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THE RICCI FLOW ON TREES: LINEAR CONVERGENCE,
CURVATURE BOUNDS, AND SPECTRAL APPLICATIONS

Abstract. We study Ricci flows on finite weighted trees based on Ollivier-type Ricci
curvature, parametrized by an exponent a ∈ R. For general values of a, we establish
uniform bounds on the curvatures and their (weighted) sums. For a > −1, we show
that all normalized edge weights on internal edges remain uniformly bounded away
from zero. In the special case of a = 0, the unnormalized Ricci flow can be formulated
as a linear ODE, we prove that the normalized flow, starting from any positive initial
metric, must converge to a metric with constant curvature. Moreover we can show
such metric is unique on each tree. Several bounds for this constant curvature have
been established and examples on the double-star graph model demonstrate they can
be either positive, zero or negative. We also find from experimental results that,
the spectrum of the Ricci flow evolution matrix, comparing to that of other graph
matrices, clusters tree structures more effectively.

Keywords: Ricci flow, Ollivier-type Ricci curvature, weighted trees, Einstein met-1
ric, spectral clustering, computational experiments2
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1. Introduction25

Ricci curvature has long played a central role in differential geometry and geometric26
analysis, most notably through its appearance in Hamilton’s pioneering work on the27
Ricci flow equation [12]28

∂gij
∂t

= −2Ricij,

which deforms a Riemannian metric in the direction of its Ricci curvature. Here gij(t)29
denotes the components of the evolving Riemannian metric, and Ricij are the compo-30
nents of its Ricci curvature tensor. Hamilton established short-time existence, unique-31
ness, and important curvature pinching estimates for the flow [12, 13, 14]. The theory32
reached its most profound success in Perelman’s work [24, 26, 25], where he introduced33
new monotonicity formulas and the surgery technique, leading to the resolution of the34
Poincaré conjecture and the more general geometrization conjecture.35

In many practical contexts, however, geometric information is available only in dis-36
crete or combinatorial form—such as networks, point clouds, or discretized manifolds—37
so it becomes essential to develop discrete analogues of Ricci flow whose evolution38
closely approximates the smooth theory. This motivates the study of Ricci flow on39
graphs, which has advanced significantly in recent years: Weber et al. [29] proposed40
a geometric method based on the Forman-Ricci flow for change detection in large41
dynamic datasets, this method analyzes the topological properties of the network,42
providing a deeper understanding of changes in network structure. Bai et al. [2] estab-43
lished existence and uniqueness of solutions to continuous-time Ricci flow on weighted44
graphs based on Lin-Lu-Yau Ollivier Ricci curvature. In the study of discrete curva-45
ture and Ricci flow, Cushing et al. [4] systematically investigated Ricci flow behavior46

on graphs via the Bakry–Émery curvature framework. Their work elucidates the inter-47
play between graph structure and curvature evolution, providing valuable insights into48
how curvature conditions shape graph metrics and dynamics. For the discrete-time49
Ollivier–Ricci curvature flow on finite weighted graphs, Li and Münch [17] proved that50
the flow, combined with a surgery procedure, converges to a constant-curvature metric,51
their proof relies on a convergence result for general nonlinear Markov chains with a52
monotonicity property.53

Discrete Ricci flow has demonstrated strong performance in practical applications:54
the Ollivier-based flow stretches intercommunity edges and shrinks intracommunity55
edges, allowing graph partitioning [22]. Ricci curvature–based methods have been used56
to enhance network alignment by capturing structural similarities between graphs [21].57
Curvature-guided graph rewiring mitigates over-squashing and improves message pass-58
ing in GNNs [28]. Other Ricci-type flows study various aspects of graph geometry and59
dynamics [10, 3, 9, 16, 30, 7, 11, 5, 8, 6, 31, 15]. These developments illustrate the60
growing interplay between discrete network geometry and classical geometric analysis.61

In this work, we study a general form of Ollivier-type Ricci curvature on finite62
weighted trees, parameterized by a real exponent a ∈ R. The curvature is defined via63
local probability distributions µα

x , where a portion α of the mass remains at vertex64
x, and the remaining mass 1 − α is distributed among neighbors proportionally to65
Pxy = wa

xy, a power of the edge weights. This framework preserves desirable properties66
5



such as invariance under metric scaling and allows for flexible modeling of transport67
dynamics on graphs.68

We focus on the associated Ricci flow, a geometric evolution equation that adjusts69
the edge weights over time based on curvature. In [2], the authors introduced the70
unnormalized and normalized Ricci flow defined on graphs. Given an undirected graph71
G with a positive initial weight function w0, an un-normalized Ricci flow is the evolution72
of the weight function w = w(t) satisfying following system of ordinary equations:73 {

w(0) = w0,
∂we(t)

∂t
= −κe(t)we(t), for all e ∈ E(G),

(1)

where κe(t) represents the Lin-Lu-Yau Ollivier Ricci curvature on edge e at time t.74
This system of equations, captures the dynamic evolution of the metric (edge weights)75
on a graph over time. The curvatures κe(t) influence the rate of change of the edge76
weights we(t), with a negative curvature leading to an increase in weight and a positive77
curvature leading to a decrease. This behavior aligns with the intuitive understanding78
of Ricci flow, where negative curvature tends to “expand” the geometry while positive79
curvature tends to “shrink” it.80

The normalized Ricci flow on graphs, which adjusts the total edge weights to remain81
constant 1, is described by the following system of equations82

∂we(t)

∂t
= −κe(t)we(t) + we

∑
h∈E(G)

κhwh(t), (2)

where we(t) represents the normalized weight of edge e at time t. In [2], the author83
established conditions for the long time existence and uniqueness of global solutions to84
Ricci flows on general graphs.85

For trees, their combinatorial simplicity enables the explicit computation of the Lin-86
Lu-Yau Ollivier Ricci curvature on any two vertices u, v:87

κuv = −

∑
x∼u

w1+a
ux

wuv

∑
x∼u

wa
ux

+ 2 · wa
uv∑

x∼u

wa
ux

+ 2 · wa
uv∑

y∼v

wa
vy

−

∑
y∼v

w1+a
vy

wuv

∑
y∼v

wa
vy

. (3)

The parameter a, originating from the probability distributions, plays a crucial role,88
as it affects both the analytical approach and the resulting behavior of the Ricci flow.89

We say that a solution to the Ricci flow converges if, for every edge h ∈ E, the limit90
of the normalized weight wh(t) exists. The function w(∞) obtained in this way is called91
the limit metric. It is also important to study the static solution of the normalized92
Ricci flow. Such metric satisfies:93

κe = κ for every edge e,
and will be called a metric of constant curvature or an Einstein metric. It is easy94
to see the sign of the constant κ determines the unnormalized flow of such metric is95
expanding, static or shrinking.96

In this work, we investigate the long-time behavior of the solution to the Ricci flow.97
We focus on the case a = 0, where we establish sharp bounds for the limiting curvature98
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and prove that the normalized Ricci flow converges to the unique metric of constant99
curvature on the tree.100

Our contributions are summarized as follows: We derive an explicit formula for the101
generalized Ricci curvature equation (3) in terms of the edge weights and the parameter102
a on a tree, and analyze its qualitative behavior.103

Proposition 1. Let T = (V,E) be a tree, and let κuv be the curvature in (3) with104
a ∈ R. Then the sum of the Lin-Lu-Yau Ollivier Ricci curvature on all edges satisfies:105

∑
uv∈E

κuv


≤ 2, a > −1,

= 2, a = −1,

∈ [2, |V |], a < −1.

Moreover, for all a ∈ R,106

κuv ≤ 2

and for a ≤ −1 we have the uniform bound107

−2(|V | − 3) ≤ κuv ≤ 2.

Moreover, the curvature bounds play a crucial role in preventing local degeneracy108
of the edge weights. When a > −1, we show that all normalized weights on internal109
edges remain uniformly bounded away from zero. This result will be established in110
Proposition 5.111

In the special case of a = 0, the probability distribution µα
x in the definition of112

Ollivier Ricci curvature (see Definition 2) is defined in the following way:113

µα
x(y) =


α, if y = x,

(1− α) 1
dx
, if y ∼ x,

0, otherwise.

This distribution µα
x describes a simple model of local movement or diffusion: With114

probability α, a particle (or agent) at node x stays in place. With probability 1−α, it115
moves to one of its neighbors, choosing uniformly at random among the dx neighbors.116
This is referred to as the equal probability model because the probabilities of moving117
to any neighbors are the same. Such a model applies to various real-world systems,118
for example: A tourist at location x who either stays with probability α or chooses119
a neighboring street at random to walk to; A data packet in a network that routes120
randomly to a connected node; An idea or infection that spreads randomly from one121
individual to their direct contacts. Intuitively, using equal probability movement sim-122
plifies the model and reflects unbiased local diffusion, making it useful for studying the123
geometric and transport properties of graphs.124

The (unnormalized) Ricci flow on a weighted tree T = (V,E,w) in this special case125
reads:126

∂

∂t
wxy(t) = −

(
1

dx
+

1

dy

)
wxy(t) +

1

dx

∑
u∼x, u ̸=y

wxu(t) +
1

dy

∑
v∼y, v ̸=x

wvy(t), (4)
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where dx represent the degree of vertex x. Note that the flow equation is linear with127
the coefficient matrix R ∈ R|E|×|E|, which we shall call the evolution matrix of the tree.128
For such flow, we have established the following result:129

Theorem 1 (Convergence of Ricci Flow on Weighted Trees). Let T = (V,E,w0) be a130
finite, weighted tree with edge weights being strictly positive. Let w = w(t) be the Ricci131
flow (4) on T with initial weight w0.132

(1) (Long time existence) The solution w = w(t) exists uniquely for any positive133
initial metric and for all time t > 0. Under the flow, we(t) > 0 for all t > 0134
and e ∈ E.135

(2) (Convergence to equilibrium) The normalized Ricci flow converges to an136
Einstein metric w(∞) with curvature κ(∞). In particular, a tree T = (V,E)137
always admits an Einstein metric in sense of (21).138

(3) (Limit behavior) The limit curvature κ∞ is equal to the negative of the largest139
eigenvalue of the evolution matrix associated with the Ricci flow140

In this theorem, we employ a flow method to establish the existence of an Einstein141
metric on a tree. Moreover, one can show that, for a given tree, such Einstein metric142
is unique (also see Proposition 6)143

Proposition 2. Let T = (V,E) be a tree, and w,w′ ∈ RE
+ be two (normalized) metrics144

on T with constant curvatures κ and κ′, then w = w′ and κ = κ′.145

Therefore, one may expect that the Einstein metric w and its curvature κ capture146
important structural information about the tree. In what follows, we provide upper and147
lower bounds for the curvature κ. Both bounds are expressed in terms of combinatorial148
data of the tree, and each is attained only when the tree is a star.149

Proposition 3. Let κ be the curvature of the Einstein metric. Then:150

2 min
xy∈E

(
1

dx
+

1

dy
− 1

)
≤ κ ≤ 2

|E|
. (5)

Any one of the equalities holds if and only if T is a star graph.151

Besides, we also establish a path-wise identity for Einstein metrics on trees, which152
constrains feasible weight assignments and provides insight into how local curvature153
conditions propagate along the tree.154

Proposition 4 (Alternating Sum Identity on Path of all Trees). Let T = (V,E,w)155
be a finite weighted tree with positive edge weights w : E → R>0. Assume w is the156
Einstein metric.157

Let P = (v0, v1, . . . , vk) be a path in the tree, with corresponding edges ei = vi−1vi158
for i = 1, . . . , k where v0 and vk are leaf nodes, then we have159

k∑
i=1

(−1)i−1κ · wei = −we1 + (−1)kwek +
k∑

i=1

(−1)i−1

(
2

dvi−1

+
2

dvi

)
wei .
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Although the present work focuses on the theoretical analysis of Ricci flow on trees,160
these results provide a foundational framework for studying Ricci flow on more gen-161
eral graphs. Tree-structured data occur naturally in many domains, including natural162
language processing (NLP), where constituency and dependency trees [20, 23] serve163
as hierarchical sentence representations. Recursive neural networks (RecNNs) [27, 18]164
exploit such trees to encode syntactic and semantic information for tasks such as sen-165
timent analysis, semantic parsing, and question answering. These connections under-166
score the potential relevance of theoretical insights on Ricci flow for tree structures to167
broader applications.168

Building on our theoretical results for Ricci flow, we show that the spectrum of the169
Ricci flow-based Evolution Matrix R effectively clusters tree structures, outperforming170
classical adjacency, Laplacian, and distance matrices. The matrix is sparse, curvature-171
aware, and interpretable, demonstrating how discrete Ricci flow offers both a principled172
framework and practical analytical tools.173

Organization of the Paper. The rest of this paper is arranged in a straightforward174
way. In Section 2, we go over some basic ideas about trees and Ricci curvature. In175
Section 3, we explain how Ricci curvature works on trees. Section 4 looks at the176
Ricci flow when a = 0 and shows how the flow behaves in the long run, ending with177
Theorem 1. In Section 5, we introduce the Ricci flow “Evolution Matrix” on trees and178
show how it can be used to get spectral features and to cluster different trees. Finally,179
Section 6 talks about a possible direction for future work, where we guess that the180
largest eigenvalue and eigenvector of the Ricci flow matrix might actually determine a181
finite tree completely.182

2. Preliminaries and Definitions183

Let G = (V,E) be a finite, undirected graph without loops or multiple edges. The184
edge weight can be viewed as a function w : E → (0,∞) which assigns a positive weight185
to each edge e ∈ E, and the triple G = (V,E,w) is called a weighted graph. We say186
that G is a metric graph if for every pair of adjacent vertices x, y ∈ V , the weight of187
the edge equals the distance:188

x ∼ y ⇒ d(x, y) = wxy.

A path in G is called a weighted path if each edge on the path has nonzero weight.189
The graph G is said to be connected if every pair of vertices is connected by a weighted190
path. For any two vertices x, y ∈ V , we write x ∼ y if {x, y} ∈ E. The distance191
between two vertices x, y ∈ V , denoted by d(x, y), is defined as the minimum total192
distance among all paths connecting x and y. That is,193

d(x, y) := min
paths P from x to y

∑
{u,v}∈P

d(u, v),

where the sum is over the edges {u, v} in the path P .194
For any vertex x ∈ V , let N(x) denote the set of its neighbors, and define the degree195

of x by dx = |N(x)|. Usually, we use n to denote the number of vertices, and m to196
denote the number of edges.197
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Definition 1 (Coupling and Transportation Distance). Let V be a finite set, and let198
µ1 and µ2 be two probability distributions on V .199

A coupling of µ1 and µ2 is a new probability distribution π(x, y) defined on the200
product space V × V , representing a plan for moving mass from x to y. The coupling201
must satisfy:202 ∑

y∈V

π(x, y) = µ1(x),
∑
x∈V

π(x, y) = µ2(y).

This means that the total mass transported out of point x equals µ1(x), and the total203
mass transported into point y equals µ2(y).204

Given a distance function d(x, y) on V , the transportation distance (also called the205
Wasserstein-1 distance) between µ1 and µ2 is defined as:206

W (µ1, µ2) := inf
π

∑
x,y∈V

π(x, y) · d(x, y),

where the infimum is taken over all valid couplings π.207

There is another, equivalent way to express the transportation distance, using an208
optimization over functions:209

W (µ1, µ2) = sup
f

∑
x∈V

f(x) [µ1(x)− µ2(x)] ,

where the supremum is taken over all functions f : V → R that satisfy the 1-Lipschitz210
condition:211

|f(x)− f(y)| ≤ d(x, y), for all x, y ∈ V.

Example 1. Let T be a weighted tree with set of vertices V = {1, 2, 3, 4, 5} and edges:212

{12, 23, 24, 45}
where each edge has length/weight one. Consider two probability distributions supported213
on V :214

µ1 = (0.5, 0, 0.3, 0.2, 0), µ2 = (0, 0.4, 0.2, 0, 0.4)

One possible transportation plan from µ1 to µ2 can be:215

Source → Target Mass Distance Contribution
1 → 2 0.4 1 0.4
1 → 5 0.1 3 0.3
3 → 3 0.2 0 0
3 → 2 0.1 1 0.1
4 → 5 0.2 1 0.2

Therefore the cost for this transportation is:216

C(µ1, µ2) = 0.4 + 0.3 + 0 + 0.1 + 0.2 = 1

To see this transportation plan is optimum, we choose a 1-Lipschitz function f :217
V → R with:218

f(1) = 0, f(2) = −1, f(3) = −1, f(4) = −2, f(5) = −3.
10



From the point view of the duality, the following quantity gives an upper bound for219
the Wasserstein distance W (µ1, µ2):220 ∑

x∈V

f(x)
[
µ1(x)− µ2(x)

]
= 0 · 0.5− 1 · (−0.4)− 2 · (0.3− 0.2)− 2 · 0.2− 3 · (−0.4)

= 0.4− 0.2− 0.4 + 1.2

= 1.

Therefore, we conclude the plan showed in the table is optimum and the Wasserstein221
distance of two distributions is:222

W (µ1, µ2) = 1.

1 2 3

4 5

0.4

0.1

0.1

0.2

Figure 1. Transportation plan π(x, y) with curved arrow for long-
distance transport (1→5). Red arrows indicate mass movement.

1 2 3

4 5

f = 0 f = −1 f = −2

f = −2 f = −3

Figure 2. 1-Lipschitz function f shown outside the vertex circles.

2.1. Ollivier-type Ricci Curvature. Let α ∈ [0, 1] and let x ∈ V be a vertex. Define223
a probability distribution µα

x on V by224

µα
x(y) =


α, if y = x,

(1− α)
Pxy∑

z∼x

Pxz

, if y ∼ x,

0, otherwise,
11



where P : E → [0, 1] is a nonnegative function representing the raw probability of225
moving from vertex x to a neighbor y. The values Pxy may depend on the edge weights226
wxy, and they determine how the total mass 1− α is distributed among the neighbors227
of x. A natural choice for P , especially when wuv represents edge length or cost, is228

Puv = wa
uv,

for some exponent a ∈ R. This form ensures compatibility with scaling properties229
of the metric: if all edge weights are scaled by a common factor (i.e., wuv 7→ λwuv),230
then the distribution of mass remains consistent under appropriate choice of a. This231
property is essential for deriving the normalized Ricci flow equations.232

Definition 2. [19] Given local probability distribution µα
x for every vertex, the α-Ricci233

curvature between two adjacent vertices x ∼ y is defined as234

κα(x, y) := 1−
W (µα

x , µ
α
y )

d(x, y)
, (6)

where W (µα
x , µ

α
y ) denotes the transportation distance between µα

x and µα
y , and d(x, y)235

is the distance between x and y.236

Finally, the (Lin–Lu–Yau) Ricci curvature is defined as the negative derivative of237
κα(x, y) at α = 1:238

κxy := lim
α→1

κα(x, y)

1− α
. (7)

This limit captures the infinitesimal behavior of the curvature as the probability239
distribution becomes increasingly concentrated at each vertex.240

2.2. The Ricci Flow Equations. The unnormalized continuous Ricci flow on a graph241
is defined by the time evolution of the edge weights wxy(t), governed by the system:242

∂wxy(t)

∂t
= −κxy(t) · wxy(t), w(0) ∈ Rm > 0, (8)

where w(0) = 〈we1(0), we2(0), . . . , wem(0)〉 is the vector of initial edge weights, and each243
wei(0) represents the initial weight assigned to edge ei.244

Assuming the initial total weight satisfies
∑

e∈E we(0) = 1, the normalized continuous245
Ricci flow on the graph is governed by the system246

∂wxy(t)

∂t
= −κxy(t) · wxy(t) + wxy(t)

∑
e∈E

κe(t)we(t), w(0) ∈ Rm > 0, (9)

where the normalization ensures that
∑

e∈E we(t) = 1 for all t.247
In both equations, κuv(t) is the Ricci curvature at time t, and wuv(t) is the evolving248

edge weight. Note that the normalized weights (solution to (9)) is also obtained from249
the unnormalized weight (solution to (8)):250

w̃e(t) =
we(t)∑

e′∈E we′(t)
.

12



Analogous to the smooth Ricci flow in differential geometry, the Ricci flow (8)251
contracts edges with positive curvature and expands those with negative curvature.252
Specifically, this means: If κuv(t) > 0, the edge (u, v) contracts, and the weight wuv(t)253
decreases. If κuv(t) < 0, the edge (u, v) expands, and the weight wuv(t) increases. If254
κuv(t) = 0, the edge weight wuv(t) remains constant. Since κuv depends on the weights255
wuv (via Puv = wa

uv), this creates a nonlinear feedback loop: curvature affects weights,256
and weights in turn reshape the curvature.257

3. Ricci Curvatures on Trees258

In this section, we derive an explicit expression for the Ollivier-type Ricci curvature259
on trees under the general mass transport model defined earlier.260

Let x ∼ y be two adjacent vertices in a finite tree T = (V,E,w), with positive edge261
weights wxy > 0. Let the probability of mass transport be given by Pxy = wa

xy for some262
exponent a ∈ R, and define:263

P (a)
x :=

∑
z∼x

Pxz =
∑
z∼x

wa
xz.

We consider the probability measure µα
x supported in the neighbourhood of x as:264

µα
x(z) =


α, if x = x,

(1− α)
wa

xz

P
(a)
x

, if z ∼ x,

0, otherwise.

By adapting the results of Theorem 2.10 in [1], we have the following for trees:265

Lemma 1. Let T = (V,E, d, w) be a weighted tree, and let x ∼ y be adjacent nodes266

with P
(a)
x ≥ P

(a)
y . For any267

α ∈
( wa

xy

wa
xy + P

(a)
x

, 1
]
,

the map α 7→ κα(x, y) is linear on the interval268 [ wa
xy

wa
xy + P

(a)
x

, 1
]
.

Remark 1. For trees, Lemma 1 implies that the function α 7→ κα(x, y) is linear on269 [ wa
xy

wa
xy+P

(a)
x

, 1
]
. Consequently, in applications, it is sufficient to evaluate κxy at any α270

sufficiently close to 1 (e.g., α = 0.99).271

Since there is a unique path between two vertices in a tree, we can find the explicit272
formula for κxy in this setting.273

Lemma 2. Let T = (V,E,w) be a tree where w represents the weight on the edges E.274
Then for every edge xy ∈ E, the Lin-Lu-Yau Ollivier curvature κxy is determined by275

13



the following equation:276

κxy = −
∑
z∼x

wa+1
xz

wxyP
(a)
x

+ 2
wa

xy

P
(a)
x

+ 2
wa

xy

P
(a)
y

−
∑
z∼y

wa+1
yz

wxyP
(a)
y

(10)

Proof. Note that wxy on tree is equal to the distance d(x, y). By Remark 1, we can277
take α with 1− α being small for computing κxy.278

The optimum coupling/distribution π to compute the Wasserstein distance between279
µx and µy can be chosen as:280

• for each u ∼ x and u 6= y, π(u, x) = (1− α) wa
xu

P
(a)
x

and for each v ∼ y and v 6= x,281

π(y, v) = (1− α)
wa

yv

P
(a)
y

;282

• π(x, y) = α + (1− α)
∑

z∼x,z ̸=y

wa
xz

P
(a)
x

− (1− α)
wa

xy

P
(a)
y

> 0 when α is close to 1;283

• for other pair of vertices u, v, π(u, v) takes zero.284

Then according to Definition 1, the distance can be computed as285

W (µα
x , µ

α
y ) =

∑
z∼x,z ̸=y

(1− α)
wa

xz

P
(a)
x

wxz +

(
α + (1− α)

∑
z∼x,z ̸=y

wa
xz

P
(a)
x

− (1− α)
wa

xy

P
(a)
y

)
wxy

+
∑

z∼y,z ̸=x

(1− α)
wa

yz

P
(a)
y

wyz

It follows that286

W (µα
x , µ

α
y )

wxy

= (1− α)
∑

z∼x,z ̸=y

wa
xz

P
(a)
x

wxz

wxy

+ α + (1− α)
∑

z∼x,z ̸=y

wa
xz

P
(a)
x

− (1− α)
wa

xy

P
(a)
y

+ (1− α)
∑

z∼y,z ̸=x

wa
yz

P
(a)
y

wyz

wxy

The α-Ricci curvature (6) is then given by:287

1−
W (µα

x , µ
α
y )

wxy

= (1− α)

(
1−

∑
z∼x,z ̸=y

wa
xz

P
(a)
x

wxz

wxy

−
∑

z∼x,z ̸=y

wa
xz

P
(a)
x

+
wa

xy

P
(a)
y

−
∑

z∼y,z ̸=x

wa
yz

P
(a)
y

wyz

wxy

)
.

Using P
(a)
x =

∑
z∼x

wa
xz and 1−

∑
z∼x,z ̸=y

wa
xz

P
(a)
x

=
wa

xy

P
(a)
x

, then we have288

κα(x, y)

1− α
= −

∑
z∼x,z ̸=y

wa
xz

P
(a)
x

wxz

wxy

+
wa

xy

P
(a)
x

+
wa

xy

P
(a)
y

−
∑

z∼y,z ̸=x

wa
yz

P
(a)
y

wyz

wxy

Finally, the Lin-Lu-Yau Ollivier Ricci curvature (7) is given by289

κxy = lim
α→1

κα(x, y)

1− α
= −

∑
z∼x,z ̸=y

wa+1
xz

wxyP
(a)
x

+
wa

xy

P
(a)
x

+
wa

xy

P
(a)
y

−
∑

z∼y,z ̸=x

wa+1
yz

wxyP
(a)
y

= −
∑
z∼x

wa+1
xz

wxyP
(a)
x

+ 2
wa

xy

P
(a)
x

+ 2
wa

xy

P
(a)
y

−
∑
z∼y

wa+1
yz

wxyP
(a)
y

.
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□290

3.1. Bounds of Curvature for General a. In this subsection, we derive bounds for291
terms appearing in the Ricci flow equations such as the Ricci curvature and its product292
with the normalized edge weights.293

Lemma 3. Let T = (V,E,w) be a tree where w represents a normalized weight function294
on the edges E. Then for every edge uv ∈ E, the following hold:295

(1) κuv ≤ 2 and κuvwuv ≥ −2;296
(2)

∣∣∑
uv∈E κuvwuv

∣∣ ≤∑u∈V |2− du|.297

Proof of (1). For each edge uv ∈ E(G), to derive the upper bound of kuv, it suffices to298
notice299

κuv =

2wa+1
uv −

∑
x∼u

w1+a
ux

wuv

∑
x∼u

wa
ux

+

2wa+1
uv −

∑
y∼v

w1+a
vy

wuv

∑
y∼v

wa
vy

≤ 2,

with equality held iff uv is the unique edge of the tree. For the lower bound of κuvwuv,300
we rewrite the term κuvwuv as:301

κuvwuv =
2

P
(a)
u

· wa+1
uv +

2

P
(a)
v

· wa+1
uv − P

(a+1)
u

P
(a)
u

− P
(a+1)
v

P
(a)
v

, (11)

Since 0 ≤ wuv ≤ 1, then 0 ≤ P
(a+1)
x ≤ P

(a)
x and we obtain the lower bound:302

κuvwuv ≥
2

P
(a)
u

· wa+1
uv +

2

P
(a)
v

· wa+1
uv − 2 ≥ −2.

□303

Proof of (2). Using (11), it is easy to see:304 ∑
uv∈E

κuvwuv =
∑
u∈V

2

P
(a)
u

∑
v∼u

wa+1
uv −

∑
u∈V

P
(a+1)
u

P
(a)
u

∑
v∼u

1

=
∑
u∈V

2

P
(a)
u

· P a+1
u −

∑
u∈V

P
(a+1)
u

P
(a)
u

· du

=
∑
u∈V

(2− du) ·
P

(a+1)
u

P
(a)
u

.

(12)

Therefore, we can conclude:305 ∣∣∣∣∣∑
uv∈E

κuvwuv

∣∣∣∣∣ ≤∑
u∈V

|2− du| ·
P

(a+1)
u

P
(a)
u

≤
∑
u∈V

|2− du|.

□306
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Similarly, we can write the curvature kuv as:307

κuv =
2

P
(a)
u

· wa
uv +

2

P
(a)
v

· wa
uv −

P
(a+1)
u

P
(a)
u

· w−1
uv − P

(a+1)
v

P
(a)
v

· w−1
uv . (13)

It then follows that308 ∑
uv∈E

κuv =
∑
u∈V

2

P
(a)
u

∑
v∼u

wa
uv −

∑
u∈V

P
(a+1)
u

P
(a)
u

∑
v∼u

w−1
uv

=
∑
u∈V

(
2− P

(a+1)
u P

(−1)
u

P
(a)
u

)
.

(14)

Using P
(a+1)
u P

(−1)
u ≥ P

(a)
u , we can deduce309 ∑

uv∈E

κuv ≤
∑
u∈V

(2− 1) = |V |.

Note when a = −1, from Equation 14,310 ∑
uv∈E

κuv =
∑
u∈V

(2− P (0)
u ) =

∑
u∈V

(2− du) = 2.

3.2. Proof of Proposition 1. To give a more tight estimate of the sum of Ricci311
curvatures and give a proof of Proposition 1 , we shall use the following lemma:312

Lemma 4. For each u ∈ V (G), the function hu(a) :=
P

(a)
u

P
(a+1)
u

is decreasing in R.313

Proof. Let u ∈ V (G) and denote wi := wux for each neighbor x ∼ u. Recall that314

hu(a) :=
P

(a)
u

P
(a+1)
u

=

∑
i w

a
i∑

i w
a+1
i

.

To show that hu(a) is decreasing, take any b > a. It suffices to show315

hu(a) ≥ hu(b) ⇐⇒ P (b+1)
u P (a)

u − P (a+1)
u P (b)

u ≥ 0.

Compute:316

P (b+1)
u P (a)

u − P (a+1)
u P (b)

u =
∑
i

∑
j

(
wb+1

i wa
j − wb

iw
a+1
j

)
=
∑
i

∑
j

wb
iw

a
j (wi − wj)

=
1

2

∑
i

∑
j

[
wb

iw
a
j (wi − wj) + wb

jw
a
i (wj − wi)

]
=

1

2

∑
i

∑
j

wa
iw

a
j

(
wb−a

i − wb−a
j

)
(wi − wj).

Since b− a > 0, the function x 7→ xb−a is increasing, so317

(wb−a
i − wb−a

j )(wi − wj) ≥ 0 for all i, j, and wa
iw

a
j ≥ 0.

16



Therefore, the sum is nonnegative:318

P (b+1)
u P (a)

u − P (a+1)
u P (b)

u ≥ 0,

which implies hu(a) ≥ hu(b). Hence, hu(a) is decreasing in a. □319

Remark 2. It is easy to see if a 6= b, then hu(a) = hu(b) if and only if

wux = wuy

for any vertices x, y ∼ u.320

Proof of Proposition 1. When a > −1, applying Lemma 4, we have hu(a) ≤ hu(−1),321
which is equivalent to322

P
(a+1)
u P

(−1)
u

Pu

≥ P (0)
u = du.

Combine this with (14), we deduce323 ∑
uv∈E

κuv ≤
∑
u∈V

(2− du) = 2.

For the case of a ≤ −1, the estimates for the sum of curvatures are almost the same324
and we omit their proofs here.325

To see the uniform bounds for κuv, we have already seen it is no more than two. For326
the lower bound, notice327

κuv =
∑
e∈E

κe −
∑

e∈E\{uv}

κe ≥ 2− 2
(
|E| − 1

)
= −2

(
|V | − 3

)
,

which completes the proof. □328

Remark 3. In the case of a 6= −1, if the equality
∑

uv∈E κuv = 2 holds, then

ha(u) = h−1(u)

holds for any vertex u ∈ V . As mentioned in Remark 2, it then follows

wux = wuy

for all vertices x, y incident to u. Using the connectivity of the tree, we can deduce329
that all edges of the tree must be equal.330

3.3. Examples of Ricci Flow Convergence on Trees. In the following, we present331
examples of trees exhibiting explicit Ricci flow behavior under the general Ollivier-Ricci332
curvature (10), focusing on path and star structures.333

Example 2. Consider the Ricci flow (8) with a 6= −1 on the path graph of length n,334
with edges denoted as e1, . . . , en. Then, the Ricci flow converges, and the unnormalized335
weights on all edges decrease to zero.336
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e1 e2 e3 e4

Initial path with arbitrary weights

e1 e2 e3 e4

After Ricci flow: all weights decay to 0

Figure 3. Path graph of 5 vertices with edges e1, . . . , e4. Top: initial
edge weights (arbitrary). Bottom: after Ricci flow, all edge weights decay
to zero.

sketch of proof. Let w represent the unnormalized weight. By formula (12), we have337

∂

∂t

∑
uv∈E

wuv = −
∑
uv∈E

κuvwuv = −
∑
u∈V

(2− du)

∑
x∼u w

1+a
ux∑

x∼u w
a
xu

= −(we1 + wen)

< 0,

for all t ∈ [0,∞), so the sum
∑

uv∈E wuv of unnormalized weights on all edges decreases338
in particular, it is bounded and has a non-nonnegative limits. Moreover, weight wei of339
each edge is also bounded. It is easy to check that we1+wen → 0 and hence w1, wn → 0.340
Now consider341

d

dt
we1(t) = −we1 −

wa+1
e1

− wa+1
e2

wa
e1
+ wa

e2

,

which tends to 0 as we1 → 0. Thus,342

wa+1
e1

− wa+1
e2

wa
e1
+ wa

e2

→ 0,

which give w2 → 0.343
By iterating this argument along the chain of edges, we conclude wei(t) → 0 for all344

i.345
□346

Example 3 (Star Tree). Consider the Ricci flow (8) with a ≥ 0 on the star tree K1,n,347
n ≥ 4, with center vertex u and leaf edges wi := wuvi. The unnormalized on all edges348
decrease to 0 and the normalized weights on all edges converge to 1

n
.349
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e1
e2

e3
e4

e5

Initial star graph

e1 e2
e3 e4e5

After Ricci flow: edges decay

Proof. Let w represent the unnormalized weight. Denote the center vertex as u, using350
formula (12), we have351

∂
∑

uv∈E
wuv

∂t
= −

∑
uv∈E

κuvwuv = −
∑
u∈V

(2− du)

∑
x∼u w

1+a
ux (t)∑

x∼u w
a
ux(t)

= −
n∑

i=1

wi + (n− 2)

n∑
i=1

w1+a
i∑

x∼u w
a
i

.

By the following lemma 5, the leaf weights satisfy wi(t)/wj(t) → 1 as t → ∞ for352
all pairs i, j, and the ratios remain bounded away from 0 and ∞ for all t > 0. In353
particular, the normalized weight354

w̃i(t) =
wi(t)∑
i wi(t)

−→ 1

n
.

Moreover, for large t > 0, we have355

−
n∑

i=1

wi + (n− 2)

∑n
i=1 w

1+a
i∑n

i=1 w
a
i

∼ −n

n∑
i=1

wi + (n− 2)
n∑

i=1

wi = −2
n∑

i=1

wi < 0.

Therefore, the sum
∑

i wi of the unnormalized weights decays to zero exponentially. □356
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Lemma 5. Let a ≥ 0 and let K1,n be the star with center u and leaves v1, . . . , vn,357
n ≥ 4. Write wi(t) := wuvi(t) > 0, then for any i and j, we have358

lim
t→+∞

wi(t)

wj(t)
= 1 (15)

Proof. Assume that, at time t = 0, we have:359

w1(0) ≥ w2(0) ≥ · · · ≥ wn(0).

For any 1 ≤ i < j ≤ n, we have:360

∂

∂t

wi

wj

=
wi

wj

(κj − κi) =
wi

wj

(
−
∑n

k=1 w
a+1
k − 2wa+1

j

wj ·
∑n

k=1 w
a
k

+

∑n
k=1 w

a+1
k − 2wa+1

i

wi ·
∑n

k=1 w
a
k

)

= (1− wi

wj

) ·
∑n

k=1 w
a+1
k + 2wiwj ·

wa
i −wa

j

wi−wj

wj ·
∑n

k=1 w
a
k

(16)

Since wi/wj ≥ 1 at t = 0, then it holds true for all t > 0. In particular, according to361
(16), wi/wj is decreasing and its limit must exist and be finite:362

λij := lim
t→∞

wi/wj ∈ [1, wi(0)/wj(0)]

Thus we have established the (finite) convergence of wi/wj for i < j. It then follows,363
for any i and j, the limit of wi/wj exists and is a positive real number which will be364
denoted by λij.365

Using a ≥ 0 and wa
i −wa

j

wi−wj
> 0, we can deduce the limit366

lim
t→∞

∑n
k=1 w

a+1
k + 2wiwj ·

wa
i −wa

j

wi−wj

wj ·
∑n

k=1 w
a
k

≥ lim
t→∞

∑n
k=1 w

a+1
k

wj ·
∑n

k=1 w
a
k

= lim
t→∞

∑n
k=1(wk/wj)

a+1∑n
k=1(wk/wj)a

=

∑n
k=1 λ

a+1
kj∑n

k=1 λ
a
kj

must be bounded below by a positive number. In particular, there exists some positive367
constant C > 0 such that:368 ∑n

k=1 w
a+1
k + 2wiwj

wa
i −wa

j

wi−wj

wj ·
∑n

k=1 w
a
k

≥ C. (17)

Combine (17) with (16), in case of i < j where wi ≥ wj, we obtain369

∂

∂t

wi

wj

≤ C(1− wi

wj

).

Therefore370

0 ≤ wi(t)

wj(t)
− 1 ≤

(
wi(0)

wj(0)
− 1

)
exp(−Ct)

for t > 0 and (15) follows. □371
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3.4. Uniform Lower Bounds on Normalized Weights on Internal Edges for372
a > −1.373

Proposition 5. Consider the Ricci flow (8) with a ≥ −1 on any tree. Then the374
normalized weights on internal edges admit a uniform positive lower bound.375

Proof. Let w(t) = min
e∈E

we(t). We will show that w(t) never decreases to zero on internal376

edges. Assume at time t, wxy(t) = w(t), because a+ 1 > 0� each term wa+1
xz ≥ wa+1 by377

the minimality of w. Hence378 ∑
z∼x, z ̸=y

wa+1
xz ≥ (dx − 1)wa+1.

Rewrite the x-contribution of κxy as379

wa

P
(a)
x

− 1

w
·
∑

z∼x, z ̸=y w
a+1
xz

P
(a)
x

=
wa+1 −

∑
z∼x, z ̸=y w

a+1
xz

wP
(a)
x

.

Using the lower bound for the sum,380

wa+1 −
∑

z∼x, z ̸=y

wa+1
xz ≤ wa+1 − (dx − 1)wa+1 = (2− dx)w

a+1.

Therefore381
wa+1 −

∑
z∼x, z ̸=y w

a+1
xz

wP
(a)
x

≤ (2− dx)w
a+1

wP
(a)
x

= (2− dx)
wa

P
(a)
x

.

Similarly, result for the y-contribution of κxy.382
Thus, if xy is an internal edge, then both dx ≥ 2, dy ≥ 2, we have κxy(t) ≤ 0, then383

∂wxy

∂t
≥ 0, resulting that wxy does not decrease at time t. Therefore, there is a uniform384

bound on the normalized weight of all internal edges.385
□386

4. The Ricci flow with parameter a = 0387

We prove the convergence of the Ricci flow on trees in the case a = 0. In this case,388
the Lin-Lu-Yau Ricci curvature on tree is expressed as389

κxy = −
∑

z∼x wxz

wxydx
+

2

dx
+

2

dy
−
∑

z∼y wyz

wxydy
.

4.1. The Ricci Flow Equations.390

4.1.1. The Unormalized Ricci Flow. The unormalized Ricci flow is391

∂

∂t
wxy(t) = −

(
1

dx
+

1

dy

)
wxy(t) +

1

dx

∑
u∼x, u ̸=y

wxu(t) +
1

dy

∑
v∼y, v ̸=x

wvy(t). (18)

This system of differential equations is linear with the coefficient matrix R:392

Re,e′ =


−( 1

dx
+ 1

dy
) if e = e′ = {x, y},

1
dx

if e ∩ e′ = {x},
0 if e ∩ e′ = ∅,

(19)
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which will be called the Ricci flow evolution matrix.393

4.1.2. The Normalized Ricci Flow. Since394 ∑
xy∈E

κxy · wxy = 2
∑
xy∈E

(
1

dx
+

1

dy
− 1

)
wxy,

then we obtain the normalized continuous Ricci flow in the case of a = 0:395

∂wxy(t)

∂t
= 2

∑
uv∈E

(
1

du
+

1

dv
− 1

)
wuv(t) · wxy(t)

−
(

1

dx
+

1

dy

)
wxy(t) +

1

dx

∑
u∼x, u ̸=y

wxu(t) +
1

dy

∑
v∼y, v ̸=x

wvy(t).

(20)

4.2. The Einstein Metrics. It is natural to consider the static solution396

w(∞) = {we(∞)}e∈E ∈ RE
+

of the normalized Ricci flow.397

Definition 3. If a normalized metric w = (we)e∈E ∈ RE
+ satisfies:398

κe(∞) = κ (21)
for all e ∈ E where κ ∈ R is some constant, then the metric/weight function is called399
the metric of constant curvature or Einstein metric.400

In the case of a = 0, we see a metric w = (we)e∈E ∈ RE
+ has constant curvatue κ if and401

only if402 (
1

dx
+

1

dy
− κ

)
wxy =

1

dx

∑
u∼x, u ̸=y

wxu(t) +
1

dy

∑
v∼y, v ̸=x

wvy(t). (22)

for any edges e = xy ∈ E. Rearranging the terms in equation (22) gives

−
(

1

dx
+

1

dy

)
wxy +

1

dx

∑
u∼x, u ̸=y

wxu +
1

dy

∑
v∼y, v ̸=x

wvy = −κwxy.

The left-hand side is precisely the e-th component of Rw as defined in (19). Hence,
(Rw)e = −κwe, ∀ e ∈ E,

which means that w is an eigenvector of the evolution matrix R with eigenvalue −κ.403

In the next subsection, we shall prove the existence of an Einstein metric on a tree404
for the case a = 0 using the Ricci flow. Before turning to existence, we first establish405
a uniqueness result.406

Recall from (19) that we introduced the matrix R, originally as the coefficient matrix407
of the unnormalized Ricci flow. However, it is important to note that R is defined purely408
in terms of the combinatorial structure of the tree. In particular, equation (22) shows409
that an Einstein metric w satisfies Rw = −κw, so Einstein metrics correspond exactly410
to eigenvectors of R. This observation allows us to prove the uniqueness without411
referring to the flow itself.412
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Proposition 6 (Uniqueness of Einstein Metric). Let T = (V,E) be a tree. Suppose413
w,w∗ ∈ RE

+ are two (normalized) metrics on T of constant curvatures κ and κ∗,414
respectively. Then w = w∗ and κ = κ∗.415

Proof. Notice that if κ 6= κ∗, then w and w∗, as corresponding eigenvectors of the416
symmetric matrix R (see (19)), must be orthogonal. This is equivalent to:417 ∑

e∈E

we · w∗
e = 0.

which contradicts with we > 0 and w∗
e > 0. Therefore κ = κ∗. Now we set

r = min{we · (w∗
e)

−1 : e ∈ E} > 0,

it then follows ŵ := w − r · w∗ defines a nonnegative weight function satisfying (22)418
with ŵxy = 0 for some edge e0 = xy. According to (22), we have:419

0 =

(
1

dx
+

1

dy
− κ

)
ŵxy =

1

dx

∑
u∼x, u ̸=y

ŵxu(t) +
1

dy

∑
v∼y, v ̸=x

ŵvy(t).

Therefore ŵe = 0 for all e ∈ N(x) ∪ N(y). Repeating this process and using the420
connectivity of the tree, we can show ŵe = 0 for all edges and w = r · w∗. Since both421
of them are normalized metrics, then we have r = 1 and w = w∗.422

□423

4.3. Convergence of the Normalized Ricci Flow. The main result was stated in424
the Introduction. For clarity, we present it again below.425

Theorem 2 (Convergence of Ricci Flow on Weighted Trees). Let T = (V,E,w0) be a426
finite, weighted tree with edge weights being strictly positive. Let w = w(t) be the Ricci427
flow (18) on T with initial weight w0.428

(1) (Long time existence) The solution w = w(t) exists uniquely for any positive429
initial metric and for all time t > 0. Under the flow, we(t) > 0 for all t > 0430
and e ∈ E.431

(2) (Convergence to equilibrium) The normalized Ricci flow (20) converges to432
an Einstein metric w(∞) with curvature κ(∞). In particular, a tree T = (V,E)433
always admits a unique Einstein metric in sense of (21) in the case of a = 0.434

(3) (Limit behavior) The limit curvature κ(∞) equals to minus of the largest435
eigenvalue of the evolution matrix of the Ricci flow.436

Proof of part (1). Let w(t) = (we(t))e∈E denote the vector of edge weights at time t,437
with initial data w(0) > 0. Since the Ricci flow define a system of linear ordinary438
equations:439

∂

∂t
w(t) = Rw(t) (23)

where R is the evolution matrix of the Ricci flow (19), then the solution is unique and440
can be written as:441

w(t) = exp(R · t)w(0) (24)
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for all t ≥ 0. Moreover, according to the Proof of Theorem 3 in [2], we(t) > 0 for every442
edge e and all the time since we(0) > 0. Those complete the proof of (1). □443

Proof of part (2). Let λ1 < λ2 < · · · < λs be all the distinct eigenvalues of the evolution444
matrix R. As a real symmetric matrix, R must be diagonalizable. Therefore, using445
(24), the general solution w = w(t) of the flow has following form:446

we(t) =
s∑

i=1

ci,e exp(λit). (25)

where ci,e, 1 ≤ i ≤ s, e ∈ E represent some real constants.447
It is clear that the coefficients ci,e in (25) can not be all zeros. Thus we can define448

the index i0 to be the largest one with ci,e 6= 0 for some e ∈ E:449

i0 := max {1 ≤ i ≤ s : ∃ e0 ∈ E such that ci,e0 6= 0} . (26)

Claim 1. ci0,e > 0 for all e ∈ E.450

Proof of the Claim. For any edge e ∈ E, according to part (1), we(t) > 0 for all t > 0.451
Thus we have:452

ci0,e = lim
t→∞

we(t)

exp(λi0t)
≥ 0.

Now suppose ci0,e = 0 for some edge e = xy. Comparing the coefficients of exp(λi0t)453
on both sides of (18), we have:454 (

1

dx
+

1

dy
− λi0

)
ci0,xy =

1

dx

∑
u∼x, u ̸=y

ci0,xu +
1

dy

∑
v∼y, v ̸=x

ci0,yv. (27)

Noting that ci0,xy = 0, we deduce:455

0 =
1

dx

∑
u∼x, u ̸=y

ci0,xu +
1

dy

∑
v∼y, v ̸=x

ci0,yv.

Thus the non-negativity of ci0,e′ yields ci0,e′ = 0 for all edges e′ ∈ N(x) ∪ N(y). Re-456
peating this process to the new edges e′ with ci0,e′ = 0 and using the connectivity of457
the graph, we conclude ci0,e = 0 for all edgs e which contradicts with (26). Therefore,458
ci0,e must be positive for every edge e. □459

By the above claim 1, we can rewrite460

we(t) =

i0∑
i=1

ci,e exp(λit). (28)
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with ci0,e > 0 for all edges e. It then follows that the normalized weight w̃e(t) must461
converge and:462

lim
t→∞

w̃e(t) = lim
t→∞

we(t)∑
e′∈E we′(t)

= lim
t→∞

ci0,e exp(λi0t) + o(exp(λi0t))∑
e′∈E ci0,e′ exp(λi0t) + o(exp(λi0t))

=
ci0,e∑

e′∈E ci0,e′
,

(29)

which is positive and will be denoted as w̃e(∞). Notice that (27) implies w̃ = (w̃e(∞))e∈E463
is an Einstein metric with curvature −λi0 in sense of (22). Thus we have proved that464
the limit metric exists and must be an Einstein metric.465

Moreover, using the flow equation (23) and (28), we can compute the limit of the466
Ricci curvatures:467

lim
t→∞

κe(t) = − lim
t→∞

1

we(t)

∂

∂t
we(t) = − lim

t→∞

λi0ci0,e exp(λi0t)

ci0,e exp(λi0t)

= −λi0 ,

(30)

This proves the convergence and finishes the proof of part (2).468
□469

Proof of part (3). Note that the Einstein metric w = (we)
T
e∈E is an eigenvector of R470

corresponding to eigenvalue −κ (see section 4.2). In the following, we shall show such471
eigenvalue is the largest one.472

Let µ be any eigenvalue of R with a (nonzero) eigenvector v = (ve)e∈E ∈ RE.473
Note that the entries of 2I +R are non-negative, then we have:474

(2 + µ)|ve| =

∣∣∣∣∣∑
e′∈E

(2δe,e′ +Re,e′)ve′

∣∣∣∣∣ ≤
m∑
j=1

(2δe,e′ +Re,e′)|ve|,

where δe,e′ equals one if e = e′ and zero otherwise. As the entries of w = (we)
T
e∈E are475

positive, it then follows:476 ∑
e∈E

(2 + µ)we|ve| ≤
m∑

e∈E

∑
e′∈E

we(2δe,e′ +Re,e′)|ve′ |

=
∑
e′∈E

(∑
e∈E

we(2δe,e′ +Re,e′)
)
|ve′ | =

∑
e′∈E

(2− κ)we′ |ve′ |
(31)

which yields:477

(µ+ κ)
∑
e∈E

we|ve| ≤ 0.

Therefore, we conclude µ ≤ −κ which completes the proof. □478
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4.4. Bounds for the Limit Curvature. In the last subsection, we have seen that479
the Ricci flow is always convergent to the unique Einstein metric. It is natural to480
classify graphs/trees according to the curvature of the unique Einstein metrics that481
they can support. Because in classical differential geometry (eg. the uniformization482
theorem in dimension two), the curvatures of Einstein metric give strong restriction on483
the geometry and topology of the underlying manifolds. In this subsection, we mainly484
study those curvatures of a tree and derive some bounds for them.485

Proposition 7. Let κ be the curvature of the Einstein metric. Then:486

2 min
xy∈E

(
1

dx
+

1

dy
− 1

)
≤ κ ≤ 2

|E|
, (32)

Any one of the equalities holds if and only if G is a star graph.487

Proof. Let {we}e∈E be the normalized weight of the Einstein metric. Assume e0 = xy488
is the edge with the largest weight, then by (22)489

κ · we0 =

(
1

dx
+

1

dy

)
we0 −

1

dx

∑
e′∈N(x)\e0

we′ −
1

dy

∑
e′′∈N(x)\e0

we′′

≥
(

1

dx
+

1

dy

)
we0 −

1

dx

∑
e′∈N(x)\e0

we0 −
1

dy

∑
e′′∈N(x)\e0

we0

= 2

(
1

dx
+

1

dy
− 1

)
we0

≥ 2 min
xy∈E

(
1

dx
+

1

dy
− 1

)
we0 .

(33)

Since we0 > 0, dividing through by we0 yields the lower bound for κ. For the upper490
bound, recall in Proposition 1, we have shown that

∑
e∈E κe ≤ 2. Therefore in the case491

of an Einstein metric where κe = κ for any e ∈ E, we obtain the upper bound:492

κ ≤ 2

|E|
In the next, we shall consider the case when one of two equalities holds. We claim:493

in both cases, all the weights we take the same value and as a corollary,494

κ =
2

dx
+

2

dy
− 2 (34)

for any xy ∈ E.495

(1) Suppose κ attains the lower bound in (32):

κ = min

{
2

d′x
+

2

d′y
− 2 : x′y′ ∈ E

}
.

Once again, let e0 = xy be the edge with largest weight we0 . It then follows496
from (33), equality holds only if we′ = we0 for all e′ ∈ N(x) ∪N(y), and497

κ = 2

(
1

dx
+

1

dy
− 1

)
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u v

Since T is connected, repeating this process, we will get we = we0 for all e ∈ E.498
(2) Suppose κ attains the upper bound in (32):

κ =
2

|E|
,

then we have
∑

uv∈E κuv = 2. According to the discussion in Remark 3, we see499
all the weights we must be equal.500

Now we consider the graph G with properties (34). Let x be a vertex with maximum501
degree d. We claim every edge incident to x is a leaf edge. Otherwise, let e = xy be502
an internal edge and e′ = x′y′ a leaf edge. Then:503

1

dx′
+

1

dy′
≥ 1 +

1

d
>

1

2
+

1

d
≥ 1

dx
+

1

dy
,

which contradicts with (34). Thus, G must be a star. Conversely, if G is a star with504
center degree d, then κ = 2

d
which achieves both upper and lower bounds in (32). □505

Remark 4. For non-star tree, that is, trees that contain internal edges, we have a506
more explicit bound,507

2 min
xy∈E

xy internal

( 1

dx
+

1

dy
− 1
)

< κ <
2

|E|

4.5. Examples of Double Star Trees. We now show some trees whose curvatures508
of their Einstein metrics are positive, zero or negative.509

Example 4 (“double-star” trees). We consider a graph with only one internal edge510
e = {u, v}. Assume the degree of u and v are n + 1. In this graph, let −κ be511
the maximum eigenvalue of R and the entries of the corresponding eigenvector are512
z, x1 · · · , xn, y1, · · · , yn. Therefore we have:513

κ · z =
2

n+ 1
z − 1

n+ 1

n∑
i=1

xi −
1

n+ 1

n∑
i=1

yi (35)

κ · xj =
n+ 2

n+ 1
xj −

1

n+ 1

∑
i ̸=j

xi −
1

n+ 1
z, i = 1, 2, · · · , n (36)

κ · yj =
n+ 2

n+ 1
yj −

1

n+ 1

∑
i ̸=j

yi −
1

n+ 1
z, j = 1, 2, · · · , n (37)
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From (36) and (37), we add them up to deduce:514 (
3

n+ 1
− κ

) n∑
i=1

xi =
n

n+ 1
z,

(
3

n+ 1
− κ

) n∑
i=1

yi =
n

n+ 1
z, (38)

Combine (35) and (38) together, we get:515 (
2

n+ 1
− κ

)(
3

n+ 1
− κ

)
=

2n

(n+ 1)2

which is equivalent to:516

κ2 − 5

n+ 1
κ+

6− 2n

(n+ 1)2
= 0 (39)

Applying Theorem 1, we can conclude the behavior of the Ricci flow: when n < 3,517
κ > 0, the unnormalized weights of all edges decay to zero; when n = 3, κ = 0, the518
unnormalized weights of all edges converge to some positive numbers; when n > 3,519
κ < 0, the unnormalized weights of all edges grow without bound.520

This theoretical result is illustrated by the numerical simulations in Figure 4, where521
we plot the weight evolution for the double-star trees with n = 2, 3, 4.522

4.6. Alternating Sum of the Curvatures Along Path. The constant-curvature523
metrics play a key role in understanding the limiting behavior of the Ricci flow on524
trees. We derive an identity relating the curvature values and the edge weights of an525
Einstein metric along a path connecting two leaves.526

Proposition 8 (Alternating Sum Identity on Path of all Trees). Let T = (V,E,w) be527
a finite weighted tree with positive edge weights w : E → R>0. Assume w is a metric528
of constant curvature.529

Let P = (v0, v1, . . . , vk) be a path in the tree, with corresponding edges ei = vi−1vi530
for i = 1, . . . , k where v0 and vk are leaf nodes, then we have531

k∑
i=1

(−1)i−1κ · wei = −we1 + (−1)kwek +
k∑

i=1

(−1)i−1

(
2

dvi−1

+
2

dvi

)
wei . (40)

Proof. Since κ is constant, using the notation Px :=
∑

y∼x wxy, we may write:532

κ · wei = −
Pvi−1

dvi−1

+
2wei

dvi−1

+
2wei

dvi
− Pvi

dvi
.

Take the alternating sum over the path:533

k∑
i=1

(−1)i−1κ · wei =
k∑

i=1

(−1)i−1

(
−
Pvi−1

dvi−1

+
2wei

dvi−1

+
2wei

dvi
− Pvi

dvi

)
.

Split the sum:534

k∑
i=1

(−1)i−1κwei =
k∑

i=1

(−1)i
Pvi−1

dvi−1

−
k∑

i=1

(−1)i+1Pvi

dvi
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Figure 4. Unnormalized Ricci Flow on Double-Stars with n = 2, 3, 4.

+
k∑

i=1

(−1)i−1

(
2

dvi−1

+
2

dvi

)
wei .

Observe that the sum over Pvi telescopes:535

k∑
i=1

(−1)i
Pvi−1

dvi−1

−
k∑

i=1

(−1)i+1Pvi

dvi
= −Pv0

dv0
+ (−1)k

Pvk

dvk
.
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Thus, we conclude:536

k∑
i=1

(−1)i−1κwei = −Pv0

dv0
+ (−1)k

Pvk

dvk
+

k∑
i=1

(−1)i−1

(
2

dvi−1

+
2

dvi

)
wei .

If v0 and vk are leaves, then dv0 = dvk = 1 and Pv0 = we1 , Pvk = wek , giving (40).537
□538

4.7. More Discussions. We display more results about the eigenvalues of the Ricci539
flow matrix and give necessary conditions such that the matrix R has positive eigen-540
values.541

Observation 1. Let R be the Ricci flow evolution matrix of a tree T with n vertices.542
Define543

Re :=
∑
f ̸=e

|Re,f |

to be the sum of the absolute values of the non-diagonal entries in the e-th row of R.544
Then we have the following observations regarding its eigenvalues:545

(1) Leaf edges: An edge connected to a leaf (degree 1 vertex) contributes negatively546
to the eigenvalue spectrum. This follows from Gershgorin’s circle theorem: for547
a leaf edge e = xy with dx = 1, the corresponding Gershgorin disk satisfies548

Re,e +Re = − 2

dy
< 0.

(2) Internal edges: For an internal edge e = xy, the rightmost point of its549
Gershgorin disk is550

Re,e +Re = 2− 2
( 1

dx
+

1

dy

)
,

which may be non-negative if the sum of degrees of its endpoints is at least 5.551
Equality holds when dx = dy = 2.552

(3) Sum of eigenvalues: The sum of all eigenvalues of R equals −|V |, since553 ∑
i

λi = trace(R) = −
∑
xy∈E

( 1

dx
+

1

dy

)
= −

∑
x∈V

1 = −|V |.

Additionally, the leftmost point of every Gershgorin disk is −2, so all eigenvalues554
are greater than −2.555

5. Classification of Tree Structures Based on Ricci Flow Spectral556
Features557

The Ricci flow (18) naturally induces an Evolution Matrix on trees, capturing edge–558
edge interactions under curvature evolution. In this section, we illustrate how this559
matrix can be used to analyze and cluster different tree structures, highlighting the560
practical utility of the Ricci flow framework. To evaluate its effectiveness, we perform a561
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tree classification task comparing the evolution matrix R with three classical represen-562
tations: the Adjacency Matrix, the Laplacian Matrix, and the Distance Matrix. Our563
results indicate that R achieves clearer separation between tree types, emphasizing its564
superior capability to capture both local and global structural differences relative to565
standard matrix representations.566

We next recall the definitions of the various matrices used in this study:567

Definition 4 (Evolution Matrix from Ricci Flow on Trees). Let T = (V,E) be a finite568
tree. Index the rows and columns of a matrix R ∈ R|E|×|E| by the edges of T . For an569
edge e = {x, y} ∈ E and another edge e′ = {u, v} ∈ E, define570

Re,e′ =



−
(

1

dx
+

1

dy

)
, if e = e′,

1

dx
, if e ∩ e′ = {x},

1

dy
, if e ∩ e′ = {y},

0, otherwise,
where dx and dy denote the degrees of vertices x and y.571

Definition 5 (Adjacency Matrix). Let G = (V,E) be a simple undirected graph with572
V = {v1, v2, . . . , vn}. The adjacency matrix of G is defined as573

A = [aij]1≤i,j≤n, aij =

{
1, {vi, vj} ∈ E,

0, otherwise.

Definition 6 (Laplacian Matrix). The Laplacian matrix of G is defined by574

L = D − A = [ℓij]1≤i,j≤n, ℓij =


di, i = j,

−1, i 6= j and {vi, vj} ∈ E,

0, otherwise,
where the degree matrix of G is the diagonal matrix575

D = diag(d1, d2, . . . , dn).

Definition 7 (Distance Matrix). Let G = (V,E) be a connected simple undirected576
graph with V = {v1, v2, . . . , vn}. The distance matrix of G is defined as577

Ddist = [d(i, j)]1≤i,j≤n, d(i, j) =

{
0, i = j,

the length of the shortest path between vi and vj, i 6= j.

Experimental Setup The experiments are designed to classify random trees gen-578
erated by three different models:579

• Prüfer Random (PR) Trees: Uniformly sampled from the set of all labeled580
trees with n vertices using random Prüfer sequences.581

• Barabási–Albert (BA) Trees: Generated by the preferential attachment582
model with m = 1, resulting in a scale-free tree with a heavy-tailed degree583
distribution.584
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• Complete Binary (CB) Trees: Fully filled at all levels except possibly the585
last, providing regular hierarchical structures as baselines.586

Figure 5. Structural examples of Prüfer Random Tree, BA Tree and
Complete Binary Tree

These tree models span a range from highly random to highly structured topologies.587
If the matrices can capture the tree structure differences, it is natural to cluster the588
trees generated by different tree models basing on the matrices information. Thus,589
we design a tree classification procedure (as illustrated in Figure: (6) to extract the590
matrices information and cluster the trees. Code is available at: https://github.591
com/suyangban/evolution-matrix-based-tree-classification.
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4 5

1

2
3
4

Extract
Matrix

Feature
Extraction

Tree
Distances

Clustering

(KMeans)

Figure 6. A sketch of model process.
592

Feature Extraction We propose the following steps to extract tree-wise spectral593
signatures from different matrices:594

(1) Compute all eigenvalues and eigenvectors.595
(2) Extract statistical descriptors from eigenvalues: Let x = [x1, x2, . . . , xn]

T be596
a vector of real values (e.g., eigenvalues). The statistic variables we used to597
describe tree spectrum are listed below:598

32

https://github.com/suyangban/evolution-matrix-based-tree-classification
https://github.com/suyangban/evolution-matrix-based-tree-classification
https://github.com/suyangban/evolution-matrix-based-tree-classification


Statistic Formula
Minimum min(x)
Median median(x)
Maximum max(x)
Mean µ = 1

n

∑n
i=1 xi

Std σ =
√

1
n

∑n
i=1(xi − µ)2

Variance 1
n

∑n
i=1(xi − µ)2

Skewness 1
n

∑n
i=1

(
xi−µ
σ

)3
Kurtosis 1

n

∑n
i=1

(
xi−µ
σ

)4
Percentile p percentilep(x)
Proportion>0

1
n

∑n
i=1 I(xi > 0)

Proportion=0
1
n

∑n
i=1 I(xi = 0)

Proportion<0
1
n

∑n
i=1 I(xi < 0)

(3) From the eigenvector associated with the largest eigenvalue, compute a normal-599
ized histogram. Let λmax be the largest eigenvalue, and vmax = [v1, v2, . . . , vn]

T600
the corresponding eigenvector. By Theorem 1, this eigenvector for matrix R601
is positive, but for other matrix, it can be negative. Thus, we normalize the602
absolute value of the max eigenvetor by:603

p =

[
|v1|∑n
j=1 |vj|

,
|v2|∑n
j=1 |vj|

, . . . ,
|vn|∑n
j=1 |vj|

]T
.

Next, we extract the histogram vector by partitioning the interval [0, 1] into604
b equal-width bins, where the choice of b depends on the number of vertices in605
the trees within the dataset.606

Ik =

[
k − 1

b
,
k

b

)
, k = 1, 2, . . . , b− 1

607

Ib =

[
b− 1

b
, 1

]
For each bin k, count the values lies in it:608

hk =
n∑

i=1

I (pi ∈ Ik)

where I(·) is the indicator function. Then normalize the probability distribution609
by:610

h =
1

n
[h1, h2, . . . , hb]

T .

thus,
∑b

k=1 hk = 1.611
(4) Concatenate these quantities to form the final feature vector.612
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The dominant computational cost comes from the eigen-decomposition step, and the613
overall time complexity is also (O(n3)) for a matrix of size (n × n). For large614
graphs, this step can be computationally expensive, and more efficient methods or615
approximations may be required for scalability.616

Clustering and Evaluation We apply KMeans to cluster the extracted spectral617
signatures. The computational complexity of the KMeans algorithm is O(n · k · d · t),618
where n is the number of samples, k is the number of clusters, d is the dimensionality619
of the feature space, and t is the number of iterations until convergence. In practice,620
both the number of clusters and the number of iterations are much smaller than the621
number of samples, so the algorithm is generally efficient for moderate-sized datasets.622
However, for very large datasets or high-dimensional data, the computational cost can623
become significant.624

To evaluate performance of clustering, we leverage two widely used metrics.625

• Adjusted Rand Index (ARI): Measures agreement with ground truth, corrected626
for chance.627

• Normalized Mutual Information (NMI): Measures mutual dependence between628
predicted and true labels, normalized to [0, 1].629

Method Metric Number of Trees (PR/BA/CB)

50/50/50 100/100/100 200/200/200 300/300/300 300/200/100

Distance ARI
NMI

0.10 ± 0.03
0.26 ± 0.03

0.09 ± 0.02
0.26 ± 0.03

0.09 ± 0.01
0.25 ± 0.02

0.09 ± 0.01
0.25 ± 0.01

0.00 ± 0.01
0.23 ± 0.01

Adjacency ARI
NMI

0.31 ± 0.04
0.47 ± 0.04

0.31 ± 0.04
0.47 ± 0.03

0.31 ± 0.02
0.47 ± 0.02

0.31 ± 0.02
0.46 ± 0.03

0.40 ± 0.03
0.49 ± 0.02

Laplacian ARI
NMI

0.23 ± 0.05
0.40 ± 0.05

0.23 ± 0.04
0.39 ± 0.04

0.22 ± 0.03
0.38 ± 0.03

0.22 ± 0.03
0.38 ± 0.03

0.29 ± 0.03
0.39 ± 0.03

Evolution ARI
NMI

0.63 ± 0.17
0.66 ± 0.11

0.56 ± 0.17
0.60 ± 0.12

0.73 ± 0.12
0.71 ± 0.09

0.65 ± 0.16
0.66 ± 0.10

0.69 ± 0.08
0.64 ± 0.08

Table 1. Performance comparison across different tree configurations:
number of trees sampled from three tree generation models (mean ± std)

Table 5 reports the mean and std of ARI and NMI from 100 runs for different random630
seeds. In each run, the size of sampled trees varies. For PR and BA trees, nodes number631
varies in [10, 20, 30, 40, 50, 60, 70, 80, 90, 100], and for CB trees, the depth varies632
in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The statistic results shows Evolution matrix633
stably and significantly outperforms other matrices on different scale of datasets. The634
last column of Table 5 shows even on unbalance datasets, Evolution matrix still show635
its capability to characterize tree structures.636

Figure 7 shows the Multidimensional Scaling (MDS) visualization of tree features637
extracted from four different matrices. MDS is a dimensionality reduction technique638
that preserves the distances between features, i.e., if two trees are similar, they appear639
close in the embedding; if they are very different, they appear far apart. In the first640
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three plots, the clusters are not well separated. Points from different classes often over-641
lap, leading to low ARI and NMI scores. This suggests that Distance, Adjacency, or642
Laplacian-based features are not sufficient to capture the underlying structural differ-643
ences among tree types. In contrast, the evolution-based dissimilarity (bottom right)644
produces a much clearer separation of the three classes. This matrix likely incorporates645
more meaningful structural features of the trees, capturing their generative process. As646
a result, Evolution-based features gets the high ARI (0.81) and NMI (0.78).647

Figure 7. MDS visualization of clustering results for different matrix
representations. The Evolution Matrix yields the clearest separation
among four types.

Experiments show that the Evolution Matrix outperforms adjacency, Laplacian, and648
distance matrices in clustering accuracy. Based on its construction from the continuous649
Ricci flow, the Evolution Matrix also exhibits the following design features, which650
suggest potential advantages beyond our experiments:651

(1) Curvature-aware: Encodes local geometric information from the Ricci flow.652
(2) Sparse: Fewer nonzero entries, implying lower computational cost for large653

trees.654
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(3) Interpretable: Non-zero entries correspond directly to edge–edge interactions.655

Why the Evolution Matrix Improves Tree Classification656
We now explain, in a geometry–spectral way, why the proposed Evolution Matrix657

R (Definition 4) yields substantially better clustering of tree topologies than standard658
choices such as the adjacency, Laplacian, or distance matrices. The key point is that,659
by construction, the leading spectral quantities of R related with the limiting geometric660
objects of the continuous Ricci flow on trees. Concretely, under our flow,661

κ(∞) = −λmax(R), w∞ = vmax(R), (41)
where κ(∞) is the limiting curvature, and w∞ is the normalized Ricci flow metric at662
equilibrium, while λmax(R) and vmax(R) denote, respectively, the largest eigenvalue663
of R and an associated eigenvector. The feature extraction pipeline in §5 naturally664
extracts the information from (41) (via eigenvalue statistics and the histogram of |vmax|665
), which aligns the learned representations with the underlying geometry of the data-666
generating mechanisms.667
(R1) Geometry-aligned spectrum (task–feature alignment). Equation (41) shows that668
the top spectral quantities of R are the limiting geometric invariants of the Ricci flow.669
Hence summary statistics of the spectrum (min/median/max, moments, sign propor-670
tions) directly encode the limiting curvature scale and its dispersion, while the normal-671
ized histogram of |vmax| estimates the distribution of the limiting metric across edges.672
In contrast, for the adjacency A and the Laplacian L, the principal spectral quantities673
have no direct curvature interpretation; for the distance matrix Ddist, eigen-structure674
is dominated by global path-length geometry and is insensitive to local curvature con-675
centrations. This geometry–spectrum coupling endows R an intrinsic inductive bias676
tailored to separating tree generative models.677
(R2) Edge-space, degree-normalized coupling highlights branching geometry. Indexing678
R by edges (not vertices) and using 1/dv couplings at each endpoint causes R to679
emphasize how edges share branching load at high-degree vertices. For an edge e =680
{x, y},681

Re,e = −
(

1
dx

+ 1
dy

)
, Re,e′ =


1
dx
, e ∩ e′ = {x},

1
dy
, e ∩ e′ = {y},

0, otherwise.
Thus, edges incident to hubs (large d ) experience a characteristic pattern of many682
small 1/d -strength couplings whose global superposition yields a distinctive leading683
eigenvector footprint:684

• BA trees (heavy-tailed degrees): mass in |vmax| concentrates around hub-685
incident edges; the histogram of |vmax| displays heavier upper-bin occupancy.686

• Complete binary trees (regular, hierarchical): near-uniform degree in-687
duces a smoother, more homogeneous |vmax| -histogram.688

• Prüfer random trees (light-tailed degrees): patterns lie between the two689
extremes, with moderate concentration.690

The same mechanism also affects λmax(R), hence curvature scale, yielding class-separable691
statistics without requiring large feature engineering.692
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(R3) Scale robustness induced by 1/d -normalization. Because the couplings at a ver-693
tex are normalized by the local degree, R attenuates the raw effect of graph size and694
emphasizes relative branching proportions. When node counts or depths vary across695
samples (as in our setup), the eigenvalue moments and |vmax| -histograms remain com-696
parably distributed within a model class. By contrast, Ddist -spectra drift substantially697
with size (global path lengths stretch), while A and L are more sensitive to absolute698
degree counts than to their normalized branching structure.699
(R4) Line-graph viewpoint: as a Laplacian-type operator on edges. Let L(T ) be the line700
graph of T (its vertices are edges of T ). If one forms a weighted Laplacian on L(T ) with701
weights w(e, e′) = 1/dv whenever e and e′ meet at v, then R can be seen as a Laplacian-702
like operator on edge space, up to a degree-dependent diagonal shift (sign conventions703
reversed on off-diagonals). This places R squarely in the class of diffusion generators704
on edge functions, which mirrors the curvature-smoothing nature of the Ricci flow.705
The adjacency A and vertex-Laplacian L act on different state spaces (nodes rather706
than edges) and do not implement this particular curvature-aware diffusion.707
(R5) Why the chosen features are especially effective for R. Our pipeline (§5) uses (i)708
eigenvalue summary statistics and (ii) a histogram of the normalized leading eigenvec-709
tor. For R, these two blocks exactly probe the quantities in (41):710

(1) The statistics of {λi(R)} summarize the curvature scale and its dispersion across711
modes (mean/variance/skew/kurtosis; proportions of signs).712

(2) The histogram of |vmax(R)| summarizes how the limiting Ricci metric m∞ dis-713
tributes over edges (concentration vs. spread), which is highly diagnostic of714
hub-dominated vs. regular branching.715

Applying the same feature recipe to A, L, and Ddist produces descriptors that lack this716
geometric semantics; consequently, the resulting embeddings are less aligned with the717
differences induced by the generative models and thus less separable for clustering.718
(R6) Testable predictions and ablations. The geometric reading above yields empirical719
predictions that further explain the observed gains:720

• Ablation: Using only λmax(R) plus the |vmax(R)| -histogram should retain most721
of the performance, since these already capture curvature scale and limiting722
metric concentration.723

• Local perturbations: Edge operations that change branching at a hub (adding/removing724
multiple leaves at a high-degree vertex) should cause a larger, more structured725
drift in R -spectra than in the spectra of A, L, or Ddist, matching geometric726
intuition.727

• Size extrapolation: Within a fixed model class, as n grows, the empirical dis-728
tribution of |vmax(R)| -histograms should stabilize (after appropriate binning),729
whereas Ddist -based summaries drift with graph diameter.730

The Evolution Matrix R embeds the continuous Ricci flow’s limiting curvature731
and metric directly into its leading spectral data. Because the differences among732
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BA/Prüfer/complete-binary trees are fundamentally expressed by their branching ge-733
ometry (hub concentration vs. regularity), the geometry-aligned spectrum of R pro-734
duces features that are both interpretable and strongly discriminative, thereby explain-735
ing its superior clustering accuracy in our experiments.736

6. Future Work737

In the previous section, we observed that the Ricci flow matrix exhibits promising738
potential for distinguishing trees through their spectra and the eigenvector. A natural739
question that arises is whether the largest eigenvalue and the eigenvector can serve as740
a complete invariant for finite trees, as suggested by Conjecture 1. At present, this741
remains an open problem, and we leave a rigorous investigation of this conjecture for742
future research.743

Conjecture 1 (Spectral Rigidity via the Leading Eigenpair). Let T1 and T2 be finite,744
connected, undirected trees, and let RT1 and RT2 denote their Ricci flow matrices.745
Suppose the largest eigenvalues and corresponding eigenvectors coincide:746

λmax(RT1) = λmax(RT2), vmax(RT1) = vmax(RT2) (up to scaling).
Then the trees are isomorphic:747

T1
∼= T2.
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