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THE RICCI FLOW ON TREES: LINEAR CONVERGENCE,
CURVATURE BOUNDS, AND SPECTRAL APPLICATIONS

ABSTRACT. We study Ricci flows on finite weighted trees based on Ollivier-type Ricci
curvature, parametrized by an exponent a € R. For general values of a, we establish
uniform bounds on the curvatures and their (weighted) sums. For a > —1, we show
that all normalized edge weights on internal edges remain uniformly bounded away
from zero. In the special case of a = 0, the unnormalized Ricci flow can be formulated
as a linear ODE, we prove that the normalized flow, starting from any positive initial
metric, must converge to a metric with constant curvature. Moreover we can show
such metric is unique on each tree. Several bounds for this constant curvature have
been established and examples on the double-star graph model demonstrate they can
be either positive, zero or negative. We also find from experimental results that,
the spectrum of the Ricci flow evolution matrix, comparing to that of other graph
matrices, clusters tree structures more effectively.

1 Keywords: Ricci flow, Ollivier-type Ricci curvature, weighted trees, Einstein met-
2 ric, spectral clustering, computational experiments
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1. INTRODUCTION

Ricci curvature has long played a central role in differential geometry and geometric
analysis, most notably through its appearance in Hamilton’s pioneering work on the
Ricci flow equation [12]

i)

ot

which deforms a Riemannian metric in the direction of its Ricci curvature. Here g;;(¢)
denotes the components of the evolving Riemannian metric, and Ric;; are the compo-
nents of its Ricci curvature tensor. Hamilton established short-time existence, unique-
ness, and important curvature pinching estimates for the flow [12, 13, 14]. The theory
reached its most profound success in Perelman’s work [24, 26, 25], where he introduced
new monotonicity formulas and the surgery technique, leading to the resolution of the
Poincaré conjecture and the more general geometrization conjecture.

In many practical contexts, however, geometric information is available only in dis-
crete or combinatorial form—such as networks, point clouds, or discretized manifolds—
so it becomes essential to develop discrete analogues of Ricci flow whose evolution
closely approximates the smooth theory. This motivates the study of Ricci flow on
graphs, which has advanced significantly in recent years: Weber et al. [29] proposed
a geometric method based on the Forman-Ricci flow for change detection in large
dynamic datasets, this method analyzes the topological properties of the network,
providing a deeper understanding of changes in network structure. Bai et al. [2] estab-
lished existence and uniqueness of solutions to continuous-time Ricci flow on weighted
graphs based on Lin-Lu-Yau Ollivier Ricci curvature. In the study of discrete curva-
ture and Ricci flow, Cushing et al. [4] systematically investigated Ricci flow behavior
on graphs via the Bakry—Emery curvature framework. Their work elucidates the inter-
play between graph structure and curvature evolution, providing valuable insights into
how curvature conditions shape graph metrics and dynamics. For the discrete-time
Ollivier-Ricci curvature flow on finite weighted graphs, Li and Miinch [17] proved that
the flow, combined with a surgery procedure, converges to a constant-curvature metric,
their proof relies on a convergence result for general nonlinear Markov chains with a
monotonicity property.

Discrete Ricci flow has demonstrated strong performance in practical applications:
the Ollivier-based flow stretches intercommunity edges and shrinks intracommunity
edges, allowing graph partitioning [22]. Ricci curvature—based methods have been used
to enhance network alignment by capturing structural similarities between graphs [21].
Curvature-guided graph rewiring mitigates over-squashing and improves message pass-
ing in GNNs [28]. Other Ricci-type flows study various aspects of graph geometry and
dynamics [10, 3, 9, 16, 30, 7, 11, 5, 8, 6, 31, 15]. These developments illustrate the
growing interplay between discrete network geometry and classical geometric analysis.

In this work, we study a general form of Ollivier-type Ricci curvature on finite
weighted trees, parameterized by a real exponent a € R. The curvature is defined via
local probability distributions g, where a portion « of the mass remains at vertex
x, and the remaining mass 1 — « is distributed among neighbors proportionally to

P,, = w?, , a power of the edge weights. This framework preserves desirable properties
5
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such as invariance under metric scaling and allows for flexible modeling of transport
dynamics on graphs.

We focus on the associated Ricci flow, a geometric evolution equation that adjusts
the edge weights over time based on curvature. In [2], the authors introduced the
unnormalized and normalized Ricci low defined on graphs. Given an undirected graph
G with a positive initial weight function wg, an un-normalized Ricci flow is the evolution
of the weight function w = w(t) satisfying following system of ordinary equations:

{w(O) = wo,

8wa—€t(t) = —ke(t)we(t), for all e € E(G),

(1)

where k. (t) represents the Lin-Lu-Yau Ollivier Ricci curvature on edge e at time t.
This system of equations, captures the dynamic evolution of the metric (edge weights)
on a graph over time. The curvatures k. (t) influence the rate of change of the edge
weights w,(t), with a negative curvature leading to an increase in weight and a positive
curvature leading to a decrease. This behavior aligns with the intuitive understanding
of Ricci flow, where negative curvature tends to “expand” the geometry while positive
curvature tends to “shrink” it.
The normalized Ricci flow on graphs, which adjusts the total edge weights to remain
constant 1, is described by the following system of equations
a%t(t) = ke (Dwe(t) +w. Y mwn(t), 2)

heE(Q)

where w,(t) represents the normalized weight of edge e at time ¢. In [2], the author
established conditions for the long time existence and uniqueness of global solutions to
Ricci flows on general graphs.

For trees, their combinatorial simplicity enables the explicit computation of the Lin-
Lu-Yau Ollivier Ricci curvature on any two vertices u, v:

> wyt . ’ > Wy
K _ __zT™u + 9. wuv 2. wuv - y~v (3)
* Wy Z wa Z ng Z wgy Wy Z wgy
T~ T~ Yy~ Y~v

The parameter a, originating from the probability distributions, plays a crucial role,
as it affects both the analytical approach and the resulting behavior of the Ricci flow.

We say that a solution to the Ricci flow converges if, for every edge h € E, the limit
of the normalized weight wy,(t) exists. The function w(co) obtained in this way is called
the limit metric. It is also important to study the static solution of the normalized
Ricci flow. Such metric satisfies:

ke = Kk for every edge e,

and will be called a metric of constant curvature or an FEinstein metric. It is easy
to see the sign of the constant x determines the unnormalized flow of such metric is
expanding, static or shrinking.

In this work, we investigate the long-time behavior of the solution to the Ricci flow.

We focus on the case a = 0, where we establish sharp bounds for the limiting curvature
6
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and prove that the normalized Ricci flow converges to the unique metric of constant
curvature on the tree.

Our contributions are summarized as follows: We derive an explicit formula for the
generalized Ricci curvature equation (3) in terms of the edge weights and the parameter
a on a tree, and analyze its qualitative behavior.

Proposition 1. Let T = (V,E) be a tree, and let ky, be the curvature in (3) with
a € R. Then the sum of the Lin-Lu-Yau Ollivier Ricci curvature on all edges satisfies:

<2, a>—1,
Z Ruv § = 27 a=—1,
wel €2, V], a<-1.
Moreover, for all a € R,
I{/’LLU S 2

and for a < —1 we have the uniform bound

Moreover, the curvature bounds play a crucial role in preventing local degeneracy
of the edge weights. When a > —1, we show that all normalized weights on internal
edges remain uniformly bounded away from zero. This result will be established in
Proposition 5.

In the special case of a = 0, the probability distribution pf in the definition of
Ollivier Ricci curvature (see Definition 2) is defined in the following way:

Q, if y =ux,
pe(y)=q 1 —a)g, ify~a,
0, otherwise.

This distribution p describes a simple model of local movement or diffusion: With
probability «, a particle (or agent) at node x stays in place. With probability 1 — «, it
moves to one of its neighbors, choosing uniformly at random among the d, neighbors.
This is referred to as the equal probability model because the probabilities of moving
to any neighbors are the same. Such a model applies to various real-world systems,
for example: A tourist at location x who either stays with probability a or chooses
a neighboring street at random to walk to; A data packet in a network that routes
randomly to a connected node; An idea or infection that spreads randomly from one
individual to their direct contacts. Intuitively, using equal probability movement sim-
plifies the model and reflects unbiased local diffusion, making it useful for studying the
geometric and transport properties of graphs.

The (unnormalized) Ricci flow on a weighted tree T = (V, E, w) in this special case
reads:

%ww@ __ (di + diy) W)+ S wlt) diy S wg®), ()

T una, uty vy, VAT
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where d, represent the degree of vertex x. Note that the flow equation is linear with
the coefficient matrix R € RIFIXIEl which we shall call the evolution matriz of the tree.
For such flow, we have established the following result:

Theorem 1 (Convergence of Ricci Flow on Weighted Trees). Let T = (V, E,wy) be a
finite, weighted tree with edge weights being strictly positive. Let w = w(t) be the Ricci
flow (4) on T with initial weight wy.

(1) (Long time existence) The solution w = w(t) exists uniquely for any positive
initial metric and for all time t > 0. Under the flow, w.(t) > 0 for allt > 0
and e € .

(2) (Convergence to equilibrium) The normalized Ricci flow converges to an
FEinstein metric w(oo) with curvature k(oo). In particular, a tree T = (V, E)
always admits an Einstein metric in sense of (21).

(3) (Limit behavior) The limit curvature ko, is equal to the negative of the largest
etgenvalue of the evolution matriz associated with the Ricci flow

In this theorem, we employ a flow method to establish the existence of an Einstein
metric on a tree. Moreover, one can show that, for a given tree, such Einstein metric
is unique (also see Proposition 6)

Proposition 2. Let T = (V, E) be a tree, and w,w' € RY be two (normalized) metrics
on T with constant curvatures k and k', then w = w' and Kk = K'.

Therefore, one may expect that the Einstein metric w and its curvature s capture
important structural information about the tree. In what follows, we provide upper and
lower bounds for the curvature k. Both bounds are expressed in terms of combinatorial
data of the tree, and each is attained only when the tree is a star.

Proposition 3. Let k be the curvature of the Finstein metric. Then:

1 1 2
2min ( —+——-1) <rk < —. 5
wm(z+ 7)== ?

Any one of the equalities holds if and only if T is a star graph.

Besides, we also establish a path-wise identity for Einstein metrics on trees, which
constrains feasible weight assignments and provides insight into how local curvature
conditions propagate along the tree.

Proposition 4 (Alternating Sum Identity on Path of all Trees). Let T' = (V, E, w)
be a finite weighted tree with positive edge weights w : E — Ryg. Assume w is the
Einstein metric.

Let P = (vg,v1,...,v%) be a path in the tree, with corresponding edges e; = v;_1v;
fori=1,... k where vy and vy are leaf nodes, then we have

k

k
A , 2 2
i—1 o k i—1

g (=)7K we, = —wey + (—1) w,, + ;Zl (—1) (d + E) We, -

Vi—1

8
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Although the present work focuses on the theoretical analysis of Ricci flow on trees,
these results provide a foundational framework for studying Ricci flow on more gen-
eral graphs. Tree-structured data occur naturally in many domains, including natural
language processing (NLP), where constituency and dependency trees [20, 23] serve
as hierarchical sentence representations. Recursive neural networks (RecNNs) [27, 18]
exploit such trees to encode syntactic and semantic information for tasks such as sen-
timent analysis, semantic parsing, and question answering. These connections under-
score the potential relevance of theoretical insights on Ricci flow for tree structures to
broader applications.

Building on our theoretical results for Ricci flow, we show that the spectrum of the
Ricci flow-based Evolution Matriz R effectively clusters tree structures, outperforming
classical adjacency, Laplacian, and distance matrices. The matrix is sparse, curvature-
aware, and interpretable, demonstrating how discrete Ricci flow offers both a principled
framework and practical analytical tools.

Organization of the Paper. The rest of this paper is arranged in a straightforward
way. In Section 2, we go over some basic ideas about trees and Ricci curvature. In
Section 3, we explain how Ricci curvature works on trees. Section 4 looks at the
Ricci flow when a = 0 and shows how the flow behaves in the long run, ending with
Theorem 1. In Section 5, we introduce the Ricci flow “Evolution Matrix” on trees and
show how it can be used to get spectral features and to cluster different trees. Finally,
Section 6 talks about a possible direction for future work, where we guess that the
largest eigenvalue and eigenvector of the Ricci flow matrix might actually determine a
finite tree completely.

2. PRELIMINARIES AND DEFINITIONS

Let G = (V, E) be a finite, undirected graph without loops or multiple edges. The
edge weight can be viewed as a function w : E' — (0, 00) which assigns a positive weight
to each edge e € E, and the triple G = (V, F,w) is called a weighted graph. We say
that G is a metric graph if for every pair of adjacent vertices z,y € V, the weight of
the edge equals the distance:

r~y = dT,y) = Wy
A path in G is called a weighted path if each edge on the path has nonzero weight.
The graph G is said to be connected if every pair of vertices is connected by a weighted
path. For any two vertices z,y € V, we write z ~ y if {x,y} € E. The distance
between two vertices x,y € V, denoted by d(x,y), is defined as the minimum total
distance among all paths connecting x and y. That is,

d(z,y) = min Z d(u,v),

paths P from x to y
{uv}epP

where the sum is over the edges {u, v} in the path P.
For any vertex x € V, let N(z) denote the set of its neighbors, and define the degree
of x by d, = |N(x)|. Usually, we use n to denote the number of vertices, and m to

denote the number of edges.
9
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Definition 1 (Coupling and Transportation Distance). Let V' be a finite set, and let
w1 and o be two probability distributions on V.

A coupling of py and ps is a new probability distribution w(x,y) defined on the
product space V x V', representing a plan for moving mass from x to y. The coupling

must satisfy:
Zﬂ-<xay) :/vbl(‘r)v Zﬂ'(l’,y) :,u2(y)

yev zeV

This means that the total mass transported out of point x equals py(x), and the total
mass transported into point y equals ps(y).

Given a distance function d(x,y) on V, the transportation distance (also called the
Wasserstein-1 distance) between py and po is defined as:

W(MDMQ) = H;f Z W('Ta y) ) d((lf,y),
z,yeV
where the infimum is taken over all valid couplings 7.

There is another, equivalent way to express the transportation distance, using an
optimization over functions:

W(p1,p2) = sup ¥ f(x) [ (x) — pa(2)]
zeV

where the supremum is taken over all functions f : V' — R that satisfy the 1-Lipschitz
condition:

[f(x) = f(y)| < d(z,y), forallz,yeV.

Example 1. Let T' be a weighted tree with set of vertices V= {1,2,3,4,5} and edges:
{12, 23, 24, 45}

where each edge has length/weight one. Consider two probability distributions supported
onV:
pu1 = (0.5, 0, 0.3, 0.2, 0), pus=1(0, 04, 0.2, 0, 0.4)

One possible transportation plan from py to po can be:

Source — Target | Mass | Distance | Contribution
1—2 0.4 1 0.4
1—5 0.1 3 0.3
3—3 0.2 0 0
3—2 0.1 1 0.1
4—5 0.2 1 0.2

Therefore the cost for this transportation is:

To see this transportation plan is optimum, we choose a 1-Lipschitz function f :
V — R with:



219 From the point view of the duality, the following quantity gives an upper bound for
220 the Wasserstein distance W (1, pi2):

Z f(@)[pa(z) = po(z)] =0-05—-1-(-04) —2-(0.3-0.2) —2-0.2— 3 (—0.4)
zeV

=04-02-04+12
=1

221 Therefore, we conclude the plan showed in the table is optimum and the Wasserstein
222 distance of two distributions is:

W (p, p2) = 1.

FIGURE 1. Transportation plan 7(z,y) with curved arrow for long-
distance transport (1—5). Red arrows indicate mass movement.

F1GURE 2. 1-Lipschitz function f shown outside the vertex circles.

223 2.1. Ollivier-type Ricci Curvature. Let a € [0,1] and let x € V be a vertex. Define
224 a probability distribution S on V' by

Q, if y=ux,
Pmy .
us(y) =4 0 -o)s=p Hy~w
0, otherwise,
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where P : E — [0,1] is a nonnegative function representing the raw probability of
moving from vertex x to a neighbor y. The values P,, may depend on the edge weights
Wy, and they determine how the total mass 1 — « is distributed among the neighbors
of . A natural choice for P, especially when w,, represents edge length or cost, is

a
uv’

Py =w
for some exponent a € R. This form ensures compatibility with scaling properties
of the metric: if all edge weights are scaled by a common factor (i.e., Wy, — Awyy),
then the distribution of mass remains consistent under appropriate choice of a. This

property is essential for deriving the normalized Ricci flow equations.

Definition 2. [19] Given local probability distribution u® for every vertez, the a-Ricci
curvature between two adjacent vertices x ~ y is defined as

Wpg, 1)
d(z,y) ©)

where W (g, j15) denotes the transportation distance between ug and pg, and d(z,y)
is the distance between x and y.

Ko(z,y):=1—

Finally, the (Lin-Lu-Yau) Ricci curvature is defined as the negative derivative of
Rol(z,y) at a = 1:

o Ka(T,y)
Koy 1= Clyl_rg o (7)

This limit captures the infinitesimal behavior of the curvature as the probability
distribution becomes increasingly concentrated at each vertex.

2.2. The Ricci Flow Equations. The unnormalized continuous Ricci flow on a graph
is defined by the time evolution of the edge weights w,, (), governed by the system:
0w,y (1)
ot

where w(0) = (we, (0), we,(0), ..., w,,, (0)) is the vector of initial edge weights, and each
we, (0) represents the initial weight assigned to edge e;.

Assuming the initial total weight satisfies ) ., we(0) = 1, the normalized continuous
Ricci flow on the graph is governed by the system

0wy (t)
ot

= —Kay(t) - wyy(t), w(0) € R™ >0, (8)

= _/fxy(t) ) wxy(t) + wxy(t) Z K’e(t)we(t% w(O) €R™ > 07 (9)
eclk
where the normalization ensures that ) ., w.(t) = 1 for all ¢.
In both equations, ry,(t) is the Ricci curvature at time ¢, and w,, (t) is the evolving
edge weight. Note that the normalized weights (solution to (9)) is also obtained from
the unnormalized weight (solution to (8)):

we(t)
Ze’eE Wer (t) '

12

we(t) =
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Analogous to the smooth Ricci flow in differential geometry, the Ricci flow (8)
contracts edges with positive curvature and expands those with negative curvature.
Specifically, this means: If k,,(t) > 0, the edge (u,v) contracts, and the weight wy,(t)
decreases. If k,,(t) < 0, the edge (u,v) expands, and the weight w,,(t) increases. If
Kuv(t) = 0, the edge weight w,, (t) remains constant. Since k., depends on the weights
Wyy (Via P, = w?,), this creates a nonlinear feedback loop: curvature affects weights,
and weights in turn reshape the curvature.

3. Ricci CURVATURES ON TREES

In this section, we derive an explicit expression for the Ollivier-type Ricci curvature
on trees under the general mass transport model defined earlier.

Let x ~ y be two adjacent vertices in a finite tree T' = (V, E, w), with positive edge
weights wy, > 0. Let the probability of mass transport be given by P, = wyg, for some

exponent a € R, and define:
P .= Z P, = ngz.

zZ~T zZ~T

We consider the probability measure ;& supported in the neighbourhood of z as:

a, if v =x,
w(l
ps) = (=)o, iz,
0, otherwise.

By adapting the results of Theorem 2.10 in [1], we have the following for trees:

Lemma 1. Let T' = (V, E,d,w) be a weighted tree, and let x ~ y be adjacent nodes
with P > Py(a). For any

wgy
o€ (—(a), 1],
wgy + Px

the map o v Ko(z,y) is linear on the interval

wa
L —
Frmolt
wgy‘i‘Pz

Remark 1. For trees, Lemma 1 implies that the function o — Ko(z,y) is linear on

[wg:uf;ﬁ’ 1}. Consequently, in applications, it is sufficient to evaluate Kqy at any o

sufficiently close to 1 (e.g., o =0.99).

Since there is a unique path between two vertices in a tree, we can find the explicit
formula for s, in this setting.

Lemma 2. Let T = (V, E,w) be a tree where w represents the weight on the edges E.

Then for every edge vy € E, the Lin-Lu-Yau Ollivier curvature ky, is determined by
13



276

277
278
279
280

281

282

283

284

285

286

287

288

289

the following equation:

wa+1 w® w wa+1
Kpy = — xz + 2 Ty + 2 Ty Yz
’ ; wxyPa(Ta) nga) Py(a) ; xyPy(a)

(10)

Proof. Note that w,, on tree is equal to the distance d(z,y). By Remark 1, we can

take o with 1 — « being small for computing k.

The optimum coupling/distribution 7 to compute the Wasserstein distance between

e and f1,, can be chosen as:

e for each u ~ x and u # y, 7(u,x) = (1 — oz);f?;g and for each v ~ y and v # «z,

m(y,v) = (1—a)P<a>5

er(z,y)=a+(1—a) 3 2= _(1-aqa) (a)>OWhen041scloset01

z2~x, 2y P(a)
e for other pair of vertices u, v, m(u,v) takes zero.
Then according to Definition 1, the distance can be computed as

a

P

Wus )= > (1—a)z—(%wm+(a+(1—a) > Waz (1 _ )=

zvT, 27y r Z, 27y

w®
yz
+ Z (1 — a)mwyz
2Ny, ZFT Y
It follows that

Wz, 1y WE, Wy w wy
Wi ty) _ (g _ STt a1 Y E (1)
Way 2T, 27y P Way 2T, 2 7Y Py Py
we w
. yz Wyz
+(1—a) Z @
2y, ZFT Py R
The a-Ricci curvature (6) is then given by:
W a’ " ° rz ° w; w z z
- ) :<1—a>(1— Y T X Gt w2 ol
Way ZT, 27y Px Way 2T, 2 7Y P Py 2y, ZFT P
Using P.* =Y w and 1 — > ;’% = P(“)’ then we have
zrT zvwzFy T *
Ka (T, Wy, Wy | Wy Wi Wy, Wy,
—1(_5):— D st o@ T oE T 2
z~T, 27y Pr Y Py Py 2y, 2FT Py ry
Finally, the Lin-Lu-Yau Ollivier Ricci curvature (7) is given by
. KalT, wirt  wg, | wg wy !
Foay = limy 1(_5):_ D EEtow T e T 2 @
2T, 2 7Y ’LnyPx Pr Py 2y, 2FX wmyPy
a+1 w wa—i—l
--> — ff)*Q W
2T w:vy P Py z~y wﬂl?ypy

14
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3.1. Bounds of Curvature for General a. In this subsection, we derive bounds for
terms appearing in the Ricci low equations such as the Ricci curvature and its product
with the normalized edge weights.

Lemma 3. Let T = (V, E, w) be a tree where w represents a normalized weight function
on the edges E. Then for every edge uv € E, the following hold:
(1) K < 2 and KyyWyy > —2;

(2) | X wver FuvWur| < Dy 12— dul-

Proof of (1). For each edge uv € E(G), to derive the upper bound of k,,, it suffices to
notice

wit - Y wkie 2wl = 3wl

U Yy~v
Ruyp = a + a < 2’
Wy Y, W, W Y, Wayy
T~U y~v

with equality held iff uv is the unique edge of the tree. For the lower bound of Ky, Wy,
we rewrite the term K,,w,, as:

(a+1) (a+1)
RyyWyy = ()'wzjl_'_%'wZil_Pu() _Pﬂ() ) (11>
P P P, P

Since 0 < wy, <1, then 0 < ngaﬂ) < P;,Sa) and we obtain the lower bound:

2
Ry Wy > : waJrl + —- ,wa+1 -2 > —2.

= éa) uv Iga) uv
O
Proof of (2). Using (11), it is easy to see:
Z FuyWuo = Z P(a) Z Z @ Z 1
uwer ueV VAU ueV u VU
— . petl v
Z a) U Z P(a) u (12)
uEV ueV u
P1EQ+1)
=) 2-d) —
ueV P“
Therefore, we can conclude:
a+1)
Zﬁukuv<2|2 dy| - <Z|2 dy).
wer ueV ueV
O

15



307 Similarly, we can write the curvature k,, as:

9 9 P&a—i—l) Pzga—s—l)
Fuw = — 5 Wy T~y " Wy =~ Way — 5 Wy (13)
P, Py P Py
308 It then follows that
a+1
Z Fuw = Z P(a) Zw P(a) Zw
wveFE ueV VAU ueV u VAU
= Z (2 - ) .
a)
ueV
300 Using pltp=b P&“’, we can deduce
Y kW <) (2-1)=1|V].
uwveE ueV
310 Note when a = —1, from Equation 14,
d kw=) 2-PM)=>"(2-d,) =2
uwweE ueV ueV

311 3.2. Proof of Proposition 1. To give a more tight estimate of the sum of Ricci
312 curvatures and give a proof of Proposition 1 , we shall use the following lemma:

plo)
313 Lemma 4. For each u € V(G), the function h,(a) = (a+1) is decreasing in R.

314 Proof. Let u € V(G) and denote w; := w,, for each neighbor x ~ u. Recall that
Py o
Pty 3wt
315 To show that h,(a) is decreasing, take any b > a. It suffices to show
ho(a) > hy(b) = PEHIp@ _ plath) plb) > g

hu(a) =

316 Compute:
P(b+1)P(a) a+1 P(b Z Z b+1 bwq+1)

J

= ZZwiwj wi = w;)
i g
= S [t ) + bt (g — )]
1 J
IS St ) (= ).
? J

317 Since b — a > 0, the function x — 2% is increasing, so

(wh™ wb “)(w; —w;) >0 for all 7, j, and wiwj > 0.
16



318

319

320

321
322

323

324
325
326
327

328

329
330

331
332
333

334
335
336

Therefore, the sum is nonnegative:
P+ plo) _ platt) po) > o
which implies h,(a) > h,(b). Hence, h,(a) is decreasing in a. O
Remark 2. [t is easy to see if a # b, then hy(a) = hy(b) if and only if
Wy = Wy
for any vertices x, y ~ u.

Proof of Proposition 1. When a > —1, applying Lemma 4, we have h,(a) < h,(—1),
which is equivalent to
plath) p(=1
P, “
Combine this with (14), we deduce
d k<) (2-d) =2
weE ueV

For the case of a < —1, the estimates for the sum of curvatures are almost the same
and we omit their proofs here.

To see the uniform bounds for x,,, we have already seen it is no more than two. For
the lower bound, notice

Fuw = Y _Ke— 3 ke >2=2(|E|—1) = =2(]V| - 3),
eck e€E\{uv}
which completes the proof. [l
Remark 3. In the case of a # —1, if the equality >

he(u) = h_1(u)

wweE Fuv = 2 hOldS, then

holds for any vertex uw € V. As mentioned in Remark 2, it then follows
Wyg = Wayy
for all vertices x, y incident to u. Using the connectivity of the tree, we can deduce

that all edges of the tree must be equal.

3.3. Examples of Ricci Flow Convergence on Trees. In the following, we present
examples of trees exhibiting explicit Ricci flow behavior under the general Ollivier-Ricci
curvature (10), focusing on path and star structures.

Example 2. Consider the Ricci flow (8) with a # —1 on the path graph of length n,
with edges denoted as ey, . ..,e,. Then, the Ricci flow converges, and the unnormalized
weights on all edges decrease to zero.

17



337

338
339
340
341

342

343
344
345
346

347
348
349

Initial path with arbitrary weights

€1 €9 €3 €4

After Ricci flow: all weights decay to 0

€1 €9 €3 €4
[ ] [ ] [ ] [ ] [ ]

FiGURrE 3. Path graph of 5 vertices with edges ey, ...,es. Top: initial
edge weights (arbitrary). Bottom: after Ricci flow, all edge weights decay
to zero.

sketch of proof. Let w represent the unnormalized weight. By formula (12), we have

1+a
% Z Wyy = — Z RypWyy = _2(2 - du)%wﬁ—wi‘f
wEE weE ueV Tovu T
= —(We, + we,)
< 0,

for all t € [0,00), so the sum 1wy, of unnormalized weights on all edges decreases
in particular, it is bounded and has a non-nonnegative limits. Moreover, weight w,, of
each edge is also bounded. It is easy to check that w,, +w., — 0 and hence wy, w,, — 0.
Now consider

a+1l _ ,,a+1
d B we, we,
4 We, (t) = ~We; — a a
dt wa + we,

which tends to 0 as we, — 0. Thus,

a+1l a+1
U)el U)e2

- — = 0,
wel + weg

which give wy — 0.
By iterating this argument along the chain of edges, we conclude w,,(t) — 0 for all

O

Example 3 (Star Tree). Consider the Ricci flow (8) with a > 0 on the star tree K,
n > 4, with center verter u and leaf edges w; := wy,,. The unnormalized on all edges

decrease to 0 and the normalized weights on all edges converge to %
18



350
351

352
353
354

355

356

Initial star graph

€1
€2

€3
€4

After Ricci flow: edges decay

Proof. Let w represent the unnormalized weight. Denote the center vertex as u, using
formula (12), we have

a Z wuv 1+a
quE _ Z KWy = — 2(2 . du) meu Wy (t)

uwekE uevV Z‘T"‘“ wgz <t)
Z w'l-i-a
i
_ Z it (n—2)iT
' Zx~u w?

By the following lemma 5, the leaf weights satlsfy w;(t)/w;j(t) = 1 as t = oo for
all pairs 7, j, and the ratios remain bounded away from 0 and oo for all £ > 0. In
particular, the normalized weight

Moreover, for large t > 0, we have

—sz (n—2) ZZ:LNU —nsz +(n—2 i :—ini<0.
=1 i=1 i=1

Therefore, the sum ), w; of the unnormahzed weights decays to zero exponentially. [J
19



357
358

359

360

361
362

363
364
365

366

367
368

369

370

371

Lemma 5. Let a > 0 and let K, be the star with center u and leaves vy, ..., v,,
n > 4. Write w;(t) := Wy, (t) > 0, then for any i and j, we have

; w;(t)
t—4o00 wj(t)

=1 (15)

Proof. Assume that, at time ¢t = 0, we have:
w1(0) > we(0) > -+ > w,(0).

For any 1 <i < j <n, we have:

Owi _ Wi, oy _mei“ zklw;;“ 2wt
’ ' wj Zk 1wk Zk 1 W

otw;, w;
! ! [ (16)

a+1 wi —wj
Y oroq Wi+ 2ww; -

wi;—wj

— (-2,

Wj i D ket W
Since w;/w; > 1 at t = 0, then it holds true for all ¢ > 0. In particular, according to
(16), w;/w; is decreasing and its limit must exist and be finite:

Aij = lim w;/w; € [1, wi(0)/w;(0)]

Thus we have established the (finite) convergence of w;/w; for i < j. It then follows,
for any 7 and j, the limit of w;/w; exists and is a positive real number which will be
denoted by A;;.

Using @ > 0 and — wj > 0, we can deduce the limit

n atl a,_ a
lim Zk:lw +2wlw.7 w; wj > lim Zk; 1uja+1 — lim ZZ:l(wk/wj)aJrl
n
t=o0 Wj - Y g W t=oo Wy Y p wp twoe Y r (Wi /w;)
Zk 1)\aJrl
Zk:l )\Zj

must be bounded below by a positive number. In particular, there exists some positive
constant C' > 0 such that:

wows (17)

Combine (17) with (16), in case of i < j where w; > w;, we obtain

0 w; <c(- _)
ot w; w;
Therefore
w;(t) (wz’(o) )
0< —-1< —1 ) exp(—Ct
e ;(0) (=C4)
for t > 0 and (15) follows. O
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373

374
375

376

377
378

379

380

381

382
383

384
385
386

387

388
389

390

391

392

3.4. Uniform Lower Bounds on Normalized Weights on Internal Edges for
a>—1.

Proposition 5. Consider the Ricci flow (8) with a > —1 on any tree. Then the
normalized weights on internal edges admit a uniform positive lower bound.

Proof. Let w(t) = mig we(t). We will show that w(t) never decreases to zero on internal
ec

edges. Assume at time t, w,,(t) = w(t), because a+1 > 0 each term w®* > w**! by
the minimality of w. Hence

Z w > (d, — 1wt
2T, Z;éy
Rewrite the z-contribution of x,, as

a+1 atl _ a+1
w . 1 Zzwx,z;éy W, o w Zzwx,z;ﬁy Wy,

PO w  p@ wP
Using the lower bound for the sum,

wtt — Z ngl < ot - (dy — 1)w“+1 = (2— dx)w“H.

z~T, 2F£Y
Therefore _— " X
wa - NI, Z U)gz 2 - d:E at “
ohe <! ?1;) = (2—da) w(a)
wPy wPy P

Similarly, result for the y-contribution of K.
Thus, if zy is an internal edge, then both d, > 2,d, > 2, we have k., (t) < 0, then

algfy > 0, resulting that w,, does not decrease at time ¢. Therefore, there is a uniform

bound on the normalized weight of all internal edges.

O

4. THE RICCI FLOW WITH PARAMETER a = 0

We prove the convergence of the Ricci flow on trees in the case a = 0. In this case,
the Lin-Lu-Yau Ricci curvature on tree is expressed as

K —_ _Zzwz Wy + 3 + 3 o ZZNZ/ wyz
”v’ Woydy g dy  Weyd,

4.1. The Ricci Flow Equations.

4.1.1. The Unormalized Ricci Flow. The unormalized Ricci flow is

%wxy(t) =— (d—lx + diy) Way(t) + dix > welt) + di > wyt).  (18)

U, uFEY Y oy, vite

This system of differential equations is linear with the coefficient matrix R:

—(i + i) ife=¢={z,y},

Ree = é ifene ={x}, (19)
0 ifene =10,

21
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394

395

396

397

398

399
400

401
402

403

404
405
406
407
408
409
410
411
412

which will be called the Ricci flow evolution matrix.

4.1.2. The Normalized Ricci Flow. Since

> =23 (1 —1)
zyek rzyek
then we obtain the normahzed continuous Ricci flow in the case of ¢ = 0:

8wzy 2} ( +o - 1) W (1) - Way (1)

uveE

— (d_lx + diy) wxy(t) + di Z wxu(t) + di Z wvy(t)'

T una, uty Yooy, vite

(20)

4.2. The Einstein Metrics. It is natural to consider the static solution
w(00) = {we(00) }eer € RY
of the normalized Ricci flow.

Definition 3. If a normalized metric w = (w.)ecp € RY satisfies:
Ke(00) = K (21)

for all e € E where k € R is some constant, then the metric/weight function is called
the metric of constant curvature or Einstein metric.

In the case of a = 0, we see a metric w = (we)eep € R¥ has constant curvatue « if and

only if
1 1 1 1
o ta, ) g 2w g D un() 22

u~zx, uFy Yy vy, VET
for any edges e = xy € E. Rearranging the terms in equation (22) gives

1 1 1 1
—(d—x‘Fd—y)wxy—l-d—x Z wm+d— Z wvy:—/fwxy.

The left-hand side is precisely the e-th component of Rw as defined in (19). Hence,
(Rw), = —kw,, VYe€E,

which means that w is an eigenvector of the evolution matrix R with eigenvalue —k.

In the next subsection, we shall prove the existence of an Einstein metric on a tree
for the case a = 0 using the Ricci flow. Before turning to existence, we first establish
a uniqueness result.

Recall from (19) that we introduced the matrix R, originally as the coefficient matrix
of the unnormalized Ricci flow. However, it is important to note that R is defined purely
in terms of the combinatorial structure of the tree. In particular, equation (22) shows
that an Einstein metric w satisfies Rw = —kw, so Einstein metrics correspond exactly
to eigenvectors of R. This observation allows us to prove the uniqueness without

referring to the flow itself.
22
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429
430
431
432
433
434
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437
438
439

440
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Proposition 6 (Uniqueness of Einstein Metric). Let T = (V| E) be a tree. Suppose
w,w* € RE are two (normalized) metrics on T of constant curvatures k and K,
respectively. Then w = w* and k = K*.

Proof. Notice that if kK # k*, then w and w*, as corresponding eigenvectors of the
symmetric matrix R (see (19)), must be orthogonal. This is equivalent to:

Zwe-w: = 0.

eckE

which contradicts with w, > 0 and w} > 0. Therefore k = k*. Now we set

r = min{w, - (w?)': e€ E} >0,

e

it then follows w := w — r - w* defines a nonnegative weight function satisfying (22)
with 0, = 0 for some edge ey = zy. According to (22), we have:

1 1 A 1 R 1 .

Y T u~z, uty Y vy, v

Therefore w, = 0 for all e € N(z) U N(y). Repeating this process and using the
connectivity of the tree, we can show w, = 0 for all edges and w = r - w*. Since both
of them are normalized metrics, then we have r = 1 and w = w*.

O

4.3. Convergence of the Normalized Ricci Flow. The main result was stated in
the Introduction. For clarity, we present it again below.

Theorem 2 (Convergence of Ricci Flow on Weighted Trees). Let T = (V, E,wy) be a
finite, weighted tree with edge weights being strictly positive. Let w = w(t) be the Ricci
flow (18) on T with initial weight wy.
(1) (Long time existence) The solution w = w(t) exists uniquely for any positive
initial metric and for all time t > 0. Under the flow, we(t) > 0 for allt > 0
and e € L.
(2) (Convergence to equilibrium) The normalized Ricci flow (20) converges to
an Einstein metric w(oo) with curvature k(00). In particular, a tree T = (V, E)
always admits a unique Einstein metric in sense of (21) in the case of a = 0.
(3) (Limit behavior) The limit curvature k(co) equals to minus of the largest
eigenvalue of the evolution matriz of the Ricci flow.

Proof of part (1). Let w(t) = (we(t))ece denote the vector of edge weights at time ¢,
with initial data w(0) > 0. Since the Ricci flow define a system of linear ordinary
equations:

0

FTid
where R is the evolution matrix of the Ricci flow (19), then the solution is unique and
can be written as:

(t) = Ruw(t) (23)

w(t) = exp(R - t)w(0) (24)
23
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443

444
445
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447
448
449

450

451
452

453
454

455

456
457
458
459

460

for all ¢ > 0. Moreover, according to the Proof of Theorem 3 in [2], w.(t) > 0 for every
edge e and all the time since w,(0) > 0. Those complete the proof of (1). O

Proof of part (2). Let Ay < Ag < -+ < Ag be all the distinct eigenvalues of the evolution
matrix R. As a real symmetric matrix, R must be diagonalizable. Therefore, using
(24), the general solution w = w(t) of the flow has following form:

we(t) = Z Cie €Xp(Nit). (25)

where ¢;.,1 <i <'s, e € Il represent some real constants.
It is clear that the coefficients ¢;. in (25) can not be all zeros. Thus we can define
the index iy to be the largest one with ¢; . # 0 for some e € E:

ip ;= max {1l <i<s:3ey € E such that ¢; ., #0}. (26)
Claim 1. ¢, > 0 for alle € E.

Proof of the Claim. For any edge e € E, according to part (1), we(t) > 0 for all ¢ > 0.
Thus we have:

_ we(t) _
t—oo exp(Nt) —

Now suppose ¢;, . = 0 for some edge e = zy. Comparing the coefficients of exp(\;,t)
on both sides of (18), we have:

1 1 1
(T ) am=1

Noting that ¢;, ., = 0, we deduce:

QU
Q)
<
&
£
+
& =
Q)
o
<@
<

(27)

Thus the non-negativity of ¢;, o yields ¢;, o = 0 for all edges ¢’ € N(z) U N(y). Re-
peating this process to the new edges e’ with ¢;, .~ = 0 and using the connectivity of
the graph, we conclude ¢;, . = 0 for all edgs e which contradicts with (26). Therefore,
Cio.e Must be positive for every edge e. O

By the above claim 1, we can rewrite

we(t) = Z Cie €Xp(ANit). (28)

24



461 with ¢;, . > 0 for all edges e. It then follows that the normalized weight . (t) must
462 converge and:

o we(t)
tlggo we(t) = tlggo Y oeer We ()

— lim Cig.e €XP(Aigt) + 0(exp(Aiyt))

1500 ) L erep Cioe €XP(Xigt) + 0o(exp(Ait))
Cio,e

)
Ze’EE Ci07e,

463 which is positive and will be denoted as w,(00). Notice that (27) implies @ = (W¢(00))cecr
a64 is an Einstein metric with curvature —\;, in sense of (22). Thus we have proved that
465 the limit metric exists and must be an Einstein metric.

466 Moreover, using the flow equation (23) and (28), we can compute the limit of the
467 Ricci curvatures:

1 e .
lim /{}e(t) = — lim éwe(t) — _ lim )\zoczo,e eXp()\lot)
t—o0 t—00 We (t) 015 t—o00 cio,e eXp()\iot) (30)
= -\

10

468 This proves the convergence and finishes the proof of part (2).
469 O

470 Proof of part (3). Note that the Einstein metric w = (w)l. is an eigenvector of R
4711 corresponding to eigenvalue —k (see section 4.2). In the following, we shall show such
472 eigenvalue is the largest one.

473 Let p be any eigenvalue of R with a (nonzero) eigenvector v = (v,)cerp € RE.

474 Note that the entries of 2] + R are non-negative, then we have:

m

S 2(25676/ + Re,e’)|ve|7

j=1

Z (256,6/ + Re,e’)ve’

e'eE

(2 + p)|ve| =

475 where §. . equals one if e = ¢’ and zero otherwise. As the entries of w = (w.)l . are
476 positive, it then follows:

2(2 + M)U}e’Ue’ S Z Z we(256,e/ + Re,e/)‘ve/‘
eclk ecE e'eFE (31)
-3 (Zwe(%e,el + Re’e,)) el = 372 — w)we v
e'eE ecFE e'eFE
477 which yields:
(1 + k) Zweh}e\ <0.
eck

478 Therefore, we conclude y < —x which completes the proof. [l
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4.4. Bounds for the Limit Curvature. In the last subsection, we have seen that
the Ricci flow is always convergent to the unique Einstein metric. It is natural to
classify graphs/trees according to the curvature of the unique Einstein metrics that
they can support. Because in classical differential geometry (eg. the uniformization
theorem in dimension two), the curvatures of Einstein metric give strong restriction on
the geometry and topology of the underlying manifolds. In this subsection, we mainly
study those curvatures of a tree and derive some bounds for them.

Proposition 7. Let k be the curvature of the Einstein metric. Then:
1 1 2
2min [ —4+——-1) <k < — 32
i?é%(derd )_K_|E|’ (32)

y
Any one of the equalities holds if and only if G is a star graph.

Proof. Let {w,}cer be the normalized weight of the Einstein metric. Assume ey = xy
is the edge with the largest weight, then by (22)

/{-weoz(digc—i—ali)weo—di Z we/—di Z Werr

Y T ereN(x)\eo Y eneN(z)\eo
1 1 1 1
ra)era 2 e 2
e’eN(z)\eo e’€N(zx)\eo (33)

11
—2(—+——1)w
(@rg 1)

1 1
> 2 min (——i———l) Weg -

zyek dm dy
Since w,, > 0, dividing through by w,, yields the lower bound for x. For the upper
bound, recall in Proposition 1, we have shown that ) _p x. < 2. Therefore in the case
of an Einstein metric where k., = k for any e € E, we obtain the upper bound:

_ 2
,{/—_
|E]

In the next, we shall consider the case when one of two equalities holds. We claim:
in both cases, all the weights w, take the same value and as a corollary,

2 2
=242 9 34
K a. + a (34)
for any xy € E.
(1) Suppose k attains the lower bound in (32):
2 2
m:min{d—/—l—d—,—Z: x’y'EE}.
@ y
Once again, let ey = xy be the edge with largest weight w,,. It then follows
from (33), equality holds only if w. = w,, for all ¢’ € N(x) U N(y), and

11
=2(—4+——1
=25
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499
500
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503

504
505

506
507

508
509

510
511
512
513

Since 7' is connected, repeating this process, we will get w, = w,, for all e € F.
(2) Suppose k attains the upper bound in (32):

2
K= —,
1E|
then we have Zwe 5 kuw = 2. According to the discussion in Remark 3, we see
all the weights w, must be equal.

Now we consider the graph G with properties (34). Let = be a vertex with maximum
degree d. We claim every edge incident to z is a leaf edge. Otherwise, let e = zy be
an internal edge and ¢’ = 2’y a leaf edge. Then:

1 1 1 1 1 1 1

= > 14= > 4= > — 4
R TR B R B N

which contradicts with (34). Thus, G must be a star. Conversely, if G is a star with
center degree d, then k = % which achieves both upper and lower bounds in (32). O

Remark 4. For non-star tree, that is, trees that contain internal edges, we have a
more explicit bound,

2

1 1
2  min <—+——1)<I€<—
. |E|

zyekl dy
xy internal

4.5. Examples of Double Star Trees. We now show some trees whose curvatures
of their Einstein metrics are positive, zero or negative.

Example 4 (“double-star” trees). We consider a graph with only one internal edge
e = {u,v}. Assume the degree of u and v are n + 1. In this graph, let —k be
the mazimum eigenvalue of R and the entries of the corresponding eigenvector are
Z,T1 0 Ty Y1, 0 s Yn. Lherefore we have:

9 1 < RS
= — e i 35
Z n+1z n+1;x n+1;y ( )
n+2 1 1 )
ﬁ'xj:n+1xj_n+1;xi_n+1z’ 1=1,2,---,n (36)
n -+ 2 1 1
cY; = j i ) .:172a"'7 37
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From (36) and (37), we add them up to deduce:

(n+1 )le_nJrl (n+1 )Zy’_ % (38)

Combine (35) and (38) together, we get:
2 3 _2n
nt1 " J\ar1 ") (n+1)2

» 5, G-
n+1 (n+1)2

Applying Theorem 1, we can conclude the behavior of the Ricci flow: when n < 3,
k > 0, the unnormalized weights of all edges decay to zero; when n = 3, k = 0, the
unnormalized weights of all edges converge to some positive numbers; when n > 3,
k < 0, the unnormalized weights of all edges grow without bound.

This theoretical result is illustrated by the numerical simulations in Figure 4, where
we plot the weight evolution for the double-star trees with n = 2,3, 4.

which is equivalent to:

=0 (39)

4.6. Alternating Sum of the Curvatures Along Path. The constant-curvature
metrics play a key role in understanding the limiting behavior of the Ricci flow on
trees. We derive an identity relating the curvature values and the edge weights of an
Einstein metric along a path connecting two leaves.

Proposition 8 (Alternating Sum Identity on Path of all Trees). Let T' = (V, E, w) be
a finite weighted tree with positive edge weights w : E — Ryg. Assume w is a metric
of constant curvature.

Let P = (vg,v1,...,v) be a path in the tree, with corresponding edges e; = v;_1v;
fori=1,..., k where vy and vy are leaf nodes, then we have
i 2
i—1 _ il
Proof. Since k is constant, using the notation P, := ) oz Way, We may write:

P, N 2w, N 2w, P,
K- We, = — — .
' d'Ui— 1 dvi— 1 d'Ui d'Ui
Take the alternating sum over the path:

k k
‘ . P, 2w, 2w, P,
_1 1—1 X = _1 1—1 _ Vi—1 € € _ (% .
E (=)' K - w,, E (—1) ( y —l—d + a, dv>

i=1 i=1

Split the sum:

Z(_l)z 1/4371161 Z(_l)z dvz—1 N Z( 1)z+1d
=1 i=1 Vi—1 i=1 V4



Double-star, n = 2: unormalized weights

Double-star, n = 2: curvatures
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Thus, we conclude:

k
, P, P, - 2 2
> (1) ke, = == 4+ (—1)FSE 4y (=1 — ) we,.
( ) I{wez dyo + ( ) dvk + i:1( ) <d + d’uz) wez

i=1 Vi-1

If vy and vy, are leaves, then d,, = d,, =1 and P,, = w,,, P,

= w,, , giving (40).
]

4.7. More Discussions. We display more results about the eigenvalues of the Ricci
flow matrix and give necessary conditions such that the matrix R has positive eigen-
values.

Observation 1. Let R be the Ricci flow evolution matrixz of a tree T with n vertices.

Define
R.:=Y |Re.;l
f#e
to be the sum of the absolute values of the non-diagonal entries in the e-th row of R.
Then we have the following observations regarding its eigenvalues:

(1) Leaf edges: An edge connected to a leaf (degree 1 vertex) contributes negatively
to the eitgenvalue spectrum. This follows from Gershgorin’s circle theorem: for
a leaf edge e = xy with d, = 1, the corresponding Gershgorin disk satisfies

2
Ree+ Re=—— <0.
d
(2) Internal edges: For an internal edge e = xy, the rightmost point of its
Gershgorin disk is

1 1
R66+R6:2_2<_+_>7
’ d, d,
which may be non-negative if the sum of degrees of its endpoints is at least 5.
Fquality holds when d, = d,, = 2.
(3) Sum of eigenvalues: The sum of all eigenvalues of R equals —|V|, since

Z)\i:trace(R)z— Z <dix+diy> Z—le—|V|.

zyel zeV

Additionally, the leftmost point of every Gershgorin disk is —2, so all eigenvalues
are greater than —2.

5. CLASSIFICATION OF TREE STRUCTURES BASED ON RIccl FLOW SPECTRAL
FEATURES

The Ricci flow (18) naturally induces an Fvolution Matriz on trees, capturing edge—
edge interactions under curvature evolution. In this section, we illustrate how this
matrix can be used to analyze and cluster different tree structures, highlighting the

practical utility of the Ricci flow framework. To evaluate its effectiveness, we perform a
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s62 tree classification task comparing the evolution matrix R with three classical represen-
563 tations: the Adjacency Matrix, the Laplacian Matrix, and the Distance Matrix. Our
564 results indicate that R achieves clearer separation between tree types, emphasizing its
565 superior capability to capture both local and global structural differences relative to
s66 standard matrix representations.

567 We next recall the definitions of the various matrices used in this study:

ses Definition 4 (Evolution Matrix from Ricci Flow on Trees). Let T'= (V, E) be a finite
s60 tree. Index the rows and columns of a matriz R € RIPXIEl by the edges of T. For an
570 edge e = {x,y} € E and another edge ¢ = {u,v} € E, define

( 1 1
() e
1
R =@ Jene =t
1
-, ifene ={y},
dy
L0, otherwise,

571 where d, and d, denote the degrees of vertices x and y.

572 Definition 5 (Adjacency Matrix). Let G = (V, E) be a simple undirected graph with
573 V ={vy,09,...,0,}. The adjacency matrix of G is defined as

1, {vi,v;} €E,
0, otherwise.

A = laghi<ij<n,  aij = {

574 Definition 6 (Laplacian Matrix). The Laplacian matrix of G is defined by

di, =7,
L=D-A= [fijhgz‘,jgn, Eij =491 1 7£.7 and {Uiu Uj} € E’
0, otherwise,

575 where the degree matrix of G is the diagonal matriz

D = diag(dy, ds, . .., d,).
576 Definition 7 (Distance Matrix). Let G = (V, E) be a connected simple undirected
577 graph with V = {vy, v, ..., v,}. The distance matrix of G is defined as

0 i =
D’L‘s:d@. 2,J<n» d7’7: 7 . .7
aist = (0, < (i) {the length of the shortest path between v; and v;, 1 # j.
578 Experimental Setup The experiments are designed to classify random trees gen-
579 erated by three different models:

580 e Priifer Random (PR) Trees: Uniformly sampled from the set of all labeled
581 trees with n vertices using random Priifer sequences.

582 e Barabasi—Albert (BA) Trees: Generated by the preferential attachment
583 model with m = 1, resulting in a scale-free tree with a heavy-tailed degree
584 distribution.
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585 e Complete Binary (CB) Trees: Fully filled at all levels

586 last, providing regular hierarchical structures as baselines.

Tree 2 in class 'uniform’

33 1 23

P
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28 3 3
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33
3436

—30 31

A P 38
5024 1-4R7
28 2 M 49 0 %

except possibly the

Tree 20 in class 'balanced"

10 y
e

k3 a8
47

F1GURE 5. Structural examples of Priiffer Random Tree, BA Tree and

Complete Binary Tree

587 These tree models span a range from highly random to highly structured topologies.
ses  If the matrices can capture the tree structure differences, it is natural to cluster the
589 trees generated by different tree models basing on the matrices information. Thus,
500 we design a tree classification procedure (as illustrated in Figure: (6) to extract the
501 matrices information and cluster the trees. Code is available at: https://github.
com/suyangban/evolution-matrix-based-tree-classification.

Extract

Clustering

Matrix

e (T 1 e
—_—
Extraction Distances

_—
(KMeans) o, ¢ o

FIGURE 6. A sketch of model process.

592

503 Feature Extraction We propose the following steps to extract tree-wise spectral
504 signatures from different matrices:

595 (1) Compute all eigenvalues and eigenvectors.

596 (2) Extract statistical descriptors from eigenvalues: Let x = [z, 29, ...,7,]T be
597 a vector of real values (e.g., eigenvalues). The statistic variables we used to
598 describe tree spectrum are listed below:
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Statistic Formula

Minimum min(x)
Median median(x)
Maximum max(x)
Mean p==i3"
Std o=/t S (i — )2
Variance LS (i — p)?
Skewness % >y (r;“ )3
Kurtosis S Dy (mi;“)4
Percentilep  percentile,(x)
. 1 n
Proportion., =377, I(x; > 0)
Proportion_, + 3" I(z; =0)
Proportion_, +>"  I(z; < 0)
599 (3) From the eigenvector associated with the largest eigenvalue, compute a normal-
600 ized histogram. Let An.x be the largest eigenvalue, and Vi = [v1, v, . . ., v,]T
601 the corresponding eigenvector. By Theorem 1, this eigenvector for matrix R
602 is positive, but for other matrix, it can be negative. Thus, we normalize the
603 absolute value of the max eigenvetor by:
b= |01 |v2] |vn]
Z;’L:I o] Z?:l ol Z?:l v
604 Next, we extract the histogram vector by partitioning the interval [0, 1] into
605 b equal-width bins, where the choice of b depends on the number of vertices in
606 the trees within the dataset.
E—1 k
[k_liT,g), k:1,2,,b—1
607
b—1
N
608 For each bin k, count the values lies in it:
n
hy, = Zﬂ(pi € I)
i=1
609 where [(-) is the indicator function. Then normalize the probability distribution
610 by:
1
h = —[hy, ha, ..., )"
n
611 thus, S0 by = 1.
612 (4) Concatenate these quantities to form the final feature vector.
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The dominant computational cost comes from the eigen-decomposition step, and the
overall time complexity is also (O(n?)) for a matrix of size (n x n). For large
graphs, this step can be computationally expensive, and more efficient methods or
approximations may be required for scalability.

Clustering and Evaluation We apply KMeans to cluster the extracted spectral
signatures. The computational complexity of the KMeans algorithm is O(n - k- d - t),
where n is the number of samples, k£ is the number of clusters, d is the dimensionality
of the feature space, and t is the number of iterations until convergence. In practice,
both the number of clusters and the number of iterations are much smaller than the
number of samples, so the algorithm is generally efficient for moderate-sized datasets.
However, for very large datasets or high-dimensional data, the computational cost can
become significant.

To evaluate performance of clustering, we leverage two widely used metrics.

e Adjusted Rand Index (ARI): Measures agreement with ground truth, corrected
for chance.

e Normalized Mutual Information (NMI): Measures mutual dependence between
predicted and true labels, normalized to [0, 1].

Number of Trees (PR/BA/CB)
50/50/50  100/100/100 200/200/200 300/300/300 300/200,/100

Method Metric

Dist ARI 0.10 + 0.03 0.09 + 0.02 0.09 + 0.01 0.09 + 0.01 0.00 + 0.01

1stance NMI 0.26 + 0.03 0.26 + 0.03 0.25 + 0.02 0.25 + 0.01 0.23 4 0.01

Adiacen ARI 0.31 + 0.04 0.31 + 0.04 0.31 + 0.02 0.31 + 0.02 0.40 + 0.03

JACCNEY Mt 0.47 + 0.04 0.47 + 0.03 0.47 + 0.02 0.46 + 0.03 0.49 + 0.02

. ARI 0.23 + 0.05 0.23 + 0.04 0.22 + 0.03 0.22 + 0.03 0.29 + 0.03
Laplacian

NMI 0.40 £ 0.05 0.39 £ 0.04 0.38 £ 0.03 0.38 £ 0.03 0.39 £ 0.03

Bvoluti ARI  0.63 + 0.17 0.56 = 0.17 0.73 + 0.12  0.65 + 0.16  0.69 + 0.08
VOMMON  NMI 0.66 + 0.11  0.60 + 0.12  0.71 + 0.09  0.66 + 0.10  0.64 + 0.08

TABLE 1. Performance comparison across different tree configurations:
number of trees sampled from three tree generation models (mean + std)

Table 5 reports the mean and std of ARI and NMI from 100 runs for different random
seeds. In each run, the size of sampled trees varies. For PR and BA trees, nodes number
varies in [10, 20, 30, 40, 50, 60, 70, 80, 90, 100], and for CB trees, the depth varies
in [5,6,7,8,9, 10, 11, 12, 13, 14, 15]. The statistic results shows Evolution matrix
stably and significantly outperforms other matrices on different scale of datasets. The
last column of Table 5 shows even on unbalance datasets, Evolution matrix still show
its capability to characterize tree structures.

Figure 7 shows the Multidimensional Scaling (MDS) visualization of tree features
extracted from four different matrices. MDS is a dimensionality reduction technique
that preserves the distances between features, i.e., if two trees are similar, they appear

close in the embedding; if they are very different, they appear far apart. In the first
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three plots, the clusters are not well separated. Points from different classes often over-
lap, leading to low ARI and NMI scores. This suggests that Distance, Adjacency, or
Laplacian-based features are not sufficient to capture the underlying structural differ-
ences among tree types. In contrast, the evolution-based dissimilarity (bottom right)
produces a much clearer separation of the three classes. This matrix likely incorporates
more meaningful structural features of the trees, capturing their generative process. As
a result, Evolution-based features gets the high ARI (0.81) and NMI (0.78).

Distance (ARI=0.10, NMI=0.26) Adjacency (ARI=0.34, NMI=0.50)
2]
1500 { |ARI=0.099 ARI=0.345
NMI=0.265 NMI=0.501

1000 -

500 4 =24

=500 4

—1000

@ Priifer random trees @ Priifer random trees
BA trees -84 ® BA trees
1500 Complete hinary trees © Complete binary trees
T T T T T T T T T T T T T T T T T
—2500 0 2500 5000 7500 10000 12500 15000 17500 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0
Laplacian (ARI=0.22, NMI=0.38) Evolution (ours) (ARI=0.81, NMI=0.78)
10 4
‘A'RI=0‘220 @ Prifer random trees ARI=0.813
NMI=0.383 BA trees 0.509 'NmI=0.783

Complete binary trees
0.251
0.00 4
—20 4

—0.25
~304

—0.50
—40 4

—0.75

—50 4

® o | 1004
—60 - - ® Prifer random trees

[ ]
BA trees [}
~70 4 —1.254 Complete binary trees ®
T T T T T T T T T T T T T T
0 10 20 30 40 50 -1.00 -0.75 -0.50 -0.25 0.00 025 050 075

FicUure 7. MDS visualization of clustering results for different matrix
representations. The Evolution Matrix yields the clearest separation
among four types.

Experiments show that the Evolution Matrix outperforms adjacency, Laplacian, and
distance matrices in clustering accuracy. Based on its construction from the continuous
Ricci flow, the Evolution Matrix also exhibits the following design features, which
suggest potential advantages beyond our experiments:

(1) Curvature-aware: Encodes local geometric information from the Ricci flow.
(2) Sparse: Fewer nonzero entries, implying lower computational cost for large

trees.
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(3) Interpretable: Non-zero entries correspond directly to edge—edge interactions.

Why the Evolution Matrix Improves Tree Classification

We now explain, in a geometry-spectral way, why the proposed Evolution Matrix
R (Definition 4) yields substantially better clustering of tree topologies than standard
choices such as the adjacency, Laplacian, or distance matrices. The key point is that,
by construction, the leading spectral quantities of R related with the limiting geometric
objects of the continuous Ricci flow on trees. Concretely, under our flow,

K(00) = — Amax(R), Woo = Vmax(RR), (41)

where k(00) is the limiting curvature, and we, is the normalized Ricci flow metric at
equilibrium, while A\ (R) and vya(R) denote, respectively, the largest eigenvalue
of R and an associated eigenvector. The feature extraction pipeline in §5 naturally
extracts the information from (41) (via eigenvalue statistics and the histogram of |v x|
), which aligns the learned representations with the underlying geometry of the data-
generating mechanisms.

(R1) Geometry-aligned spectrum (task—feature alignment). Equation (41) shows that
the top spectral quantities of R are the limiting geometric invariants of the Ricci flow.
Hence summary statistics of the spectrum (min/median/max, moments, sign propor-
tions) directly encode the limiting curvature scale and its dispersion, while the normal-
ized histogram of |vi,.x| estimates the distribution of the limiting metric across edges.
In contrast, for the adjacency A and the Laplacian L, the principal spectral quantities
have no direct curvature interpretation; for the distance matrix Dy, eigen-structure
is dominated by global path-length geometry and is insensitive to local curvature con-
centrations. This geometry—spectrum coupling endows R an intrinsic inductive bias
tailored to separating tree generative models.

(R2) Edge-space, degree-normalized coupling highlights branching geometry. Indexing
R by edges (not vertices) and using 1/d, couplings at each endpoint causes R to
emphasize how edges share branching load at high-degree vertices. For an edge e =

{z,y},

o, oene = {z},
Re,e - _<% + d_1y>’ Re,e’ - %, en e = {y},
0, otherwise.

Thus, edges incident to hubs (large d ) experience a characteristic pattern of many
small 1/d -strength couplings whose global superposition yields a distinctive leading
eigenvector footprint:

e BA trees (heavy-tailed degrees): mass in |V, concentrates around hub-
incident edges; the histogram of |vy,.x| displays heavier upper-bin occupancy.

e Complete binary trees (regular, hierarchical): near-uniform degree in-
duces a smoother, more homogeneous |v,,x| -histogram.

e Priifer random trees (light-tailed degrees): patterns lie between the two
extremes, with moderate concentration.

The same mechanism also affects Ay (R), hence curvature scale, yielding class-separable

statistics without requiring large feature engineering.
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(R3) Scale robustness induced by 1/d -normalization. Because the couplings at a ver-
tex are normalized by the local degree, R attenuates the raw effect of graph size and
emphasizes relative branching proportions. When node counts or depths vary across
samples (as in our setup), the eigenvalue moments and |vy,.«| -histograms remain com-
parably distributed within a model class. By contrast, Dy -spectra drift substantially
with size (global path lengths stretch), while A and L are more sensitive to absolute
degree counts than to their normalized branching structure.

(R4) Line-graph viewpoint: as a Laplacian-type operator on edges. Let £L(T') be the line
graph of T' (its vertices are edges of T'). If one forms a weighted Laplacian on £(7") with
weights w(e, €’) = 1/d, whenever e and ¢’ meet at v, then R can be seen as a Laplacian-
like operator on edge space, up to a degree-dependent diagonal shift (sign conventions
reversed on off-diagonals). This places R squarely in the class of diffusion generators
on edge functions, which mirrors the curvature-smoothing nature of the Ricci flow.
The adjacency A and vertex-Laplacian L act on different state spaces (nodes rather
than edges) and do not implement this particular curvature-aware diffusion.

(R5) Why the chosen features are especially effective for R. Our pipeline (§5) uses (i)
eigenvalue summary statistics and (ii) a histogram of the normalized leading eigenvec-
tor. For R, these two blocks ezactly probe the quantities in (41):

(1) The statistics of {\;(R)} summarize the curvature scale and its dispersion across
modes (mean/variance/skew /kurtosis; proportions of signs).

(2) The histogram of |V (R)| summarizes how the limiting Ricci metric mq, dis-
tributes over edges (concentration vs. spread), which is highly diagnostic of
hub-dominated vs. regular branching.

Applying the same feature recipe to A, L, and Dg;s; produces descriptors that lack this
geometric semantics; consequently, the resulting embeddings are less aligned with the
differences induced by the generative models and thus less separable for clustering.
(R6) Testable predictions and ablations. The geometric reading above yields empirical
predictions that further explain the observed gains:

e Ablation: Using only Apax(R) plus the |viyax(R)| -histogram should retain most
of the performance, since these already capture curvature scale and limiting
metric concentration.

e Local perturbations: Edge operations that change branching at a hub (adding/removing

multiple leaves at a high-degree vertex) should cause a larger, more structured
drift in R -spectra than in the spectra of A, L, or Dy, matching geometric
intuition.

e Size extrapolation: Within a fixed model class, as n grows, the empirical dis-
tribution of |vyax(R)| -histograms should stabilize (after appropriate binning),
whereas Dyt -based summaries drift with graph diameter.

The Evolution Matrix R embeds the continuous Ricci flow’s limiting curvature

and metric directly into its leading spectral data. Because the differences among
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BA /Priifer/complete-binary trees are fundamentally expressed by their branching ge-
ometry (hub concentration vs. regularity), the geometry-aligned spectrum of R pro-
duces features that are both interpretable and strongly discriminative, thereby explain-
ing its superior clustering accuracy in our experiments.

6. FUTURE WORK

In the previous section, we observed that the Ricci flow matrix exhibits promising
potential for distinguishing trees through their spectra and the eigenvector. A natural
question that arises is whether the largest eigenvalue and the eigenvector can serve as
a complete invariant for finite trees, as suggested by Conjecture 1. At present, this
remains an open problem, and we leave a rigorous investigation of this conjecture for
future research.

Conjecture 1 (Spectral Rigidity via the Leading Eigenpair). Let Ty and T, be finite,
connected, undirected trees, and let Ry, and Rp, denote their Ricci flow matrices.
Suppose the largest eigenvalues and corresponding eigenvectors coincide:

)\max(RT1) = /\maX(RT2)7 UmaX(RTl) = Umax(RTg) (Up to Scaling).

Then the trees are isomorphic:
T, = Ts.
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