

Participant Name: Shengdao Ke

School: Phillips Academy Andover

State/Province: MA

Country/Region: USA

Advisor Name: Xianfeng David Gu

Advisor Affiliation:
University of New York at Stony Brook, Stony Brook, 11794, NY, USA

Title of Paper: The Ricci Flow on Trees:
Linear Convergence, Curvature Bounds, and Spectral Applications

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Professor Xianfeng David Gu, for his invaluable guidance throughout the course of my research. I also thank to my family for their unwavering encouragement and understanding during the research journey.

THE RICCI FLOW ON TREES: LINEAR CONVERGENCE, CURVATURE BOUNDS, AND SPECTRAL APPLICATIONS

ABSTRACT. We study Ricci flows on finite weighted trees based on Ollivier-type Ricci curvature, parametrized by an exponent $a \in \mathbb{R}$. For general values of a , we establish uniform bounds on the curvatures and their (weighted) sums. For $a > -1$, we show that all normalized edge weights on internal edges remain uniformly bounded away from zero. In the special case of $a = 0$, the unnormalized Ricci flow can be formulated as a linear ODE, we prove that the normalized flow, starting from any positive initial metric, must converge to a metric with constant curvature. Moreover we can show such metric is unique on each tree. Several bounds for this constant curvature have been established and examples on the double-star graph model demonstrate they can be either positive, zero or negative. We also find from experimental results that, the spectrum of the Ricci flow evolution matrix, comparing to that of other graph matrices, clusters tree structures more effectively.

1 **Keywords:** Ricci flow, Ollivier-type Ricci curvature, weighted trees, Einstein metric
2 ric, spectral clustering, computational experiments

4	1. Introduction	5
5	2. Preliminaries and Definitions	9
6	2.1. Ollivier-type Ricci Curvature	11
7	2.2. The Ricci Flow Equations	12
8	3. Ricci Curvatures on Trees	13
9	3.1. Bounds of Curvature for General a	15
10	3.2. Proof of Proposition 1	16
11	3.3. Examples of Ricci Flow Convergence on Trees	17
12	3.4. Uniform Lower Bounds on Normalized Weights on Internal Edges for $a > -1$.	21
13	4. The Ricci flow with parameter $a = 0$	21
14	4.1. The Ricci Flow Equations	21
15	4.2. The Einstein Metrics	22
16	4.3. Convergence of the Normalized Ricci Flow	23
17	4.4. Bounds for the Limit Curvature	26
18	4.5. Examples of Double Star Trees	27
19	4.6. Alternating Sum of the Curvatures Along Path	28
20	4.7. More Discussions	30
21	5. Classification of Tree Structures Based on Ricci Flow Spectral Features	30
22	6. Future Work	38
23	References	38
24		

26 Ricci curvature has long played a central role in differential geometry and geometric
 27 analysis, most notably through its appearance in Hamilton's pioneering work on the
 28 Ricci flow equation [12]

$$\frac{\partial g_{ij}}{\partial t} = -2 \operatorname{Ric}_{ij},$$

which deforms a Riemannian metric in the direction of its Ricci curvature. Here $g_{ij}(t)$ denotes the components of the evolving Riemannian metric, and Ric_{ij} are the components of its Ricci curvature tensor. Hamilton established short-time existence, uniqueness, and important curvature pinching estimates for the flow [12, 13, 14]. The theory reached its most profound success in Perelman’s work [24, 26, 25], where he introduced new monotonicity formulas and the surgery technique, leading to the resolution of the Poincaré conjecture and the more general geometrization conjecture.

In many practical contexts, however, geometric information is available only in discrete or combinatorial form—such as networks, point clouds, or discretized manifolds—so it becomes essential to develop discrete analogues of Ricci flow whose evolution closely approximates the smooth theory. This motivates the study of Ricci flow on graphs, which has advanced significantly in recent years: Weber et al. [29] proposed a geometric method based on the Forman-Ricci flow for change detection in large dynamic datasets, this method analyzes the topological properties of the network, providing a deeper understanding of changes in network structure. Bai et al. [2] established existence and uniqueness of solutions to continuous-time Ricci flow on weighted graphs based on Lin-Lu-Yau Ollivier Ricci curvature. In the study of discrete curvature and Ricci flow, Cushing et al. [4] systematically investigated Ricci flow behavior on graphs via the Bakry-Émery curvature framework. Their work elucidates the interplay between graph structure and curvature evolution, providing valuable insights into how curvature conditions shape graph metrics and dynamics. For the discrete-time Ollivier-Ricci curvature flow on finite weighted graphs, Li and Münch [17] proved that the flow, combined with a surgery procedure, converges to a constant-curvature metric, their proof relies on a convergence result for general nonlinear Markov chains with a monotonicity property.

Discrete Ricci flow has demonstrated strong performance in practical applications: the Ollivier-based flow stretches intercommunity edges and shrinks intracommunity edges, allowing graph partitioning [22]. Ricci curvature-based methods have been used to enhance network alignment by capturing structural similarities between graphs [21]. Curvature-guided graph rewiring mitigates over-squashing and improves message passing in GNNs [28]. Other Ricci-type flows study various aspects of graph geometry and dynamics [10, 3, 9, 16, 30, 7, 11, 5, 8, 6, 31, 15]. These developments illustrate the growing interplay between discrete network geometry and classical geometric analysis.

In this work, we study a general form of Ollivier-type Ricci curvature on finite weighted trees, parameterized by a real exponent $a \in \mathbb{R}$. The curvature is defined via local probability distributions μ_x^α , where a portion α of the mass remains at vertex x , and the remaining mass $1 - \alpha$ is distributed among neighbors proportionally to $P_{xy} = w_{xy}^a$, a power of the edge weights. This framework preserves desirable properties

67 such as invariance under metric scaling and allows for flexible modeling of transport
 68 dynamics on graphs.

69 We focus on the associated *Ricci flow*, a geometric evolution equation that adjusts
 70 the edge weights over time based on curvature. In [2], the authors introduced the
 71 *unnormalized* and *normalized* Ricci flow defined on graphs. Given an undirected graph
 72 G with a positive initial weight function w_0 , an un-normalized Ricci flow is the evolution
 73 of the weight function $w = w(t)$ satisfying following system of ordinary equations:

$$\begin{cases} w(0) = w_0, \\ \frac{\partial w_e(t)}{\partial t} = -\kappa_e(t)w_e(t), \text{ for all } e \in E(G), \end{cases} \quad (1)$$

74 where $\kappa_e(t)$ represents the Lin-Lu-Yau Ollivier Ricci curvature on edge e at time t .
 75 This system of equations, captures the dynamic evolution of the metric (edge weights)
 76 on a graph over time. The curvatures $\kappa_e(t)$ influence the rate of change of the edge
 77 weights $w_e(t)$, with a negative curvature leading to an increase in weight and a positive
 78 curvature leading to a decrease. This behavior aligns with the intuitive understanding
 79 of Ricci flow, where negative curvature tends to “expand” the geometry while positive
 80 curvature tends to “shrink” it.

81 The normalized Ricci flow on graphs, which adjusts the total edge weights to remain
 82 constant 1, is described by the following system of equations

$$\frac{\partial w_e(t)}{\partial t} = -\kappa_e(t)w_e(t) + w_e \sum_{h \in E(G)} \kappa_h w_h(t), \quad (2)$$

83 where $w_e(t)$ represents the normalized weight of edge e at time t . In [2], the author
 84 established conditions for the long time existence and uniqueness of global solutions to
 85 Ricci flows on general graphs.

86 For trees, their combinatorial simplicity enables the explicit computation of the Lin-
 87 Lu-Yau Ollivier Ricci curvature on any two vertices u, v :

$$\kappa_{uv} = -\frac{\sum_{x \sim u} w_{ux}^{1+a}}{w_{uv} \sum_{x \sim u} w_{ux}^a} + 2 \cdot \frac{w_{uv}^a}{\sum_{x \sim u} w_{ux}^a} + 2 \cdot \frac{w_{uv}^a}{\sum_{y \sim v} w_{vy}^a} - \frac{\sum_{y \sim v} w_{vy}^{1+a}}{w_{uv} \sum_{y \sim v} w_{vy}^a}. \quad (3)$$

88 The parameter a , originating from the probability distributions, plays a crucial role,
 89 as it affects both the analytical approach and the resulting behavior of the Ricci flow.

90 We say that a solution to the Ricci flow *converges* if, for every edge $h \in E$, the limit
 91 of the *normalized weight* $w_h(t)$ exists. The function $w(\infty)$ obtained in this way is called
 92 the *limit metric*. It is also important to study the static solution of the normalized
 93 Ricci flow. Such metric satisfies:

$$\kappa_e = \kappa \quad \text{for every edge } e,$$

94 and will be called a *metric of constant curvature* or an *Einstein metric*. It is easy
 95 to see the sign of the constant κ determines the unnormalized flow of such metric is
 96 expanding, static or shrinking.

97 In this work, we investigate the long-time behavior of the solution to the Ricci flow.
 98 We focus on the case $a = 0$, where we establish sharp bounds for the limiting curvature

99 and prove that the normalized Ricci flow converges to the unique metric of constant
100 curvature on the tree.

101 Our contributions are summarized as follows: We derive an explicit formula for the
102 generalized Ricci curvature equation (3) in terms of the edge weights and the parameter
103 a on a tree, and analyze its qualitative behavior.

104 **Proposition 1.** *Let $T = (V, E)$ be a tree, and let κ_{uv} be the curvature in (3) with
105 $a \in \mathbb{R}$. Then the sum of the Lin-Lu-Yau Ollivier Ricci curvature on all edges satisfies:*

$$\sum_{uv \in E} \kappa_{uv} \begin{cases} \leq 2, & a > -1, \\ = 2, & a = -1, \\ \in [2, |V|], & a < -1. \end{cases}$$

106 Moreover, for all $a \in \mathbb{R}$,

$$\kappa_{uv} \leq 2$$

107 and for $a \leq -1$ we have the uniform bound

$$-2(|V| - 3) \leq \kappa_{uv} \leq 2.$$

108 Moreover, the curvature bounds play a crucial role in preventing local degeneracy
109 of the edge weights. When $a > -1$, we show that all normalized weights on internal
110 edges remain uniformly bounded away from zero. This result will be established in
111 Proposition 5.

112 In the special case of $a = 0$, the probability distribution μ_x^α in the definition of
113 Ollivier Ricci curvature (see Definition 2) is defined in the following way:

$$\mu_x^\alpha(y) = \begin{cases} \alpha, & \text{if } y = x, \\ (1 - \alpha) \frac{1}{d_x}, & \text{if } y \sim x, \\ 0, & \text{otherwise.} \end{cases}$$

114 This distribution μ_x^α describes a simple model of local movement or diffusion: With
115 probability α , a particle (or agent) at node x stays in place. With probability $1 - \alpha$, it
116 moves to one of its neighbors, choosing *uniformly at random* among the d_x neighbors.
117 This is referred to as the equal probability model because the probabilities of moving
118 to any neighbors are the same. Such a model applies to various real-world systems,
119 for example: A tourist at location x who either stays with probability α or chooses
120 a neighboring street at random to walk to; A data packet in a network that routes
121 randomly to a connected node; An idea or infection that spreads randomly from one
122 individual to their direct contacts. Intuitively, using equal probability movement sim-
123 plifies the model and reflects unbiased local diffusion, making it useful for studying the
124 geometric and transport properties of graphs.

125 The (unnormalized) Ricci flow on a weighted tree $T = (V, E, w)$ in this special case
126 reads:

$$\frac{\partial}{\partial t} w_{xy}(t) = - \left(\frac{1}{d_x} + \frac{1}{d_y} \right) w_{xy}(t) + \frac{1}{d_x} \sum_{u \sim x, u \neq y} w_{xu}(t) + \frac{1}{d_y} \sum_{v \sim y, v \neq x} w_{vy}(t), \quad (4)$$

127 where d_x represent the degree of vertex x . Note that the flow equation is linear with
 128 the coefficient matrix $R \in \mathbb{R}^{|E| \times |E|}$, which we shall call *the evolution matrix* of the tree.
 129 For such flow, we have established the following result:

130 **Theorem 1** (Convergence of Ricci Flow on Weighted Trees). *Let $T = (V, E, w_0)$ be a
 131 finite, weighted tree with edge weights being strictly positive. Let $w = w(t)$ be the Ricci
 132 flow (4) on T with initial weight w_0 .*

133 (1) **(Long time existence)** *The solution $w = w(t)$ exists uniquely for any positive
 134 initial metric and for all time $t > 0$. Under the flow, $w_e(t) > 0$ for all $t > 0$
 135 and $e \in E$.*

136 (2) **(Convergence to equilibrium)** *The normalized Ricci flow converges to an
 137 Einstein metric $w(\infty)$ with curvature $\kappa(\infty)$. In particular, a tree $T = (V, E)$
 138 always admits an Einstein metric in sense of (21).*

139 (3) **(Limit behavior)** *The limit curvature κ_∞ is equal to the negative of the largest
 140 eigenvalue of the evolution matrix associated with the Ricci flow*

141 In this theorem, we employ a flow method to establish the existence of an Einstein
 142 metric on a tree. Moreover, one can show that, for a given tree, such Einstein metric
 143 is unique (also see Proposition 6)

144 **Proposition 2.** *Let $T = (V, E)$ be a tree, and $w, w' \in \mathbb{R}_+^E$ be two (normalized) metrics
 145 on T with constant curvatures κ and κ' , then $w = w'$ and $\kappa = \kappa'$.*

146 Therefore, one may expect that the Einstein metric w and its curvature κ capture
 147 important structural information about the tree. In what follows, we provide upper and
 148 lower bounds for the curvature κ . Both bounds are expressed in terms of combinatorial
 149 data of the tree, and each is attained only when the tree is a star.

150 **Proposition 3.** *Let κ be the curvature of the Einstein metric. Then:*

$$2 \min_{xy \in E} \left(\frac{1}{d_x} + \frac{1}{d_y} - 1 \right) \leq \kappa \leq \frac{2}{|E|}. \quad (5)$$

151 Any one of the equalities holds if and only if T is a star graph.

152 Besides, we also establish a path-wise identity for Einstein metrics on trees, which
 153 constrains feasible weight assignments and provides insight into how local curvature
 154 conditions propagate along the tree.

155 **Proposition 4** (Alternating Sum Identity on Path of all Trees). *Let $T = (V, E, w)$
 156 be a finite weighted tree with positive edge weights $w : E \rightarrow \mathbb{R}_{>0}$. Assume w is the
 157 Einstein metric.*

158 Let $P = (v_0, v_1, \dots, v_k)$ be a path in the tree, with corresponding edges $e_i = v_{i-1}v_i$
 159 for $i = 1, \dots, k$ where v_0 and v_k are leaf nodes, then we have

$$\sum_{i=1}^k (-1)^{i-1} \kappa \cdot w_{e_i} = -w_{e_1} + (-1)^k w_{e_k} + \sum_{i=1}^k (-1)^{i-1} \left(\frac{2}{d_{v_{i-1}}} + \frac{2}{d_{v_i}} \right) w_{e_i}.$$

160 Although the present work focuses on the theoretical analysis of Ricci flow on trees,
 161 these results provide a foundational framework for studying Ricci flow on more general graphs.
 162 Tree-structured data occur naturally in many domains, including natural
 163 language processing (NLP), where constituency and dependency trees [20, 23] serve
 164 as hierarchical sentence representations. Recursive neural networks (RecNNs) [27, 18]
 165 exploit such trees to encode syntactic and semantic information for tasks such as sen-
 166 timent analysis, semantic parsing, and question answering. These connections under-
 167 score the potential relevance of theoretical insights on Ricci flow for tree structures to
 168 broader applications.

169 Building on our theoretical results for Ricci flow, we show that the spectrum of the
 170 Ricci flow-based *Evolution Matrix* R effectively clusters tree structures, outperforming
 171 classical adjacency, Laplacian, and distance matrices. The matrix is sparse, curvature-
 172 aware, and interpretable, demonstrating how discrete Ricci flow offers both a principled
 173 framework and practical analytical tools.

174 **Organization of the Paper.** The rest of this paper is arranged in a straightforward
 175 way. In Section 2, we go over some basic ideas about trees and Ricci curvature. In
 176 Section 3, we explain how Ricci curvature works on trees. Section 4 looks at the
 177 Ricci flow when $a = 0$ and shows how the flow behaves in the long run, ending with
 178 Theorem 1. In Section 5, we introduce the Ricci flow “Evolution Matrix” on trees and
 179 show how it can be used to get spectral features and to cluster different trees. Finally,
 180 Section 6 talks about a possible direction for future work, where we guess that the
 181 largest eigenvalue and eigenvector of the Ricci flow matrix might actually determine a
 182 finite tree completely.

183 2. PRELIMINARIES AND DEFINITIONS

184 Let $G = (V, E)$ be a finite, undirected graph without loops or multiple edges. The
 185 edge weight can be viewed as a function $w : E \rightarrow (0, \infty)$ which assigns a positive weight
 186 to each edge $e \in E$, and the triple $G = (V, E, w)$ is called a weighted graph. We say
 187 that G is a *metric graph* if for every pair of adjacent vertices $x, y \in V$, the weight of
 188 the edge equals the distance:

$$x \sim y \quad \Rightarrow \quad d(x, y) = w_{xy}.$$

189 A path in G is called a weighted path if each edge on the path has nonzero weight.
 190 The graph G is said to be connected if every pair of vertices is connected by a weighted
 191 path. For any two vertices $x, y \in V$, we write $x \sim y$ if $\{x, y\} \in E$. The *distance*
 192 between two vertices $x, y \in V$, denoted by $d(x, y)$, is defined as the minimum total
 193 distance among all paths connecting x and y . That is,

$$d(x, y) := \min_{\text{paths } P \text{ from } x \text{ to } y} \sum_{\{u, v\} \in P} d(u, v),$$

194 where the sum is over the edges $\{u, v\}$ in the path P .

195 For any vertex $x \in V$, let $N(x)$ denote the set of its neighbors, and define the degree
 196 of x by $d_x = |N(x)|$. Usually, we use n to denote the number of vertices, and m to
 197 denote the number of edges.

198 **Definition 1** (Coupling and Transportation Distance). Let V be a finite set, and let
 199 μ_1 and μ_2 be two probability distributions on V .

200 A coupling of μ_1 and μ_2 is a new probability distribution $\pi(x, y)$ defined on the
 201 product space $V \times V$, representing a plan for moving mass from x to y . The coupling
 202 must satisfy:

$$\sum_{y \in V} \pi(x, y) = \mu_1(x), \quad \sum_{x \in V} \pi(x, y) = \mu_2(y).$$

203 This means that the total mass transported out of point x equals $\mu_1(x)$, and the total
 204 mass transported into point y equals $\mu_2(y)$.

205 Given a distance function $d(x, y)$ on V , the transportation distance (also called the
 206 Wasserstein-1 distance) between μ_1 and μ_2 is defined as:

$$W(\mu_1, \mu_2) := \inf_{\pi} \sum_{x, y \in V} \pi(x, y) \cdot d(x, y),$$

207 where the infimum is taken over all valid couplings π .

208 There is another, equivalent way to express the transportation distance, using an
 209 optimization over functions:

$$W(\mu_1, \mu_2) = \sup_f \sum_{x \in V} f(x) [\mu_1(x) - \mu_2(x)],$$

210 where the supremum is taken over all functions $f : V \rightarrow \mathbb{R}$ that satisfy the 1-Lipschitz
 211 condition:

$$|f(x) - f(y)| \leq d(x, y), \quad \text{for all } x, y \in V.$$

212 **Example 1.** Let T be a weighted tree with set of vertices $V = \{1, 2, 3, 4, 5\}$ and edges:

$$\{12, \quad 23, \quad 24, \quad 45\}$$

213 where each edge has length/weight one. Consider two probability distributions supported
 214 on V :

$$\mu_1 = (0.5, 0, 0.3, 0.2, 0), \quad \mu_2 = (0, 0.4, 0.2, 0, 0.4)$$

215 One possible transportation plan from μ_1 to μ_2 can be:

Source \rightarrow Target	Mass	Distance	Contribution
$1 \rightarrow 2$	0.4	1	0.4
$1 \rightarrow 5$	0.1	3	0.3
$3 \rightarrow 3$	0.2	0	0
$3 \rightarrow 2$	0.1	1	0.1
$4 \rightarrow 5$	0.2	1	0.2

216 Therefore the cost for this transportation is:

$$C(\mu_1, \mu_2) = 0.4 + 0.3 + 0 + 0.1 + 0.2 = 1$$

217 To see this transportation plan is optimum, we choose a 1-Lipschitz function $f :$
 218 $V \rightarrow \mathbb{R}$ with:

$$f(1) = 0, \quad f(2) = -1, \quad f(3) = -1, \quad f(4) = -2, \quad f(5) = -3.$$

219 From the point view of the duality, the following quantity gives an upper bound for
 220 the Wasserstein distance $W(\mu_1, \mu_2)$:

$$\begin{aligned} \sum_{x \in V} f(x) [\mu_1(x) - \mu_2(x)] &= 0 \cdot 0.5 - 1 \cdot (-0.4) - 2 \cdot (0.3 - 0.2) - 2 \cdot 0.2 - 3 \cdot (-0.4) \\ &= 0.4 - 0.2 - 0.4 + 1.2 \\ &= 1. \end{aligned}$$

221 Therefore, we conclude the plan showed in the table is optimum and the Wasserstein
 222 distance of two distributions is:

$$W(\mu_1, \mu_2) = 1.$$

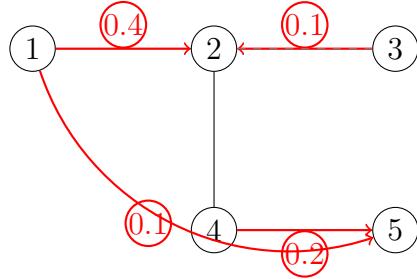


FIGURE 1. Transportation plan $\pi(x, y)$ with curved arrow for long-distance transport $(1 \rightarrow 5)$. Red arrows indicate mass movement.

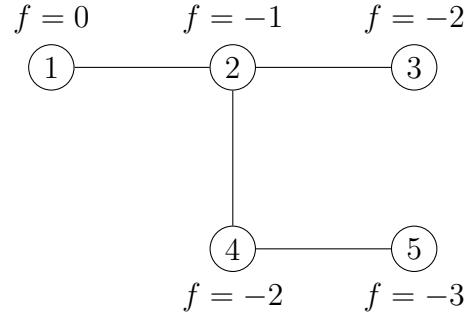


FIGURE 2. 1-Lipschitz function f shown outside the vertex circles.

223 2.1. **Ollivier-type Ricci Curvature.** Let $\alpha \in [0, 1]$ and let $x \in V$ be a vertex. Define
 224 a probability distribution μ_x^α on V by

$$\mu_x^\alpha(y) = \begin{cases} \alpha, & \text{if } y = x, \\ (1 - \alpha) \frac{P_{xy}}{\sum\limits_{z \sim x} P_{xz}}, & \text{if } y \sim x, \\ 0, & \text{otherwise,} \end{cases}$$

225 where $P : E \rightarrow [0, 1]$ is a nonnegative function representing the raw probability of
 226 moving from vertex x to a neighbor y . The values P_{xy} may depend on the edge weights
 227 w_{xy} , and they determine how the total mass $1 - \alpha$ is distributed among the neighbors
 228 of x . A natural choice for P , especially when w_{uv} represents edge length or cost, is

$$P_{uv} = w_{uv}^a,$$

229 for some exponent $a \in \mathbb{R}$. This form ensures compatibility with scaling properties
 230 of the metric: if all edge weights are scaled by a common factor (i.e., $w_{uv} \mapsto \lambda w_{uv}$),
 231 then the distribution of mass remains consistent under appropriate choice of a . This
 232 property is essential for deriving the normalized Ricci flow equations.

233 **Definition 2.** [19] *Given local probability distribution μ_x^α for every vertex, the α -Ricci
 234 curvature between two adjacent vertices $x \sim y$ is defined as*

$$\kappa_\alpha(x, y) := 1 - \frac{W(\mu_x^\alpha, \mu_y^\alpha)}{d(x, y)}, \quad (6)$$

235 where $W(\mu_x^\alpha, \mu_y^\alpha)$ denotes the transportation distance between μ_x^α and μ_y^α , and $d(x, y)$
 236 is the distance between x and y .

237 Finally, the (Lin–Lu–Yau) Ricci curvature is defined as the negative derivative of
 238 $\kappa_\alpha(x, y)$ at $\alpha = 1$:

$$\kappa_{xy} := \lim_{\alpha \rightarrow 1} \frac{\kappa_\alpha(x, y)}{1 - \alpha}. \quad (7)$$

239 This limit captures the infinitesimal behavior of the curvature as the probability
 240 distribution becomes increasingly concentrated at each vertex.

241 **2.2. The Ricci Flow Equations.** The unnormalized continuous Ricci flow on a graph
 242 is defined by the time evolution of the edge weights $w_{xy}(t)$, governed by the system:

$$\frac{\partial w_{xy}(t)}{\partial t} = -\kappa_{xy}(t) \cdot w_{xy}(t), \quad w(0) \in \mathbb{R}^m > 0, \quad (8)$$

243 where $w(0) = \langle w_{e_1}(0), w_{e_2}(0), \dots, w_{e_m}(0) \rangle$ is the vector of initial edge weights, and each
 244 $w_{e_i}(0)$ represents the initial weight assigned to edge e_i .

245 Assuming the initial total weight satisfies $\sum_{e \in E} w_e(0) = 1$, the normalized continuous
 246 Ricci flow on the graph is governed by the system

$$\frac{\partial w_{xy}(t)}{\partial t} = -\kappa_{xy}(t) \cdot w_{xy}(t) + w_{xy}(t) \sum_{e \in E} \kappa_e(t) w_e(t), \quad w(0) \in \mathbb{R}^m > 0, \quad (9)$$

247 where the normalization ensures that $\sum_{e \in E} w_e(t) = 1$ for all t .

248 In both equations, $\kappa_{uv}(t)$ is the Ricci curvature at time t , and $w_{uv}(t)$ is the evolving
 249 edge weight. Note that the normalized weights (solution to (9)) is also obtained from
 250 the unnormalized weight (solution to (8)):

$$\tilde{w}_e(t) = \frac{w_e(t)}{\sum_{e' \in E} w_{e'}(t)}.$$

251 Analogous to the smooth Ricci flow in differential geometry, the Ricci flow (8)
 252 contracts edges with positive curvature and expands those with negative curvature.
 253 Specifically, this means: If $\kappa_{uv}(t) > 0$, the edge (u, v) contracts, and the weight $w_{uv}(t)$
 254 decreases. If $\kappa_{uv}(t) < 0$, the edge (u, v) expands, and the weight $w_{uv}(t)$ increases. If
 255 $\kappa_{uv}(t) = 0$, the edge weight $w_{uv}(t)$ remains constant. Since κ_{uv} depends on the weights
 256 w_{uv} (via $P_{uv} = w_{uv}^a$), this creates a nonlinear feedback loop: curvature affects weights,
 257 and weights in turn reshape the curvature.

258 3. RICCI CURVATURES ON TREES

259 In this section, we derive an explicit expression for the Ollivier-type Ricci curvature
 260 on trees under the general mass transport model defined earlier.

261 Let $x \sim y$ be two adjacent vertices in a finite tree $T = (V, E, w)$, with positive edge
 262 weights $w_{xy} > 0$. Let the probability of mass transport be given by $P_{xy} = w_{xy}^a$ for some
 263 exponent $a \in \mathbb{R}$, and define:

$$P_x^{(a)} := \sum_{z \sim x} P_{xz} = \sum_{z \sim x} w_{xz}^a.$$

264 We consider the probability measure μ_x^α supported in the neighbourhood of x as:

$$\mu_x^\alpha(z) = \begin{cases} \alpha, & \text{if } z = x, \\ (1 - \alpha) \frac{w_{xz}^a}{P_x^{(a)}}, & \text{if } z \sim x, \\ 0, & \text{otherwise.} \end{cases}$$

265 By adapting the results of Theorem 2.10 in [1], we have the following for trees:

266 **Lemma 1.** *Let $T = (V, E, d, w)$ be a weighted tree, and let $x \sim y$ be adjacent nodes
 267 with $P_x^{(a)} \geq P_y^{(a)}$. For any*

$$\alpha \in \left(\frac{w_{xy}^a}{w_{xy}^a + P_x^{(a)}}, 1 \right],$$

268 the map $\alpha \mapsto \kappa_\alpha(x, y)$ is linear on the interval

$$\left[\frac{w_{xy}^a}{w_{xy}^a + P_x^{(a)}}, 1 \right].$$

269 **Remark 1.** For trees, Lemma 1 implies that the function $\alpha \mapsto \kappa_\alpha(x, y)$ is linear on
 270 $\left[\frac{w_{xy}^a}{w_{xy}^a + P_x^{(a)}}, 1 \right]$. Consequently, in applications, it is sufficient to evaluate κ_{xy} at any α
 271 sufficiently close to 1 (e.g., $\alpha = 0.99$).

272 Since there is a unique path between two vertices in a tree, we can find the explicit
 273 formula for κ_{xy} in this setting.

274 **Lemma 2.** *Let $T = (V, E, w)$ be a tree where w represents the weight on the edges E .
 275 Then for every edge $xy \in E$, the Lin-Lu-Yau Ollivier curvature κ_{xy} is determined by*

276 the following equation:

$$\kappa_{xy} = - \sum_{z \sim x} \frac{w_{xz}^{a+1}}{w_{xy} P_x^{(a)}} + 2 \frac{w_{xy}^a}{P_x^{(a)}} + 2 \frac{w_{xy}^a}{P_y^{(a)}} - \sum_{z \sim y} \frac{w_{yz}^{a+1}}{w_{xy} P_y^{(a)}} \quad (10)$$

277 *Proof.* Note that w_{xy} on tree is equal to the distance $d(x, y)$. By Remark 1, we can
278 take α with $1 - \alpha$ being small for computing κ_{xy} .

279 The optimum coupling/distribution π to compute the Wasserstein distance between
280 μ_x and μ_y can be chosen as:

- 281 • for each $u \sim x$ and $u \neq y$, $\pi(u, x) = (1 - \alpha) \frac{w_{xu}^a}{P_x^{(a)}}$ and for each $v \sim y$ and $v \neq x$,
- 282 $\pi(y, v) = (1 - \alpha) \frac{w_{yv}^a}{P_y^{(a)}}$;
- 283 • $\pi(x, y) = \alpha + (1 - \alpha) \sum_{z \sim x, z \neq y} \frac{w_{xz}^a}{P_x^{(a)}} - (1 - \alpha) \frac{w_{xy}^a}{P_y^{(a)}} > 0$ when α is close to 1;
- 284 • for other pair of vertices u, v , $\pi(u, v)$ takes zero.

285 Then according to Definition 1, the distance can be computed as

$$W(\mu_x^\alpha, \mu_y^\alpha) = \sum_{z \sim x, z \neq y} (1 - \alpha) \frac{w_{xz}^a}{P_x^{(a)}} w_{xz} + \left(\alpha + (1 - \alpha) \sum_{z \sim x, z \neq y} \frac{w_{xz}^a}{P_x^{(a)}} - (1 - \alpha) \frac{w_{xy}^a}{P_y^{(a)}} \right) w_{xy} \\ + \sum_{z \sim y, z \neq x} (1 - \alpha) \frac{w_{yz}^a}{P_y^{(a)}} w_{yz}$$

286 It follows that

$$\frac{W(\mu_x^\alpha, \mu_y^\alpha)}{w_{xy}} = (1 - \alpha) \sum_{z \sim x, z \neq y} \frac{w_{xz}^a}{P_x^{(a)}} \frac{w_{xz}}{w_{xy}} + \alpha + (1 - \alpha) \sum_{z \sim x, z \neq y} \frac{w_{xz}^a}{P_x^{(a)}} - (1 - \alpha) \frac{w_{xy}^a}{P_y^{(a)}} \\ + (1 - \alpha) \sum_{z \sim y, z \neq x} \frac{w_{yz}^a}{P_y^{(a)}} \frac{w_{yz}}{w_{xy}}$$

287 The α -Ricci curvature (6) is then given by:

$$1 - \frac{W(\mu_x^\alpha, \mu_y^\alpha)}{w_{xy}} = (1 - \alpha) \left(1 - \sum_{z \sim x, z \neq y} \frac{w_{xz}^a}{P_x^{(a)}} \frac{w_{xz}}{w_{xy}} - \sum_{z \sim x, z \neq y} \frac{w_{xz}^a}{P_x^{(a)}} + \frac{w_{xy}^a}{P_y^{(a)}} - \sum_{z \sim y, z \neq x} \frac{w_{yz}^a}{P_y^{(a)}} \frac{w_{yz}}{w_{xy}} \right).$$

288 Using $P_x^{(a)} = \sum_{z \sim x} w_{xz}^a$ and $1 - \sum_{z \sim x, z \neq y} \frac{w_{xz}^a}{P_x^{(a)}} = \frac{w_{xy}^a}{P_x^{(a)}}$, then we have

$$\frac{\kappa_\alpha(x, y)}{1 - \alpha} = - \sum_{z \sim x, z \neq y} \frac{w_{xz}^a}{P_x^{(a)}} \frac{w_{xz}}{w_{xy}} + \frac{w_{xy}^a}{P_x^{(a)}} + \frac{w_{xy}^a}{P_y^{(a)}} - \sum_{z \sim y, z \neq x} \frac{w_{yz}^a}{P_y^{(a)}} \frac{w_{yz}}{w_{xy}}$$

289 Finally, the Lin-Lu-Yau Ollivier Ricci curvature (7) is given by

$$\kappa_{xy} = \lim_{\alpha \rightarrow 1} \frac{\kappa_\alpha(x, y)}{1 - \alpha} = - \sum_{z \sim x, z \neq y} \frac{w_{xz}^{a+1}}{w_{xy} P_x^{(a)}} + \frac{w_{xy}^a}{P_x^{(a)}} + \frac{w_{xy}^a}{P_y^{(a)}} - \sum_{z \sim y, z \neq x} \frac{w_{yz}^{a+1}}{w_{xy} P_y^{(a)}} \\ = - \sum_{z \sim x} \frac{w_{xz}^{a+1}}{w_{xy} P_x^{(a)}} + 2 \frac{w_{xy}^a}{P_x^{(a)}} + 2 \frac{w_{xy}^a}{P_y^{(a)}} - \sum_{z \sim y} \frac{w_{yz}^{a+1}}{w_{xy} P_y^{(a)}}.$$

□

291 **3.1. Bounds of Curvature for General a .** In this subsection, we derive bounds for
 292 terms appearing in the Ricci flow equations such as the Ricci curvature and its product
 293 with the normalized edge weights.

294 **Lemma 3.** *Let $T = (V, E, w)$ be a tree where w represents a normalized weight function
 295 on the edges E . Then for every edge $uv \in E$, the following hold:*

296 (1) $\kappa_{uv} \leq 2$ and $\kappa_{uv}w_{uv} \geq -2$;
 297 (2) $|\sum_{uv \in E} \kappa_{uv}w_{uv}| \leq \sum_{u \in V} |2 - d_u|$.

298 *Proof of (1).* For each edge $uv \in E(G)$, to derive the upper bound of κ_{uv} , it suffices to
 299 notice

$$\kappa_{uv} = \frac{2w_{uv}^{a+1} - \sum_{x \sim u} w_{ux}^{1+a}}{w_{uv} \sum_{x \sim u} w_{ux}^a} + \frac{2w_{uv}^{a+1} - \sum_{y \sim v} w_{vy}^{1+a}}{w_{uv} \sum_{y \sim v} w_{vy}^a} \leq 2,$$

300 with equality held iff uv is the unique edge of the tree. For the lower bound of $\kappa_{uv}w_{uv}$,
 301 we rewrite the term $\kappa_{uv}w_{uv}$ as:

$$\kappa_{uv}w_{uv} = \frac{2}{P_u^{(a)}} \cdot w_{uv}^{a+1} + \frac{2}{P_v^{(a)}} \cdot w_{uv}^{a+1} - \frac{P_u^{(a+1)}}{P_u^{(a)}} - \frac{P_v^{(a+1)}}{P_v^{(a)}}, \quad (11)$$

302 Since $0 \leq w_{uv} \leq 1$, then $0 \leq P_x^{(a+1)} \leq P_x^{(a)}$ and we obtain the lower bound:

$$\kappa_{uv}w_{uv} \geq \frac{2}{P_u^{(a)}} \cdot w_{uv}^{a+1} + \frac{2}{P_v^{(a)}} \cdot w_{uv}^{a+1} - 2 \geq -2.$$

□

304 *Proof of (2).* Using (11), it is easy to see:

$$\begin{aligned} \sum_{uv \in E} \kappa_{uv}w_{uv} &= \sum_{u \in V} \frac{2}{P_u^{(a)}} \sum_{v \sim u} w_{uv}^{a+1} - \sum_{u \in V} \frac{P_u^{(a+1)}}{P_u^{(a)}} \sum_{v \sim u} 1 \\ &= \sum_{u \in V} \frac{2}{P_u^{(a)}} \cdot P_u^{a+1} - \sum_{u \in V} \frac{P_u^{(a+1)}}{P_u^{(a)}} \cdot d_u \\ &= \sum_{u \in V} (2 - d_u) \cdot \frac{P_u^{(a+1)}}{P_u^{(a)}}. \end{aligned} \quad (12)$$

305 Therefore, we can conclude:

$$\left| \sum_{uv \in E} \kappa_{uv}w_{uv} \right| \leq \sum_{u \in V} |2 - d_u| \cdot \frac{P_u^{(a+1)}}{P_u^{(a)}} \leq \sum_{u \in V} |2 - d_u|.$$

□

307 Similarly, we can write the curvature k_{uv} as:

$$\kappa_{uv} = \frac{2}{P_u^{(a)}} \cdot w_{uv}^a + \frac{2}{P_v^{(a)}} \cdot w_{uv}^a - \frac{P_u^{(a+1)}}{P_u^{(a)}} \cdot w_{uv}^{-1} - \frac{P_v^{(a+1)}}{P_v^{(a)}} \cdot w_{uv}^{-1}. \quad (13)$$

308 It then follows that

$$\begin{aligned} \sum_{uv \in E} \kappa_{uv} &= \sum_{u \in V} \frac{2}{P_u^{(a)}} \sum_{v \sim u} w_{uv}^a - \sum_{u \in V} \frac{P_u^{(a+1)}}{P_u^{(a)}} \sum_{v \sim u} w_{uv}^{-1} \\ &= \sum_{u \in V} \left(2 - \frac{P_u^{(a+1)} P_u^{(-1)}}{P_u^{(a)}} \right). \end{aligned} \quad (14)$$

309 Using $P_u^{(a+1)} P_u^{(-1)} \geq P_u^{(a)}$, we can deduce

$$\sum_{uv \in E} \kappa_{uv} \leq \sum_{u \in V} (2 - 1) = |V|.$$

310 Note when $a = -1$, from Equation 14,

$$\sum_{uv \in E} \kappa_{uv} = \sum_{u \in V} (2 - P_u^{(0)}) = \sum_{u \in V} (2 - d_u) = 2.$$

311 **3.2. Proof of Proposition 1.** To give a more tight estimate of the sum of Ricci
312 curvatures and give a proof of Proposition 1, we shall use the following lemma:

313 **Lemma 4.** For each $u \in V(G)$, the function $h_u(a) := \frac{P_u^{(a)}}{P_u^{(a+1)}}$ is decreasing in \mathbb{R} .

314 *Proof.* Let $u \in V(G)$ and denote $w_i := w_{ux}$ for each neighbor $x \sim u$. Recall that

$$h_u(a) := \frac{P_u^{(a)}}{P_u^{(a+1)}} = \frac{\sum_i w_i^a}{\sum_i w_i^{a+1}}.$$

315 To show that $h_u(a)$ is decreasing, take any $b > a$. It suffices to show

$$h_u(a) \geq h_u(b) \iff P_u^{(b+1)} P_u^{(a)} - P_u^{(a+1)} P_u^{(b)} \geq 0.$$

316 Compute:

$$\begin{aligned} P_u^{(b+1)} P_u^{(a)} - P_u^{(a+1)} P_u^{(b)} &= \sum_i \sum_j (w_i^{b+1} w_j^a - w_i^b w_j^{a+1}) \\ &= \sum_i \sum_j w_i^b w_j^a (w_i - w_j) \\ &= \frac{1}{2} \sum_i \sum_j \left[w_i^b w_j^a (w_i - w_j) + w_j^b w_i^a (w_j - w_i) \right] \\ &= \frac{1}{2} \sum_i \sum_j w_i^a w_j^a (w_i^{b-a} - w_j^{b-a}) (w_i - w_j). \end{aligned}$$

317 Since $b - a > 0$, the function $x \mapsto x^{b-a}$ is increasing, so

$$(w_i^{b-a} - w_j^{b-a})(w_i - w_j) \geq 0 \text{ for all } i, j, \text{ and } w_i^a w_j^a \geq 0.$$

318 Therefore, the sum is nonnegative:

$$P_u^{(b+1)} P_u^{(a)} - P_u^{(a+1)} P_u^{(b)} \geq 0,$$

319 which implies $h_u(a) \geq h_u(b)$. Hence, $h_u(a)$ is decreasing in a . \square

Remark 2. *It is easy to see if $a \neq b$, then $h_u(a) = h_u(b)$ if and only if*

$$w_{ux} = w_{uy}$$

320 for any vertices $x, y \sim u$.

321 *Proof of Proposition 1.* When $a > -1$, applying Lemma 4, we have $h_u(a) \leq h_u(-1)$,
322 which is equivalent to

$$\frac{P_u^{(a+1)} P_u^{(-1)}}{P_u} \geq P_u^{(0)} = d_u.$$

323 Combine this with (14), we deduce

$$\sum_{uv \in E} \kappa_{uv} \leq \sum_{u \in V} (2 - d_u) = 2.$$

324 For the case of $a \leq -1$, the estimates for the sum of curvatures are almost the same
325 and we omit their proofs here.

326 To see the uniform bounds for κ_{uv} , we have already seen it is no more than two. For
327 the lower bound, notice

$$\kappa_{uv} = \sum_{e \in E} \kappa_e - \sum_{e \in E \setminus \{uv\}} \kappa_e \geq 2 - 2(|E| - 1) = -2(|V| - 3),$$

328 which completes the proof. \square

Remark 3. *In the case of $a \neq -1$, if the equality $\sum_{uv \in E} \kappa_{uv} = 2$ holds, then*

$$h_a(u) = h_{-1}(u)$$

holds for any vertex $u \in V$. As mentioned in Remark 2, it then follows

$$w_{ux} = w_{uy}$$

329 for all vertices x, y incident to u . Using the connectivity of the tree, we can deduce
330 that all edges of the tree must be equal.

331 **3.3. Examples of Ricci Flow Convergence on Trees.** In the following, we present
332 examples of trees exhibiting explicit Ricci flow behavior under the general Ollivier-Ricci
333 curvature (10), focusing on path and star structures.

334 **Example 2.** *Consider the Ricci flow (8) with $a \neq -1$ on the path graph of length n ,
335 with edges denoted as e_1, \dots, e_n . Then, the Ricci flow converges, and the unnormalized
336 weights on all edges decrease to zero.*

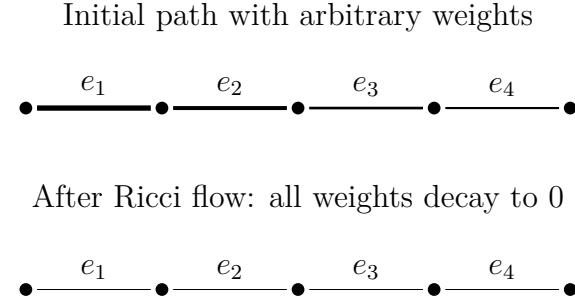


FIGURE 3. Path graph of 5 vertices with edges e_1, \dots, e_4 . Top: initial edge weights (arbitrary). Bottom: after Ricci flow, all edge weights decay to zero.

337 *sketch of proof.* Let w represent the unnormalized weight. By formula (12), we have

$$\begin{aligned} \frac{\partial}{\partial t} \sum_{uv \in E} w_{uv} &= - \sum_{uv \in E} \kappa_{uv} w_{uv} = - \sum_{u \in V} (2 - d_u) \frac{\sum_{x \sim u} w_{ux}^{1+a}}{\sum_{x \sim u} w_{xu}^a} \\ &= -(w_{e_1} + w_{e_n}) \\ &< 0, \end{aligned}$$

338 for all $t \in [0, \infty)$, so the sum $\sum_{uv \in E} w_{uv}$ of unnormalized weights on all edges decreases
339 in particular, it is bounded and has a non-nonnegative limit. Moreover, weight w_{e_i} of
340 each edge is also bounded. It is easy to check that $w_{e_1} + w_{e_n} \rightarrow 0$ and hence $w_1, w_n \rightarrow 0$.
341 Now consider

$$\frac{d}{dt} w_{e_1}(t) = -w_{e_1} - \frac{w_{e_1}^{a+1} - w_{e_2}^{a+1}}{w_{e_1}^a + w_{e_2}^a},$$

342 which tends to 0 as $w_{e_1} \rightarrow 0$. Thus,

$$\frac{w_{e_1}^{a+1} - w_{e_2}^{a+1}}{w_{e_1}^a + w_{e_2}^a} \rightarrow 0,$$

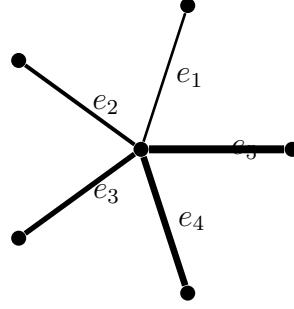
343 which give $w_2 \rightarrow 0$.

344 By iterating this argument along the chain of edges, we conclude $w_{e_i}(t) \rightarrow 0$ for all
345 i .

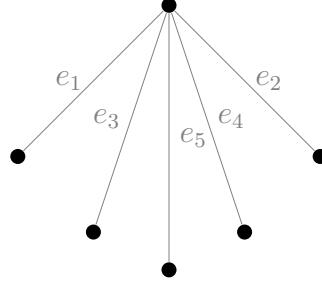
346 \square

347 **Example 3** (Star Tree). Consider the Ricci flow (8) with $a \geq 0$ on the star tree $K_{1,n}$,
348 $n \geq 4$, with center vertex u and leaf edges $w_i := w_{uv_i}$. The unnormalized on all edges
349 decrease to 0 and the normalized weights on all edges converge to $\frac{1}{n}$.

Initial star graph



After Ricci flow: edges decay



350 *Proof.* Let w represent the unnormalized weight. Denote the center vertex as u , using
 351 formula (12), we have

$$\begin{aligned} \frac{\partial \sum_{uv \in E} w_{uv}}{\partial t} &= - \sum_{uv \in E} \kappa_{uv} w_{uv} = - \sum_{u \in V} (2 - d_u) \frac{\sum_{x \sim u} w_{ux}^{1+a}(t)}{\sum_{x \sim u} w_{ux}^a(t)} \\ &= - \sum_{i=1}^n w_i + (n-2) \frac{\sum_{i=1}^n w_i^{1+a}}{\sum_{x \sim u} w_i^a}. \end{aligned}$$

352 By the following lemma 5, the leaf weights satisfy $w_i(t)/w_j(t) \rightarrow 1$ as $t \rightarrow \infty$ for
 353 all pairs i, j , and the ratios remain bounded away from 0 and ∞ for all $t > 0$. In
 354 particular, the normalized weight

$$\tilde{w}_i(t) = \frac{w_i(t)}{\sum_i w_i(t)} \rightarrow \frac{1}{n}.$$

355 Moreover, for large $t > 0$, we have

$$-\sum_{i=1}^n w_i + (n-2) \frac{\sum_{i=1}^n w_i^{1+a}}{\sum_{i=1}^n w_i^a} \sim -n \sum_{i=1}^n w_i + (n-2) \sum_{i=1}^n w_i = -2 \sum_{i=1}^n w_i < 0.$$

356 Therefore, the sum $\sum_i w_i$ of the unnormalized weights decays to zero exponentially. \square

357 **Lemma 5.** Let $a \geq 0$ and let $K_{1,n}$ be the star with center u and leaves v_1, \dots, v_n ,
358 $n \geq 4$. Write $w_i(t) := w_{uv_i}(t) > 0$, then for any i and j , we have

$$\lim_{t \rightarrow +\infty} \frac{w_i(t)}{w_j(t)} = 1 \quad (15)$$

359 *Proof.* Assume that, at time $t = 0$, we have:

$$w_1(0) \geq w_2(0) \geq \dots \geq w_n(0).$$

360 For any $1 \leq i < j \leq n$, we have:

$$\begin{aligned} \frac{\partial}{\partial t} \frac{w_i}{w_j} &= \frac{w_i}{w_j} (\kappa_j - \kappa_i) = \frac{w_i}{w_j} \left(-\frac{\sum_{k=1}^n w_k^{a+1} - 2w_j^{a+1}}{w_j \cdot \sum_{k=1}^n w_k^a} + \frac{\sum_{k=1}^n w_k^{a+1} - 2w_i^{a+1}}{w_i \cdot \sum_{k=1}^n w_k^a} \right) \\ &= \left(1 - \frac{w_i}{w_j} \right) \cdot \frac{\sum_{k=1}^n w_k^{a+1} + 2w_i w_j \cdot \frac{w_i^{a+1} - w_j^{a+1}}{w_i - w_j}}{w_j \cdot \sum_{k=1}^n w_k^a} \end{aligned} \quad (16)$$

361 Since $w_i/w_j \geq 1$ at $t = 0$, then it holds true for all $t > 0$. In particular, according to
362 (16), w_i/w_j is decreasing and its limit must exist and be finite:

$$\lambda_{ij} := \lim_{t \rightarrow \infty} w_i/w_j \in [1, w_i(0)/w_j(0)]$$

363 Thus we have established the (finite) convergence of w_i/w_j for $i < j$. It then follows,
364 for any i and j , the limit of w_i/w_j exists and is a positive real number which will be
365 denoted by λ_{ij} .

366 Using $a \geq 0$ and $\frac{w_i^{a+1} - w_j^{a+1}}{w_i - w_j} > 0$, we can deduce the limit

$$\begin{aligned} \lim_{t \rightarrow \infty} \frac{\sum_{k=1}^n w_k^{a+1} + 2w_i w_j \cdot \frac{w_i^{a+1} - w_j^{a+1}}{w_i - w_j}}{w_j \cdot \sum_{k=1}^n w_k^a} &\geq \lim_{t \rightarrow \infty} \frac{\sum_{k=1}^n w_k^{a+1}}{w_j \cdot \sum_{k=1}^n w_k^a} = \lim_{t \rightarrow \infty} \frac{\sum_{k=1}^n (w_k/w_j)^{a+1}}{\sum_{k=1}^n (w_k/w_j)^a} \\ &= \frac{\sum_{k=1}^n \lambda_{kj}^{a+1}}{\sum_{k=1}^n \lambda_{kj}^a} \end{aligned}$$

367 must be bounded below by a positive number. In particular, there exists some positive
368 constant $C > 0$ such that:

$$\frac{\sum_{k=1}^n w_k^{a+1} + 2w_i w_j \cdot \frac{w_i^{a+1} - w_j^{a+1}}{w_i - w_j}}{w_j \cdot \sum_{k=1}^n w_k^a} \geq C. \quad (17)$$

369 Combine (17) with (16), in case of $i < j$ where $w_i \geq w_j$, we obtain

$$\frac{\partial}{\partial t} \frac{w_i}{w_j} \leq C \left(1 - \frac{w_i}{w_j} \right).$$

370 Therefore

$$0 \leq \frac{w_i(t)}{w_j(t)} - 1 \leq \left(\frac{w_i(0)}{w_j(0)} - 1 \right) \exp(-Ct)$$

371 for $t > 0$ and (15) follows. □

372 3.4. Uniform Lower Bounds on Normalized Weights on Internal Edges for
 373 $a > -1$.

374 **Proposition 5.** *Consider the Ricci flow (8) with $a \geq -1$ on any tree. Then the
 375 normalized weights on internal edges admit a uniform positive lower bound.*

376 *Proof.* Let $w(t) = \min_{e \in E} w_e(t)$. We will show that $w(t)$ never decreases to zero on internal
 377 edges. Assume at time t , $w_{xy}(t) = w(t)$, because $a + 1 > 0$ each term $w_{xz}^{a+1} \geq w^{a+1}$ by
 378 the minimality of w . Hence

$$\sum_{z \sim x, z \neq y} w_{xz}^{a+1} \geq (d_x - 1)w^{a+1}.$$

379 Rewrite the x -contribution of κ_{xy} as

$$\frac{w^a}{P_x^{(a)}} - \frac{1}{w} \cdot \frac{\sum_{z \sim x, z \neq y} w_{xz}^{a+1}}{P_x^{(a)}} = \frac{w^{a+1} - \sum_{z \sim x, z \neq y} w_{xz}^{a+1}}{wP_x^{(a)}}.$$

380 Using the lower bound for the sum,

$$w^{a+1} - \sum_{z \sim x, z \neq y} w_{xz}^{a+1} \leq w^{a+1} - (d_x - 1)w^{a+1} = (2 - d_x)w^{a+1}.$$

381 Therefore

$$\frac{w^{a+1} - \sum_{z \sim x, z \neq y} w_{xz}^{a+1}}{wP_x^{(a)}} \leq \frac{(2 - d_x)w^{a+1}}{wP_x^{(a)}} = (2 - d_x) \frac{w^a}{P_x^{(a)}}.$$

382 Similarly, result for the y -contribution of κ_{xy} .

383 Thus, if xy is an internal edge, then both $d_x \geq 2, d_y \geq 2$, we have $\kappa_{xy}(t) \leq 0$, then
 384 $\frac{\partial w_{xy}}{\partial t} \geq 0$, resulting that w_{xy} does not decrease at time t . Therefore, there is a uniform
 385 bound on the normalized weight of all internal edges.

386 □

387 4. THE RICCI FLOW WITH PARAMETER $a = 0$

388 We prove the convergence of the Ricci flow on trees in the case $a = 0$. In this case,
 389 the Lin-Lu-Yau Ricci curvature on tree is expressed as

$$\kappa_{xy} = -\frac{\sum_{z \sim x} w_{xz}}{w_{xy}d_x} + \frac{2}{d_x} + \frac{2}{d_y} - \frac{\sum_{z \sim y} w_{yz}}{w_{xy}d_y}.$$

390 4.1. The Ricci Flow Equations.

391 4.1.1. *The Unnormalized Ricci Flow.* The unnormalized Ricci flow is

$$\frac{\partial}{\partial t} w_{xy}(t) = -\left(\frac{1}{d_x} + \frac{1}{d_y}\right) w_{xy}(t) + \frac{1}{d_x} \sum_{u \sim x, u \neq y} w_{xu}(t) + \frac{1}{d_y} \sum_{v \sim y, v \neq x} w_{vy}(t). \quad (18)$$

392 This system of differential equations is linear with the coefficient matrix R :

$$R_{e,e'} = \begin{cases} -\left(\frac{1}{d_x} + \frac{1}{d_y}\right) & \text{if } e = e' = \{x, y\}, \\ \frac{1}{d_x} & \text{if } e \cap e' = \{x\}, \\ 0 & \text{if } e \cap e' = \emptyset, \end{cases} \quad (19)$$

393 which will be called the **Ricci flow evolution matrix**.

394 4.1.2. *The Normalized Ricci Flow.* Since

$$\sum_{xy \in E} \kappa_{xy} \cdot w_{xy} = 2 \sum_{xy \in E} \left(\frac{1}{d_x} + \frac{1}{d_y} - 1 \right) w_{xy},$$

395 then we obtain the normalized continuous Ricci flow in the case of $a = 0$:

$$\begin{aligned} \frac{\partial w_{xy}(t)}{\partial t} &= 2 \sum_{uv \in E} \left(\frac{1}{d_u} + \frac{1}{d_v} - 1 \right) w_{uv}(t) \cdot w_{xy}(t) \\ &\quad - \left(\frac{1}{d_x} + \frac{1}{d_y} \right) w_{xy}(t) + \frac{1}{d_x} \sum_{u \sim x, u \neq y} w_{xu}(t) + \frac{1}{d_y} \sum_{v \sim y, v \neq x} w_{vy}(t). \end{aligned} \quad (20)$$

396 4.2. **The Einstein Metrics.** It is natural to consider the static solution

$$w(\infty) = \{w_e(\infty)\}_{e \in E} \in \mathbb{R}_+^E$$

397 of the normalized Ricci flow.

398 **Definition 3.** If a normalized metric $w = (w_e)_{e \in E} \in \mathbb{R}_+^E$ satisfies:

$$\kappa_e(\infty) = \kappa \quad (21)$$

399 for all $e \in E$ where $\kappa \in \mathbb{R}$ is some constant, then the metric/weight function is called
400 the **metric of constant curvature** or **Einstein metric**.

401 In the case of $a = 0$, we see a metric $w = (w_e)_{e \in E} \in \mathbb{R}_+^E$ has constant curvature κ if and
402 only if

$$\left(\frac{1}{d_x} + \frac{1}{d_y} - \kappa \right) w_{xy} = \frac{1}{d_x} \sum_{u \sim x, u \neq y} w_{xu}(t) + \frac{1}{d_y} \sum_{v \sim y, v \neq x} w_{vy}(t). \quad (22)$$

for any edges $e = xy \in E$. Rearranging the terms in equation (22) gives

$$-\left(\frac{1}{d_x} + \frac{1}{d_y} \right) w_{xy} + \frac{1}{d_x} \sum_{u \sim x, u \neq y} w_{xu} + \frac{1}{d_y} \sum_{v \sim y, v \neq x} w_{vy} = -\kappa w_{xy}.$$

The left-hand side is precisely the e -th component of Rw as defined in (19). Hence,

$$(Rw)_e = -\kappa w_e, \quad \forall e \in E,$$

403 which means that w is an eigenvector of the evolution matrix R with eigenvalue $-\kappa$.

404 In the next subsection, we shall prove the existence of an Einstein metric on a tree
405 for the case $a = 0$ using the Ricci flow. Before turning to existence, we first establish
406 a uniqueness result.

407 Recall from (19) that we introduced the matrix R , originally as the coefficient matrix
408 of the unnormalized Ricci flow. However, it is important to note that R is defined purely
409 in terms of the combinatorial structure of the tree. In particular, equation (22) shows
410 that an Einstein metric w satisfies $Rw = -\kappa w$, so Einstein metrics correspond exactly
411 to eigenvectors of R . This observation allows us to prove the uniqueness without
412 referring to the flow itself.

413 **Proposition 6** (Uniqueness of Einstein Metric). *Let $T = (V, E)$ be a tree. Suppose
414 $w, w^* \in \mathbb{R}_+^E$ are two (normalized) metrics on T of constant curvatures κ and κ^* ,
415 respectively. Then $w = w^*$ and $\kappa = \kappa^*$.*

416 *Proof.* Notice that if $\kappa \neq \kappa^*$, then w and w^* , as corresponding eigenvectors of the
417 symmetric matrix R (see (19)), must be orthogonal. This is equivalent to:

$$\sum_{e \in E} w_e \cdot w_e^* = 0.$$

which contradicts with $w_e > 0$ and $w_e^* > 0$. Therefore $\kappa = \kappa^*$. Now we set

$$r = \min\{w_e \cdot (w_e^*)^{-1} : e \in E\} > 0,$$

418 it then follows $\hat{w} := w - r \cdot w^*$ defines a nonnegative weight function satisfying (22)
419 with $\hat{w}_{xy} = 0$ for some edge $e_0 = xy$. According to (22), we have:

$$0 = \left(\frac{1}{d_x} + \frac{1}{d_y} - \kappa \right) \hat{w}_{xy} = \frac{1}{d_x} \sum_{u \sim x, u \neq y} \hat{w}_{xu}(t) + \frac{1}{d_y} \sum_{v \sim y, v \neq x} \hat{w}_{vy}(t).$$

420 Therefore $\hat{w}_e = 0$ for all $e \in N(x) \cup N(y)$. Repeating this process and using the
421 connectivity of the tree, we can show $\hat{w}_e = 0$ for all edges and $w = r \cdot w^*$. Since both
422 of them are normalized metrics, then we have $r = 1$ and $w = w^*$.

423 □

424 **4.3. Convergence of the Normalized Ricci Flow.** The main result was stated in
425 the Introduction. For clarity, we present it again below.

426 **Theorem 2** (Convergence of Ricci Flow on Weighted Trees). *Let $T = (V, E, w_0)$ be a
427 finite, weighted tree with edge weights being strictly positive. Let $w = w(t)$ be the Ricci
428 flow (18) on T with initial weight w_0 .*

- 429 (1) **(Long time existence)** *The solution $w = w(t)$ exists uniquely for any positive
430 initial metric and for all time $t > 0$. Under the flow, $w_e(t) > 0$ for all $t > 0$
431 and $e \in E$.*
- 432 (2) **(Convergence to equilibrium)** *The normalized Ricci flow (20) converges to
433 an Einstein metric $w(\infty)$ with curvature $\kappa(\infty)$. In particular, a tree $T = (V, E)$
434 always admits a unique Einstein metric in sense of (21) in the case of $a = 0$.*
- 435 (3) **(Limit behavior)** *The limit curvature $\kappa(\infty)$ equals to minus of the largest
436 eigenvalue of the evolution matrix of the Ricci flow.*

437 *Proof of part (1).* Let $w(t) = (w_e(t))_{e \in E}$ denote the vector of edge weights at time t ,
438 with initial data $w(0) > 0$. Since the Ricci flow define a system of linear ordinary
439 equations:

$$\frac{\partial}{\partial t} w(t) = R w(t) \tag{23}$$

440 where R is the evolution matrix of the Ricci flow (19), then the solution is unique and
441 can be written as:

$$w(t) = \exp(R \cdot t) w(0) \tag{24}$$

23

442 for all $t \geq 0$. Moreover, according to the Proof of Theorem 3 in [2], $w_e(t) > 0$ for every
443 edge e and all the time since $w_e(0) > 0$. Those complete the proof of (1). \square

444 *Proof of part (2).* Let $\lambda_1 < \lambda_2 < \dots < \lambda_s$ be all the distinct eigenvalues of the evolution
445 matrix R . As a real symmetric matrix, R must be diagonalizable. Therefore, using
446 (24), the general solution $w = w(t)$ of the flow has following form:

$$w_e(t) = \sum_{i=1}^s c_{i,e} \exp(\lambda_i t). \quad (25)$$

447 where $c_{i,e}, 1 \leq i \leq s, e \in E$ represent some real constants.

448 It is clear that the coefficients $c_{i,e}$ in (25) can not be all zeros. Thus we can define
449 the index i_0 to be the largest one with $c_{i,e} \neq 0$ for some $e \in E$:

$$i_0 := \max \{1 \leq i \leq s : \exists e_0 \in E \text{ such that } c_{i,e_0} \neq 0\}. \quad (26)$$

450 **Claim 1.** $c_{i_0,e} > 0$ for all $e \in E$.

451 *Proof of the Claim.* For any edge $e \in E$, according to part (1), $w_e(t) > 0$ for all $t > 0$.
452 Thus we have:

$$c_{i_0,e} = \lim_{t \rightarrow \infty} \frac{w_e(t)}{\exp(\lambda_{i_0} t)} \geq 0.$$

453 Now suppose $c_{i_0,e} = 0$ for some edge $e = xy$. Comparing the coefficients of $\exp(\lambda_{i_0} t)$
454 on both sides of (18), we have:

$$\left(\frac{1}{d_x} + \frac{1}{d_y} - \lambda_{i_0} \right) c_{i_0,xy} = \frac{1}{d_x} \sum_{u \sim x, u \neq y} c_{i_0,xu} + \frac{1}{d_y} \sum_{v \sim y, v \neq x} c_{i_0,yv}. \quad (27)$$

455 Noting that $c_{i_0,xy} = 0$, we deduce:

$$0 = \frac{1}{d_x} \sum_{u \sim x, u \neq y} c_{i_0,xu} + \frac{1}{d_y} \sum_{v \sim y, v \neq x} c_{i_0,yv}.$$

456 Thus the non-negativity of $c_{i_0,e'}$ yields $c_{i_0,e'} = 0$ for all edges $e' \in N(x) \cup N(y)$. Re-
457 peating this process to the new edges e' with $c_{i_0,e'} = 0$ and using the connectivity of
458 the graph, we conclude $c_{i_0,e} = 0$ for all edges e which contradicts with (26). Therefore,
459 $c_{i_0,e}$ must be positive for every edge e . \square

460 By the above claim 1, we can rewrite

$$w_e(t) = \sum_{i=1}^{i_0} c_{i,e} \exp(\lambda_i t). \quad (28)$$

461 with $c_{i_0, e} > 0$ for all edges e . It then follows that the normalized weight $\tilde{w}_e(t)$ must
462 converge and:

$$\begin{aligned} \lim_{t \rightarrow \infty} \tilde{w}_e(t) &= \lim_{t \rightarrow \infty} \frac{w_e(t)}{\sum_{e' \in E} w_{e'}(t)} \\ &= \lim_{t \rightarrow \infty} \frac{c_{i_0, e} \exp(\lambda_{i_0} t) + o(\exp(\lambda_{i_0} t))}{\sum_{e' \in E} c_{i_0, e'} \exp(\lambda_{i_0} t) + o(\exp(\lambda_{i_0} t))} \\ &= \frac{c_{i_0, e}}{\sum_{e' \in E} c_{i_0, e'}}, \end{aligned} \quad (29)$$

463 which is positive and will be denoted as $\tilde{w}_e(\infty)$. Notice that (27) implies $\tilde{w} = (\tilde{w}_e(\infty))_{e \in E}$
464 is an Einstein metric with curvature $-\lambda_{i_0}$ in sense of (22). Thus we have proved that
465 the limit metric exists and must be an Einstein metric.

466 Moreover, using the flow equation (23) and (28), we can compute the limit of the
467 Ricci curvatures:

$$\begin{aligned} \lim_{t \rightarrow \infty} \kappa_e(t) &= - \lim_{t \rightarrow \infty} \frac{1}{w_e(t)} \frac{\partial}{\partial t} w_e(t) = - \lim_{t \rightarrow \infty} \frac{\lambda_{i_0} c_{i_0, e} \exp(\lambda_{i_0} t)}{c_{i_0, e} \exp(\lambda_{i_0} t)} \\ &= -\lambda_{i_0}, \end{aligned} \quad (30)$$

468 This proves the convergence and finishes the proof of part (2). □

469

470 *Proof of part (3).* Note that the Einstein metric $w = (w_e)_{e \in E}^T$ is an eigenvector of R
471 corresponding to eigenvalue $-\kappa$ (see section 4.2). In the following, we shall show such
472 eigenvalue is the largest one.

473 Let μ be any eigenvalue of R with a (nonzero) eigenvector $v = (v_e)_{e \in E} \in \mathbb{R}^E$.
474 Note that the entries of $2I + R$ are non-negative, then we have:

$$(2 + \mu)|v_e| = \left| \sum_{e' \in E} (2\delta_{e, e'} + R_{e, e'})v_{e'} \right| \leq \sum_{j=1}^m (2\delta_{e, e'} + R_{e, e'})|v_{e'}|,$$

475 where $\delta_{e, e'}$ equals one if $e = e'$ and zero otherwise. As the entries of $w = (w_e)_{e \in E}^T$ are
476 positive, it then follows:

$$\begin{aligned} \sum_{e \in E} (2 + \mu)w_e|v_e| &\leq \sum_{e \in E} \sum_{e' \in E} w_e (2\delta_{e, e'} + R_{e, e'})|v_{e'}| \\ &= \sum_{e' \in E} \left(\sum_{e \in E} w_e (2\delta_{e, e'} + R_{e, e'}) \right) |v_{e'}| = \sum_{e' \in E} (2 - \kappa)w_{e'}|v_{e'}| \end{aligned} \quad (31)$$

477 which yields:

$$(\mu + \kappa) \sum_{e \in E} w_e|v_e| \leq 0.$$

478 Therefore, we conclude $\mu \leq -\kappa$ which completes the proof. □

479 4.4. **Bounds for the Limit Curvature.** In the last subsection, we have seen that
 480 the Ricci flow is always convergent to the unique Einstein metric. It is natural to
 481 classify graphs/trees according to the curvature of the unique Einstein metrics that
 482 they can support. Because in classical differential geometry (eg. the uniformization
 483 theorem in dimension two), the curvatures of Einstein metric give strong restriction on
 484 the geometry and topology of the underlying manifolds. In this subsection, we mainly
 485 study those curvatures of a tree and derive some bounds for them.

486 **Proposition 7.** *Let κ be the curvature of the Einstein metric. Then:*

$$2 \min_{xy \in E} \left(\frac{1}{d_x} + \frac{1}{d_y} - 1 \right) \leq \kappa \leq \frac{2}{|E|}, \quad (32)$$

487 *Any one of the equalities holds if and only if G is a star graph.*

488 *Proof.* Let $\{w_e\}_{e \in E}$ be the normalized weight of the Einstein metric. Assume $e_0 = xy$
 489 is the edge with the largest weight, then by (22)

$$\begin{aligned} \kappa \cdot w_{e_0} &= \left(\frac{1}{d_x} + \frac{1}{d_y} \right) w_{e_0} - \frac{1}{d_x} \sum_{e' \in N(x) \setminus e_0} w_{e'} - \frac{1}{d_y} \sum_{e'' \in N(y) \setminus e_0} w_{e''} \\ &\geq \left(\frac{1}{d_x} + \frac{1}{d_y} \right) w_{e_0} - \frac{1}{d_x} \sum_{e' \in N(x) \setminus e_0} w_{e_0} - \frac{1}{d_y} \sum_{e'' \in N(y) \setminus e_0} w_{e_0} \\ &= 2 \left(\frac{1}{d_x} + \frac{1}{d_y} - 1 \right) w_{e_0} \\ &\geq 2 \min_{xy \in E} \left(\frac{1}{d_x} + \frac{1}{d_y} - 1 \right) w_{e_0}. \end{aligned} \quad (33)$$

490 Since $w_{e_0} > 0$, dividing through by w_{e_0} yields the lower bound for κ . For the upper
 491 bound, recall in Proposition 1, we have shown that $\sum_{e \in E} \kappa_e \leq 2$. Therefore in the case
 492 of an Einstein metric where $\kappa_e = \kappa$ for any $e \in E$, we obtain the upper bound:

$$\kappa \leq \frac{2}{|E|}$$

493 In the next, we shall consider the case when one of two equalities holds. We claim:
 494 in both cases, all the weights w_e take the same value and as a corollary,

$$\kappa = \frac{2}{d_x} + \frac{2}{d_y} - 2 \quad (34)$$

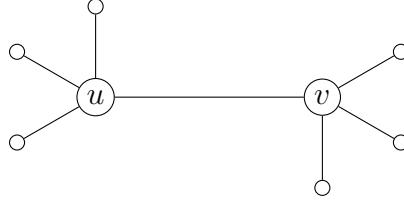
495 for any $xy \in E$.

(1) Suppose κ attains the lower bound in (32):

$$\kappa = \min \left\{ \frac{2}{d'_x} + \frac{2}{d'_y} - 2 : x'y' \in E \right\}.$$

496 Once again, let $e_0 = xy$ be the edge with largest weight w_{e_0} . It then follows
 497 from (33), equality holds only if $w_{e'} = w_{e_0}$ for all $e' \in N(x) \cup N(y)$, and

$$\kappa = 2 \left(\frac{1}{d_x} + \frac{1}{d_y} - 1 \right)$$



498 Since T is connected, repeating this process, we will get $w_e = w_{e_0}$ for all $e \in E$.

(2) Suppose κ attains the upper bound in (32):

$$\kappa = \frac{2}{|E|},$$

499 then we have $\sum_{uv \in E} \kappa_{uv} = 2$. According to the discussion in Remark 3, we see
500 all the weights w_e must be equal.

501 Now we consider the graph G with properties (34). Let x be a vertex with maximum
502 degree d . We claim every edge incident to x is a leaf edge. Otherwise, let $e = xy$ be
503 an internal edge and $e' = x'y'$ a leaf edge. Then:

$$\frac{1}{d_{x'}} + \frac{1}{d_{y'}} \geq 1 + \frac{1}{d} > \frac{1}{2} + \frac{1}{d} \geq \frac{1}{d_x} + \frac{1}{d_y},$$

504 which contradicts with (34). Thus, G must be a star. Conversely, if G is a star with
505 center degree d , then $\kappa = \frac{2}{d}$ which achieves both upper and lower bounds in (32). \square

506 **Remark 4.** For non-star tree, that is, trees that contain internal edges, we have a
507 more explicit bound,

$$2 \min_{\substack{xy \in E \\ xy \text{ internal}}} \left(\frac{1}{d_x} + \frac{1}{d_y} - 1 \right) < \kappa < \frac{2}{|E|}$$

508 **4.5. Examples of Double Star Trees.** We now show some trees whose curvatures
509 of their Einstein metrics are positive, zero or negative.

510 **Example 4** (“double-star” trees). We consider a graph with only one internal edge
511 $e = \{u, v\}$. Assume the degree of u and v are $n + 1$. In this graph, let $-\kappa$ be
512 the maximum eigenvalue of R and the entries of the corresponding eigenvector are
513 $z, x_1, \dots, x_n, y_1, \dots, y_n$. Therefore we have:

$$\kappa \cdot z = \frac{2}{n+1}z - \frac{1}{n+1} \sum_{i=1}^n x_i - \frac{1}{n+1} \sum_{i=1}^n y_i \tag{35}$$

$$\kappa \cdot x_j = \frac{n+2}{n+1}x_j - \frac{1}{n+1} \sum_{i \neq j} x_i - \frac{1}{n+1}z, \quad i = 1, 2, \dots, n \tag{36}$$

$$\kappa \cdot y_j = \frac{n+2}{n+1}y_j - \frac{1}{n+1} \sum_{i \neq j} y_i - \frac{1}{n+1}z, \quad j = 1, 2, \dots, n \tag{37}$$

514 From (36) and (37), we add them up to deduce:

$$\left(\frac{3}{n+1} - \kappa\right) \sum_{i=1}^n x_i = \frac{n}{n+1} z, \quad \left(\frac{3}{n+1} - \kappa\right) \sum_{i=1}^n y_i = \frac{n}{n+1} z, \quad (38)$$

515 Combine (35) and (38) together, we get:

$$\left(\frac{2}{n+1} - \kappa\right) \left(\frac{3}{n+1} - \kappa\right) = \frac{2n}{(n+1)^2}$$

516 which is equivalent to:

$$\kappa^2 - \frac{5}{n+1}\kappa + \frac{6-2n}{(n+1)^2} = 0 \quad (39)$$

517 Applying Theorem 1, we can conclude the behavior of the Ricci flow: when $n < 3$,
518 $\kappa > 0$, the unnormalized weights of all edges decay to zero; when $n = 3$, $\kappa = 0$, the
519 unnormalized weights of all edges converge to some positive numbers; when $n > 3$,
520 $\kappa < 0$, the unnormalized weights of all edges grow without bound.

521 This theoretical result is illustrated by the numerical simulations in Figure 4, where
522 we plot the weight evolution for the double-star trees with $n = 2, 3, 4$.

523 **4.6. Alternating Sum of the Curvatures Along Path.** The constant-curvature
524 metrics play a key role in understanding the limiting behavior of the Ricci flow on
525 trees. We derive an identity relating the curvature values and the edge weights of an
526 Einstein metric along a path connecting two leaves.

527 **Proposition 8** (Alternating Sum Identity on Path of all Trees). *Let $T = (V, E, w)$ be
528 a finite weighted tree with positive edge weights $w : E \rightarrow \mathbb{R}_{>0}$. Assume w is a metric
529 of constant curvature.*

530 Let $P = (v_0, v_1, \dots, v_k)$ be a path in the tree, with corresponding edges $e_i = v_{i-1}v_i$
531 for $i = 1, \dots, k$ where v_0 and v_k are leaf nodes, then we have

$$\sum_{i=1}^k (-1)^{i-1} \kappa \cdot w_{e_i} = -w_{e_1} + (-1)^k w_{e_k} + \sum_{i=1}^k (-1)^{i-1} \left(\frac{2}{d_{v_{i-1}}} + \frac{2}{d_{v_i}} \right) w_{e_i}. \quad (40)$$

532 *Proof.* Since κ is constant, using the notation $P_x := \sum_{y \sim x} w_{xy}$, we may write:

$$\kappa \cdot w_{e_i} = -\frac{P_{v_{i-1}}}{d_{v_{i-1}}} + \frac{2w_{e_i}}{d_{v_{i-1}}} + \frac{2w_{e_i}}{d_{v_i}} - \frac{P_{v_i}}{d_{v_i}}.$$

533 Take the alternating sum over the path:

$$\sum_{i=1}^k (-1)^{i-1} \kappa \cdot w_{e_i} = \sum_{i=1}^k (-1)^{i-1} \left(-\frac{P_{v_{i-1}}}{d_{v_{i-1}}} + \frac{2w_{e_i}}{d_{v_{i-1}}} + \frac{2w_{e_i}}{d_{v_i}} - \frac{P_{v_i}}{d_{v_i}} \right).$$

534 Split the sum:

$$\sum_{i=1}^k (-1)^{i-1} \kappa w_{e_i} = \sum_{i=1}^k (-1)^i \frac{P_{v_{i-1}}}{d_{v_{i-1}}} - \sum_{i=1}^k (-1)^{i+1} \frac{P_{v_i}}{d_{v_i}}$$

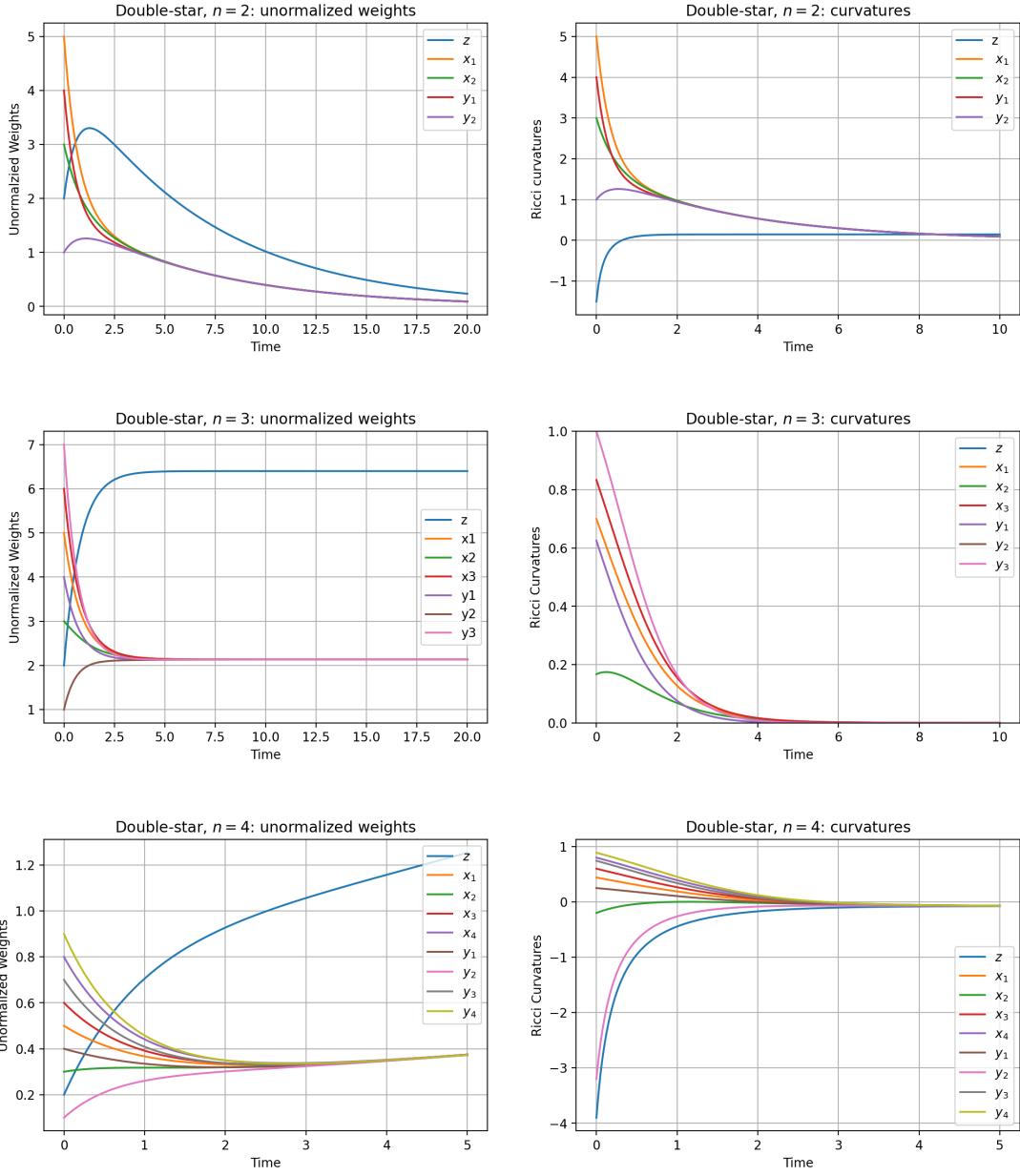


FIGURE 4. Unnormalized Ricci Flow on Double-Stars with $n = 2, 3, 4$.

$$+ \sum_{i=1}^k (-1)^{i-1} \left(\frac{2}{d_{v_{i-1}}} + \frac{2}{d_{v_i}} \right) w_{e_i}.$$

535 Observe that the sum over P_{v_i} telescopes:

$$\sum_{i=1}^k (-1)^i \frac{P_{v_{i-1}}}{d_{v_{i-1}}} - \sum_{i=1}^k (-1)^{i+1} \frac{P_{v_i}}{d_{v_i}} = -\frac{P_{v_0}}{d_{v_0}} + (-1)^k \frac{P_{v_k}}{d_{v_k}}.$$

536 Thus, we conclude:

$$\sum_{i=1}^k (-1)^{i-1} \kappa w_{e_i} = -\frac{P_{v_0}}{d_{v_0}} + (-1)^k \frac{P_{v_k}}{d_{v_k}} + \sum_{i=1}^k (-1)^{i-1} \left(\frac{2}{d_{v_{i-1}}} + \frac{2}{d_{v_i}} \right) w_{e_i}.$$

537 If v_0 and v_k are leaves, then $d_{v_0} = d_{v_k} = 1$ and $P_{v_0} = w_{e_1}$, $P_{v_k} = w_{e_k}$, giving (40).

538 \square

539 **4.7. More Discussions.** We display more results about the eigenvalues of the Ricci
540 flow matrix and give necessary conditions such that the matrix R has positive eigen-
541 values.

542 **Observation 1.** *Let R be the Ricci flow evolution matrix of a tree T with n vertices.
543 Define*

$$R_e := \sum_{f \neq e} |R_{e,f}|$$

544 *to be the sum of the absolute values of the non-diagonal entries in the e -th row of R .*

545 *Then we have the following observations regarding its eigenvalues:*

546 (1) **Leaf edges:** *An edge connected to a leaf (degree 1 vertex) contributes negatively
547 to the eigenvalue spectrum. This follows from Gershgorin's circle theorem: for
548 a leaf edge $e = xy$ with $d_x = 1$, the corresponding Gershgorin disk satisfies*

$$R_{e,e} + R_e = -\frac{2}{d_y} < 0.$$

549 (2) **Internal edges:** *For an internal edge $e = xy$, the rightmost point of its
550 Gershgorin disk is*

$$R_{e,e} + R_e = 2 - 2 \left(\frac{1}{d_x} + \frac{1}{d_y} \right),$$

551 *which may be non-negative if the sum of degrees of its endpoints is at least 5.*

552 *Equality holds when $d_x = d_y = 2$.*

553 (3) **Sum of eigenvalues:** *The sum of all eigenvalues of R equals $-|V|$, since*

$$\sum_i \lambda_i = \text{trace}(R) = - \sum_{xy \in E} \left(\frac{1}{d_x} + \frac{1}{d_y} \right) = - \sum_{x \in V} 1 = -|V|.$$

554 *Additionally, the leftmost point of every Gershgorin disk is -2 , so all eigenvalues
555 are greater than -2 .*

556 **5. CLASSIFICATION OF TREE STRUCTURES BASED ON RICCI FLOW SPECTRAL
557 FEATURES**

558 The Ricci flow (18) naturally induces an *Evolution Matrix* on trees, capturing edge–
559 edge interactions under curvature evolution. In this section, we illustrate how this
560 matrix can be used to analyze and cluster different tree structures, highlighting the
561 practical utility of the Ricci flow framework. To evaluate its effectiveness, we perform a

562 tree classification task comparing the evolution matrix R with three classical representations: the Adjacency Matrix, the Laplacian Matrix, and the Distance Matrix. Our
 563 results indicate that R achieves clearer separation between tree types, emphasizing its
 564 superior capability to capture both local and global structural differences relative to
 565 standard matrix representations.

567 We next recall the definitions of the various matrices used in this study:

568 **Definition 4** (Evolution Matrix from Ricci Flow on Trees). *Let $T = (V, E)$ be a finite
 569 tree. Index the rows and columns of a matrix $R \in \mathbb{R}^{|E| \times |E|}$ by the edges of T . For an
 570 edge $e = \{x, y\} \in E$ and another edge $e' = \{u, v\} \in E$, define*

$$R_{e,e'} = \begin{cases} -\left(\frac{1}{d_x} + \frac{1}{d_y}\right), & \text{if } e = e', \\ \frac{1}{d_x}, & \text{if } e \cap e' = \{x\}, \\ \frac{1}{d_y}, & \text{if } e \cap e' = \{y\}, \\ 0, & \text{otherwise,} \end{cases}$$

571 where d_x and d_y denote the degrees of vertices x and y .

572 **Definition 5** (Adjacency Matrix). *Let $G = (V, E)$ be a simple undirected graph with
 573 $V = \{v_1, v_2, \dots, v_n\}$. The adjacency matrix of G is defined as*

$$A = [a_{ij}]_{1 \leq i,j \leq n}, \quad a_{ij} = \begin{cases} 1, & \{v_i, v_j\} \in E, \\ 0, & \text{otherwise.} \end{cases}$$

574 **Definition 6** (Laplacian Matrix). *The Laplacian matrix of G is defined by*

$$L = D - A = [\ell_{ij}]_{1 \leq i,j \leq n}, \quad \ell_{ij} = \begin{cases} d_i, & i = j, \\ -1, & i \neq j \text{ and } \{v_i, v_j\} \in E, \\ 0, & \text{otherwise,} \end{cases}$$

575 where the degree matrix of G is the diagonal matrix

$$D = \text{diag}(d_1, d_2, \dots, d_n).$$

576 **Definition 7** (Distance Matrix). *Let $G = (V, E)$ be a connected simple undirected
 577 graph with $V = \{v_1, v_2, \dots, v_n\}$. The distance matrix of G is defined as*

$$D_{\text{dist}} = [d(i, j)]_{1 \leq i,j \leq n}, \quad d(i, j) = \begin{cases} 0, & i = j, \\ \text{the length of the shortest path between } v_i \text{ and } v_j, & i \neq j. \end{cases}$$

578 **Experimental Setup** The experiments are designed to classify random trees generated by three different models:

- 580 • **Prüfer Random (PR) Trees:** Uniformly sampled from the set of all labeled
 581 trees with n vertices using random Prüfer sequences.
- 582 • **Barabási–Albert (BA) Trees:** Generated by the preferential attachment
 583 model with $m = 1$, resulting in a scale-free tree with a heavy-tailed degree
 584 distribution.

585 • **Complete Binary (CB) Trees:** Fully filled at all levels except possibly the
 586 last, providing regular hierarchical structures as baselines.

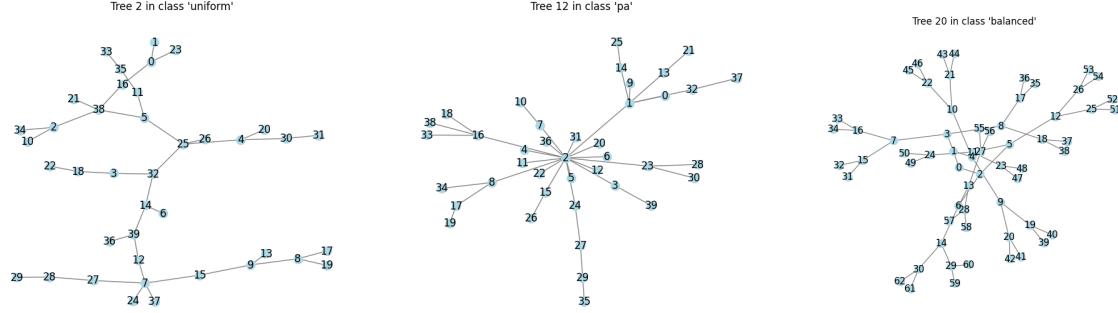


FIGURE 5. Structural examples of Prüfer Random Tree, BA Tree and Complete Binary Tree

587 These tree models span a range from highly random to highly structured topologies.
 588 If the matrices can capture the tree structure differences, it is natural to cluster the
 589 trees generated by different tree models basing on the matrices information. Thus,
 590 we design a tree classification procedure (as illustrated in Figure: (6) to extract the
 591 matrices information and cluster the trees. Code is available at: <https://github.com/suyangban/evolution-matrix-based-tree-classification>.

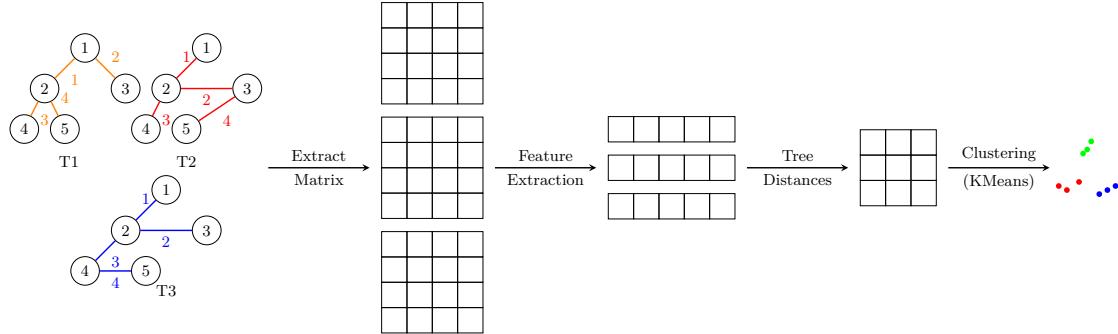


FIGURE 6. A sketch of model process.

592 **Feature Extraction** We propose the following steps to extract tree-wise spectral
 593 signatures from different matrices:
 594

595 (1) Compute all eigenvalues and eigenvectors.
 596 (2) Extract statistical descriptors from eigenvalues: Let $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ be
 597 a vector of real values (e.g., eigenvalues). The statistic variables we used to
 598 describe tree spectrum are listed below:

Statistic	Formula
Minimum	$\min(\mathbf{x})$
Median	$\text{median}(\mathbf{x})$
Maximum	$\max(\mathbf{x})$
Mean	$\mu = \frac{1}{n} \sum_{i=1}^n x_i$
Std	$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2}$
Variance	$\frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$
Skewness	$\frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \mu}{\sigma}\right)^3$
Kurtosis	$\frac{1}{n} \sum_{i=1}^n \left(\frac{x_i - \mu}{\sigma}\right)^4$
Percentile p	$\text{percentile}_p(\mathbf{x})$
Proportion > 0	$\frac{1}{n} \sum_{i=1}^n \mathbb{I}(x_i > 0)$
Proportion $= 0$	$\frac{1}{n} \sum_{i=1}^n \mathbb{I}(x_i = 0)$
Proportion < 0	$\frac{1}{n} \sum_{i=1}^n \mathbb{I}(x_i < 0)$

599 (3) From the eigenvector associated with the largest eigenvalue, compute a normalized
600 histogram. Let λ_{\max} be the largest eigenvalue, and $\mathbf{v}_{\max} = [v_1, v_2, \dots, v_n]^T$
601 the corresponding eigenvector. By Theorem 1, this eigenvector for matrix R
602 is positive, but for other matrix, it can be negative. Thus, we normalize the
603 absolute value of the max eigenvector by:

$$\mathbf{p} = \left[\frac{|v_1|}{\sum_{j=1}^n |v_j|}, \frac{|v_2|}{\sum_{j=1}^n |v_j|}, \dots, \frac{|v_n|}{\sum_{j=1}^n |v_j|} \right]^T.$$

604 Next, we extract the histogram vector by partitioning the interval $[0, 1]$ into
605 b equal-width bins, where the choice of b depends on the number of vertices in
606 the trees within the dataset.

$$I_k = \left[\frac{k-1}{b}, \frac{k}{b} \right), \quad k = 1, 2, \dots, b-1$$

$$I_b = \left[\frac{b-1}{b}, 1 \right]$$

608 For each bin k , count the values lies in it:

$$h_k = \sum_{i=1}^n \mathbb{I}(p_i \in I_k)$$

609 where $\mathbb{I}(\cdot)$ is the indicator function. Then normalize the probability distribution
610 by:

$$\mathbf{h} = \frac{1}{n} [h_1, h_2, \dots, h_b]^T.$$

611 thus, $\sum_{k=1}^b h_k = 1$.

612 (4) Concatenate these quantities to form the final feature vector.

613 The dominant computational cost comes from the eigen-decomposition step, and **the**
 614 **overall time complexity is also** ($O(n^3)$) for a matrix of size ($n \times n$). For large
 615 graphs, this step can be computationally expensive, and more efficient methods or
 616 approximations may be required for scalability.

617 **Clustering and Evaluation** We apply KMeans to cluster the extracted spectral
 618 signatures. The computational complexity of the KMeans algorithm is $O(n \cdot k \cdot d \cdot t)$,
 619 where n is the number of samples, k is the number of clusters, d is the dimensionality
 620 of the feature space, and t is the number of iterations until convergence. In practice,
 621 both the number of clusters and the number of iterations are much smaller than the
 622 number of samples, so the algorithm is generally efficient for moderate-sized datasets.
 623 However, for very large datasets or high-dimensional data, the computational cost can
 624 become significant.

625 To evaluate performance of clustering, we leverage two widely used metrics.

626

- 627 • Adjusted Rand Index (ARI): Measures agreement with ground truth, corrected
 for chance.

628

- 629 • Normalized Mutual Information (NMI): Measures mutual dependence between
 predicted and true labels, normalized to [0, 1].

Method	Metric	Number of Trees (PR/BA/CB)				
		50/50/50	100/100/100	200/200/200	300/300/300	300/200/100
Distance	ARI	0.10 \pm 0.03	0.09 \pm 0.02	0.09 \pm 0.01	0.09 \pm 0.01	0.00 \pm 0.01
	NMI	0.26 \pm 0.03	0.26 \pm 0.03	0.25 \pm 0.02	0.25 \pm 0.01	0.23 \pm 0.01
Adjacency	ARI	0.31 \pm 0.04	0.31 \pm 0.04	0.31 \pm 0.02	0.31 \pm 0.02	0.40 \pm 0.03
	NMI	0.47 \pm 0.04	0.47 \pm 0.03	0.47 \pm 0.02	0.46 \pm 0.03	0.49 \pm 0.02
Laplacian	ARI	0.23 \pm 0.05	0.23 \pm 0.04	0.22 \pm 0.03	0.22 \pm 0.03	0.29 \pm 0.03
	NMI	0.40 \pm 0.05	0.39 \pm 0.04	0.38 \pm 0.03	0.38 \pm 0.03	0.39 \pm 0.03
Evolution	ARI	0.63 \pm 0.17	0.56 \pm 0.17	0.73 \pm 0.12	0.65 \pm 0.16	0.69 \pm 0.08
	NMI	0.66 \pm 0.11	0.60 \pm 0.12	0.71 \pm 0.09	0.66 \pm 0.10	0.64 \pm 0.08

TABLE 1. Performance comparison across different tree configurations:
 number of trees sampled from three tree generation models (mean \pm std)

630 Table 5 reports the mean and std of ARI and NMI from 100 runs for different random
 631 seeds. In each run, the size of sampled trees varies. For PR and BA trees, nodes number
 632 varies in [10, 20, 30, 40, 50, 60, 70, 80, 90, 100], and for CB trees, the depth varies
 633 in [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The statistic results shows Evolution matrix
 634 stably and significantly outperforms other matrices on different scale of datasets. The
 635 last column of Table 5 shows even on unbalance datasets, Evolution matrix still show
 636 its capability to characterize tree structures.

637 Figure 7 shows the Multidimensional Scaling (MDS) visualization of tree features
 638 extracted from four different matrices. MDS is a dimensionality reduction technique
 639 that preserves the distances between features, i.e., if two trees are similar, they appear
 640 close in the embedding; if they are very different, they appear far apart. In the first

641 three plots, the clusters are not well separated. Points from different classes often overlap,
 642 leading to low ARI and NMI scores. This suggests that Distance, Adjacency, or
 643 Laplacian-based features are not sufficient to capture the underlying structural differences
 644 among tree types. In contrast, the evolution-based dissimilarity (bottom right)
 645 produces a much clearer separation of the three classes. This matrix likely incorporates
 646 more meaningful structural features of the trees, capturing their generative process. As
 647 a result, Evolution-based features gets the high ARI (0.81) and NMI (0.78).

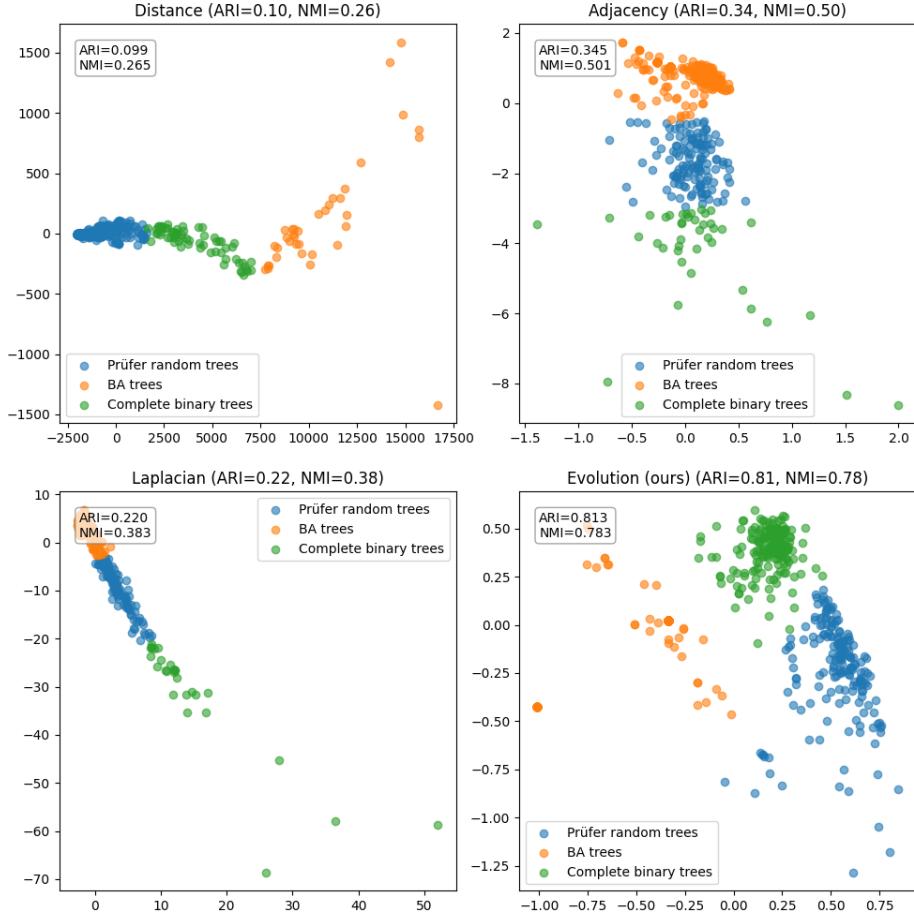


FIGURE 7. MDS visualization of clustering results for different matrix representations. The Evolution Matrix yields the clearest separation among four types.

648 Experiments show that the Evolution Matrix outperforms adjacency, Laplacian, and
 649 distance matrices in clustering accuracy. Based on its construction from the continuous
 650 Ricci flow, the Evolution Matrix also exhibits the following design features, which
 651 suggest potential advantages beyond our experiments:

652 (1) *Curvature-aware*: Encodes local geometric information from the Ricci flow.
 653 (2) *Sparse*: Fewer nonzero entries, implying lower computational cost for large
 654 trees.

655 (3) *Interpretable*: Non-zero entries correspond directly to edge–edge interactions.

656 **Why the Evolution Matrix Improves Tree Classification**

657 We now explain, in a geometry–spectral way, why the proposed Evolution Matrix
658 R (Definition 4) yields substantially better clustering of tree topologies than standard
659 choices such as the adjacency, Laplacian, or distance matrices. The key point is that,
660 by construction, *the leading spectral quantities of R related with the limiting geometric*
661 *objects of the continuous Ricci flow on trees*. Concretely, under our flow,

$$\kappa(\infty) = -\lambda_{\max}(R), \quad w_\infty = \mathbf{v}_{\max}(R), \quad (41)$$

662 where $\kappa(\infty)$ is the limiting curvature, and w_∞ is the normalized Ricci flow metric at
663 equilibrium, while $\lambda_{\max}(R)$ and $\mathbf{v}_{\max}(R)$ denote, respectively, the largest eigenvalue
664 of R and an associated eigenvector. The feature extraction pipeline in §5 naturally
665 extracts the information from (41) (via eigenvalue statistics and the histogram of $|\mathbf{v}_{\max}|$
666), which aligns the learned representations with the underlying geometry of the data-
667 generating mechanisms.

668 (R1) Geometry-aligned spectrum (task–feature alignment). Equation (41) shows that
669 the top spectral quantities of R are the limiting geometric invariants of the Ricci flow.
670 Hence summary statistics of the spectrum (min/median/max, moments, sign propor-
671 tions) directly encode the limiting curvature scale and its dispersion, while the normal-
672 ized histogram of $|\mathbf{v}_{\max}|$ estimates the distribution of the limiting metric across edges.
673 In contrast, for the adjacency A and the Laplacian L , the principal spectral quantities
674 have no direct curvature interpretation; for the distance matrix D_{dist} , eigen-structure
675 is dominated by global path-length geometry and is insensitive to local curvature con-
676 centrations. This geometry–spectrum coupling endows R an intrinsic *inductive bias*
677 tailored to separating tree generative models.

678 (R2) Edge-space, degree-normalized coupling highlights branching geometry. Indexing
679 R by edges (not vertices) and using $1/d_v$ couplings at each endpoint causes R to
680 emphasize how edges *share* branching load at high-degree vertices. For an edge $e =$
681 $\{x, y\}$,

$$R_{e,e} = -\left(\frac{1}{d_x} + \frac{1}{d_y}\right), \quad R_{e,e'} = \begin{cases} \frac{1}{d_x}, & e \cap e' = \{x\}, \\ \frac{1}{d_y}, & e \cap e' = \{y\}, \\ 0, & \text{otherwise.} \end{cases}$$

682 Thus, edges incident to hubs (large d) experience a characteristic pattern of many
683 small $1/d$ -strength couplings whose global superposition yields a distinctive leading
684 eigenvector footprint:

- 685 • **BA trees (heavy-tailed degrees):** mass in $|\mathbf{v}_{\max}|$ concentrates around hub-
686 incident edges; the histogram of $|\mathbf{v}_{\max}|$ displays heavier upper-bin occupancy.
- 687 • **Complete binary trees (regular, hierarchical):** near-uniform degree in-
688 duces a smoother, more homogeneous $|\mathbf{v}_{\max}|$ -histogram.
- 689 • **Prüfer random trees (light-tailed degrees):** patterns lie between the two
690 extremes, with moderate concentration.

691 The same mechanism also affects $\lambda_{\max}(R)$, hence curvature scale, yielding class-separable
692 statistics without requiring large feature engineering.

693 (R3) Scale robustness induced by $1/d$ -normalization. Because the couplings at a vertex
694 are normalized by the local degree, R attenuates the raw effect of graph size and
695 emphasizes *relative branching proportions*. When node counts or depths vary across
696 samples (as in our setup), the eigenvalue moments and $|\mathbf{v}_{\max}|$ -histograms remain com-
697 parably distributed within a model class. By contrast, D_{dist} -spectra drift substantially
698 with size (global path lengths stretch), while A and L are more sensitive to absolute
699 degree counts than to their *normalized* branching structure.

700 (R4) Line-graph viewpoint: as a Laplacian-type operator on edges. Let $\mathcal{L}(T)$ be the line
701 graph of T (its vertices are edges of T). If one forms a weighted Laplacian on $\mathcal{L}(T)$ with
702 weights $w(e, e') = 1/d_v$ whenever e and e' meet at v , then R can be seen as a *Laplacian-*
703 *like* operator on edge space, up to a degree-dependent diagonal shift (sign conventions
704 reversed on off-diagonals). This places R squarely in the class of *diffusion generators*
705 on edge functions, which mirrors the curvature-smoothing nature of the Ricci flow.
706 The adjacency A and vertex-Laplacian L act on different state spaces (nodes rather
707 than edges) and do not implement this particular curvature-aware diffusion.

708 (R5) Why the chosen features are especially effective for R . Our pipeline (§5) uses (i)
709 eigenvalue summary statistics and (ii) a histogram of the normalized leading eigenvect-
710 or. For R , these two blocks *exactly* probe the quantities in (41):

- 711 (1) The statistics of $\{\lambda_i(R)\}$ summarize the curvature scale and its dispersion across
712 modes (mean/variance/skew/kurtosis; proportions of signs).
- 713 (2) The histogram of $|\mathbf{v}_{\max}(R)|$ summarizes how the limiting Ricci metric m_∞ dis-
714 tributes over edges (concentration vs. spread), which is highly diagnostic of
715 hub-dominated vs. regular branching.

716 Applying the *same* feature recipe to A , L , and D_{dist} produces descriptors that lack this
717 geometric semantics; consequently, the resulting embeddings are less aligned with the
718 differences induced by the generative models and thus less separable for clustering.

719 (R6) Testable predictions and ablations. The geometric reading above yields empirical
720 predictions that further explain the observed gains:

- 721 • *Ablation*: Using only $\lambda_{\max}(R)$ plus the $|\mathbf{v}_{\max}(R)|$ -histogram should retain most
722 of the performance, since these already capture curvature scale and limiting
723 metric concentration.
- 724 • *Local perturbations*: Edge operations that change branching at a hub (adding/removing
725 multiple leaves at a high-degree vertex) should cause a larger, more structured
726 drift in R -spectra than in the spectra of A , L , or D_{dist} , matching geometric
727 intuition.
- 728 • *Size extrapolation*: Within a fixed model class, as n grows, the empirical dis-
729 tribution of $|\mathbf{v}_{\max}(R)|$ -histograms should stabilize (after appropriate binning),
730 whereas D_{dist} -based summaries drift with graph diameter.

731 The Evolution Matrix R embeds the continuous Ricci flow's limiting curvature
732 and metric *directly* into its leading spectral data. Because the differences among

733 BA/Prüfer/complete-binary trees are fundamentally expressed by their branching ge-
 734 ometry (hub concentration vs. regularity), the geometry-aligned spectrum of R pro-
 735 duces features that are both interpretable and strongly discriminative, thereby explain-
 736 ing its superior clustering accuracy in our experiments.

6. FUTURE WORK

738 In the previous section, we observed that the Ricci flow matrix exhibits promising
 739 potential for distinguishing trees through their spectra and the eigenvector. A natural
 740 question that arises is whether the largest eigenvalue and the eigenvector can serve as
 741 a complete invariant for finite trees, as suggested by Conjecture 1. At present, this
 742 remains an open problem, and we leave a rigorous investigation of this conjecture for
 743 future research.

744 **Conjecture 1** (Spectral Rigidity via the Leading Eigenpair). *Let T_1 and T_2 be finite,
 745 connected, undirected trees, and let R_{T_1} and R_{T_2} denote their Ricci flow matrices.
 746 Suppose the largest eigenvalues and corresponding eigenvectors coincide:*

$$\lambda_{\max}(R_{T_1}) = \lambda_{\max}(R_{T_2}), \quad v_{\max}(R_{T_1}) = v_{\max}(R_{T_2}) \text{ (up to scaling).}$$

747 Then the trees are isomorphic:

$$T_1 \cong T_2.$$

REFERENCES

- 749 [1] Shuliang Bai, An Huang, Linyuan Lu, and Shing-Tung Yau. On the sum of ricci-curvatures for
 750 weighted graphs. *Pure and Applied Mathematics Quarterly*, 17(5):1599–1617, 2021.
- 751 [2] Shuliang Bai, Yong Lin, Linyuan Lu, Zhiyu Wang, and Shing-Tung Yau. Ollivier ricci-flow on
 752 weighted graphs. *American Journal of Mathematics*, 146(4), 2024.
- 753 [3] Bennett Chow and Feng Luo. Combinatorial Ricci Flows on Surfaces. *Journal of Differential
 754 Geometry*, 63(1):97–129, 2003.
- 755 [4] David Cushing, Supanat Kamtue, Shiping Liu, Florentin Münch, Norbert Peyerimhoff, and
 756 Hugo Benedict Snodgrass. Bakry–Émery curvature sharpness and curvature flow in finite weighted
 757 graphs: Implementation. *Axioms*, 12(6):577, 2023.
- 758 [5] Matthias Erbar and Eva Kopfer. Super ricci flows for weighted graphs. *Journal of Functional
 759 Analysis*, 279(6):108607, 2020.
- 760 [6] Ke Feng, Huabin Ge, and Bobo Hua. Combinatorial Ricci flows and the hyperbolization of a class
 761 of compact 3-manifolds. *Geometry & Topology*, 26(3):1349–1384, 2022.
- 762 [7] Huabin Ge. Combinatorial calabi flows on surfaces. *Transactions of the American Mathematical
 763 Society*, 370(2):1377–1391, 2018.
- 764 [8] Huabin Ge, Bobo Hua, and Ze Zhou. Circle patterns on surfaces of finite topological type. *Amer-
 765 ican Journal of Mathematics*, 143(5):1397–1430, 2021.
- 766 [9] David Glickenstein. A combinatorial yamabe flow in three dimensions. *Topology*, 44(4):791–808,
 767 2005.
- 768 [10] David Alan Glickenstein. *Precompactness of the Ricci flow and a maximum principle on combina-
 769 torial Yamabe flow*. ProQuest LLC, Ann Arbor, MI, 2003. Thesis (Ph.D.)–University of California,
 770 San Diego.
- 771 [11] Xianfeng David Gu, Feng Luo, Jian Sun, and Tianqi Wu. A discrete uniformization theorem for
 772 polyhedral surfaces. *Journal of Differential Geometry*, 109(2):223–256, 2018.
- 773 [12] Richard Hamilton. Three-manifolds with positive ricci curvature. *Journal of Differential Geom-
 774 etry*, 17:255–362, 06 1982.

775 [13] Richard Hamilton. Four-manifolds with positive curvature operator. *Journal of Differential Ge-*
 776 *ometry*, 24(2):153–179, 1986.

777 [14] Richard S. Hamilton. The ricci flow on surfaces. *Mathematics and General Relativity, Contemp.*
 778 *Math.*, 71:237–262, 1988.

779 [15] Bobo Hua, Yong Lin, and Tao Wang. A version of bakry-Émery ricci flow on a finite graph. *arXiv*,
 780 arXiv:2402.07475, 2024.

781 [16] Miao Jin, Junho Kim, and Xianfeng David Gu. Discrete surface ricci flow: Theory and applica-
 782 tions. In Ralph Martin, Malcolm Sabin, and Joab Winkler, editors, *Mathematics of Surfaces XII*,
 783 pages 209–232, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

784 [17] Ruowei Li and Florentin Münch. The convergence and uniqueness of a discrete-time nonlinear
 785 markov chain. *arXiv preprint arXiv:2407.00314*, 2025.

786 [18] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
 787 networks. In *Proceedings of ICLR*, 2015.

788 [19] Yong Lin, Linyuan Lu, and Shing-Tung Yau. Ricci curvature of graphs. *Tohoku Mathematical*
 789 *Journal*, 63, 12 2011.

790 [20] Christopher D. Manning and Hinrich Schütze. *Foundations of Statistical Natural Language Pro-*
 791 *cessing*. MIT Press, 1999.

792 [21] Chien-Chun Ni, Yu-Yao Lin, Jie Gao, and Xianfeng David Gu. Network alignment by discrete
 793 ollivier-ricci flow. *Graph Drawing and Network Visualization*, 11282:447–462, 2018.

794 [22] Chien-Chun Ni, Yu-Yao Lin, Feng Luo, and Jie Gao. Community detection on networks with
 795 ricci flow. *Scientific Reports*, 9, 07 2019.

796 [23] Joakim Nivre. Dependency grammar and dependency parsing. In *MSR Workshop on Treebanks*
 797 *and Linguistic Theories*, 2005.

798 [24] Grigori Perelman. The entropy formula for the ricci flow and its geometric applications, 2002.

799 [25] Grigori Perelman. Finite extinction time for the solutions to the ricci flow on certain three-
 800 manifolds, 2003.

801 [26] Grigori Perelman. Ricci flow with surgery on three-manifolds, 2003.

802 [27] Richard Socher, Alexey Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew
 803 Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a sentiment
 804 treebank. In *Proceedings of the 2013 Conference on Empirical Methods in Natural Language*
 805 *Processing (EMNLP)*, pages 1631–1642, 2013.

806 [28] Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
 807 Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
 808 In *International Conference on Learning Representations*, 2022.

809 [29] Melanie Weber, Jürgen Jost, and Emil Saucan. Forman-ricci flow for change detection in large
 810 dynamic data sets. *Axioms*, 5(4), 2016.

811 [30] Melanie Weber, Emil Saucan, and Jürgen Jost. Characterizing complex networks with forman-
 812 ricci curvature and associated geometric flows. *Journal of Complex Networks*, 5(4):527–550, 01
 813 2017.

814 [31] Min Zhang, Ren Guo, Wei Zeng, Feng Luo, Shing-Tung Yau, and Xianfeng Gu. The unified
 815 discrete surface ricci flow. *Graphical Models*, 76(5):321–339, 2014. Geometric Modeling and Pro-
 816 cessing 2014.