both through
our simulations and real-world studies that in many
cases, the co-infection trends tend to mirror those
of the more severe pathogen.

Our second observation aligns with the conclusions
in [57]. They investigate co-infections of different strains
of the pathogen Podosphaera plantaginis in Plantago
lanceolata gardens and find that overall infection sever-
ity is higher in local populations where co-infection rates
are high. In our simulations, we also observe examples
of this. Since the blue curve represents both pathogen 2
and co-infections, we see that in many cases when the co-
infection curve peaks in Figure 23, this coincides with the
a peak in the density of pathogen 2 infection densities,
which include co-infections.

We also analyze the validity of both observations in the
context of the co-circulation of COVID-19 and tubercu-
losis. The city of Recife, Brazil, can be broken down into
94 neighborhoods. Silva et al. examined the incidences of
COVID-19, tuberculosis, and co-infections in this region
in 2020 [58]. We assume that the incidences of COVID-19
and tuberculosis include co-infections. Figures 2-4 in [58]
categorize the incidences in four categories for each type
of infection. We record each region with “17, “27  “3”,
or “4” based on the category. We denote “1” to repre-
sent the category with the lowest incidences and “4” to
represent the category with the highest incidences, and
call these the i-th COVID, tuberculosis, and coinfection
category numbers for region i. We see that for more than
35% of the regions, the absolute difference between the
COVID and tuberculosis category numbers are greater
than 2. Moreover, around 7% of the regions have an
exact absolute difference of 3 between the COVID and
tuberculosis category numbers, showing that peak and
valleys can occur in the same region at the same time
for different infections. On the other hand, we note that
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FIG. 23: At ¢t = 9 with different infection initializations on WS (top row) and BA (bottom row) networks with 100 nodes. Red
represents combined pathogen 1 and co-infection densities, blue represents combined pathogen 2 and co-infection densities, and

green represents co-infection densities only.

around 87 percent of the time, the absolute differences
between the tuberculosis and coinfection categories take
on the values 0 or 1, showing that the spatial trends of
coinfections closely resemble that of tuberculosis in this
scenario. It is also worth noting that tuberculosis is gen-
erally considered to be the more severe disease.

We also look at Wu et al’s analysis of tuberculo-
sis and HIV co-infections from 2011-2019 in Jiangsu
province [59]. We see that from 2011-2014 in particu-
lar, the northern side of Jiangsu province is filled with
tuberculosis infection hotspots but is almost entirely an
HIV cold spot. Moreover, many areas in the south are
HIV hotspots are tuberculosis cold spots in the same
years. Finally, we see that spatial co-infection distri-
butions closely follow that of HIV infections, where the
north is almost entirely a coldspot but there are some
hotspots in the south, supporting our two simulation-
based observations.

IX. APPLICATIONS

MBRD offers a framework upon which reaction-
diffusion models can be created for other applications.
In the following, we discuss potential applications of our
framework.

e Information propagation: The super-infection
model proposed in this paper can be used to an-
alyze the spread of conflicting or related rumors
in the same network of societies. In applications
of the co-infection model to social networks, indi-
viduals may be thought of as “co-infected” if they
change their mind frequently and therefore spread
both rumors.

e Malware propagation: The models in this pa-
per can be modified to study computer viruses on
networks. First, it is important to understand
the dynamics between viruses and anti-viruses.



Previous compartmental models have represented
computers as susceptible, infected, or protected
nodes [60]. This could be extended into reaction-
diffusion equations on a three-multiplex network,
where the three layers represent the three states
of computers, using the framework in this paper.
Superinfection-like phenomena can occur when one
particular malware is particularly dominant. Sec-
ond, there is evidence that computer viruses, such
as Vobfus and Beebone [61], can infect a host com-
puter at the same time and even support one an-
other’s survival. These dynamics can be analyzed
with co-infection models similar to the one pre-
sented in this paper.

e Urban planning: Reaction-diffusion models on
networks can describe how traffic congestion prop-
agates from region to region, including how con-
gestion in a city affects that of nearby suburbs or
how freight transportation or school buses impact
congestion at different times of the day. Models
such as [62] can be modified to incorporate multi-
ple transportation layers with road networks, com-
muter rail networks, or metro systems.

e Election forecasting: Compartmental epidemic
models have been used to predict the 2012 and 2016
presidential elections [63]. These models can be ex-
tended to reaction-diffusion equations on networks
to analyze the spatial dynamics between voting in-
tentions of different smaller regions in the USA and
other countries. An individual may be thought of
as “superinfected” if they switch ideologies or are
leaning towards one party but end up voting for an-
other similar party that is more likely to win. Addi-
tionally, a voter can be thought of as “co-infected”
if they are moderate or believe in different aspects
of two or more ideologies and are unsure of which
of those parties they will vote for.

X. FINAL REMARKS

Over the past years, we have seen a rise in the use of
reaction-diffusion dynamics to model not only epidemic
spread, but also for rumor propagation and predator-prey
dynamics [21, 64, 65]. In this paper, we have introduced
two new deterministic frameworks: the Multiplex Bi-
Virus Reaction-Diffusion models (MBRD). These
include the MBRD-SI model for superinfection and the
MBRD-CI model for co-infection, both formulated on
multiplex metapopulation networks.

Prior research has utilized stochastic processes to
model superinfection and co-infection dynamics [9, 66].
However, by integrating diffusion into our deterministic
models, we capture an important characteristic of infec-
tion spread while offering computational simplicity. This
makes the MBRD class of models well-suited for predict-
ing epidemic“waves” and large-scale pattern formation.

Our MBRD-CI model, for example, could provide more
accurate predictions of infections during the COVID-
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19 pandemic, where co-infection with influenza reached
rates as high as 48% [67]. Indeed, it can be applied to
pairwise co-infections of influenza, COVID-19, and Res-
piratory Syncytial Virus (RSV), assuming that immunity
for COVID-19 is short-lived, or co-infections of gonorrhea
and chlamydia [68]. On the other hand, the MBRD-SI
model is well-suited for applications such as modeling
HIV superinfection [69], where recovery does not occur
and y; = v = 0.

To our knowledge, this is the first work to estab-
lish superinfection and co-infection reaction-diffusion epi-
demic models on multiplex networks, as well as pro-
vide both theoretical and simulation-based analyses. Our
work also involve deriving conditions for pattern forma-
tion involving three or four morphogens, which had not
previously been analyzed in a network setting. More-
over, because spatial-temporal interactions between two
pathogens have not been thoroughly analyzed in prior
research, we also provide a simulation-based approach of
analyzing both models to understand the spatial spread
of both infections over time.

Summary of our results. We have the following

observations:

e Source separation. We analyze how the initial-
ization locations of both infections impact the dy-
namics across networks. When one infection is ini-
tialized at a lattice’s center, a small source sep-
aration produces rapid overlap of infection fronts
and faster saturation of co-infections across the
network.  Additionally, delayed interaction be-
tween spreading fronts and slower emergence of co-
infected clusters occur for large source separations
in the same configurations.

e Migration When migration rates are high, infec-
tion waves reach overlap earlier, and increased mix-
ing leads to stronger co-infection presence across
networks. On the other hand, low migration rate
promotes lower propagation and weaker overlap,
and pathogens remain localized longer.

e Pathogen strength. The stronger pathogen,
which is typically accompanied by higher 5 or lower
a values, tends to dominates in overlap regions and
suppresses the weaker pathogen.

e Multiplex network average degrees. Varia-
tions in layerwise average degrees prevent pattern
formation and increases in average degrees overall
allow for larger clusters during pattern formation.
Moreover, we find that reducing the average de-
grees of both the infection layers of the multiplex
network is important for slowing the spread of both
pathogens. Thus, we show that mitigation efforts
should focus on limiting the movement of infectious
individuals, with less priority on limiting the move-
ment of susceptible individuals.

e Network topology. From comparing satura-
tion times for different types of networks, we find
that infections spread slower and are less severe in



Watts-Strogatz (WS) network topologies in com-
parison to Barabasi-Albert topologies (BA). Be-
cause BA topologies. Thus, network topology may
provide a possible explanation for why outbreaks
often occur during holiday seasons.

We have illustrated in this work that early containment
of both types of infections is crucial to slowing the reach
of these pathogens. Many previously implemented con-
tainment methods align with our findings. For example,
quarantining of infection individuals was implemented
during the COVID-19 pandemic [70] and the 2002-2004
SARS outbreak [71]. Moreover, border control policies
for infected people prevent migration between regions,
which correspond to reducing edges in our networks [72].
According to our findings, this is beneficial not only for
the respective countries or regions, but also for the entire
metapopulation.

Future Research Directions. This paper provides
a foundation for which many extensions can be made.
Future research building on the models introduced here
could incorporate the following:

e Extending the present model to a system with 3, or
in general n-pathogens, would be useful for model-
ing the interactions between COVID-19, influenza,
and Respiratory Syncytial Virus (RSV) around the
world between 2020 and 2023, among other scenar-
ios.

e In many cases, human movement between two com-
munities may be particularly large or small, or may
only be one-directional. Accounting for these dif-
ferences through weighted and directed networks
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may produce more accurate models for predicting
infectious spread.

e The current SIS model cannot be directly ap-
plied to vector-borne diseases. A vector-borne
adaptation of the co-infection model in Equa-
tion 4 can be used to investigate malaria and
helminth co-infections [73], Zika and dengue co-
infections [74], and COVID-19 and dengue co-
infections [75]. Vector-borne adaptations of the
superinfection model proposed in Equation 3 can
be used to model different strains of dengue
viruses [76], among others.

e The spread of infections is often influenced by envi-
ronmental factors, such as temperature, humidity,
and air quality [77]. In the future, the impact of
these conditions on infection spread can be inves-
tigated and point-source infections can be investi-
gated with stochastic noise factored in.

e The impact of various vaccination strategies and
other specific mitigation strategies can be further
investigated through simulations, or through for-
mulating our model into an optimal control prob-
lem, similar to how [78] analyzes COVID-19 spread.
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